Geothermal Resources Recognition and Characterization on the Basis of Well Logging and Petrophysical Laboratory Data, Polish Case Studies
Abstract
:1. Introduction
2. Theoretical Considerations
2.1. Physical Processes Related to Heat Production and Transport in the Earth
2.2. Logs That Could Be Used in Geothermal Resources Recognition and Characterization
2.3. Petrophysical Parameters from Well Logging
2.4. Thermal Conductivity Laboratory Measurements
3. Results
3.1. Temperature Measurements and Interpretation in GT-1, GT-2 and K-1 Boreholes
3.2. Radiogenic Heat Calculation in GT-1 and S-1 Boreholes
3.3. Heat Flow and Temperature Modelling
3.4. Examples of the Comprehensive Interpretation of Well Logs Used in Petrophysical Characterization of Reservoir Rocks
3.5. Nuclear Magnetic Resonance—A Source of Expanded Information on Porosity
4. Summary
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lowrie, W. Fundamentals of Geophysics, 2nd ed.; Swiss Federal Institute of Technology, Zürich, Cambridge University Press: Cambridge, UK; New York, NY, USA; Melbourne, Australia; Madrid, Spain; Cape Town, South Africa; Singapore; São Paulo, Brazil, 2007; pp. 207–250. [Google Scholar]
- Serra, O. Fundamentals of Well-Log Interpretation—The Acquisition of Logging Data; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1984; p. 435. ISBN 0-444-42132-7. [Google Scholar]
- Darling, T. Well Logging and Formation Evaluation; Elsevier: Amsterdam, The Netherlands; Boston, MA, USA; Heidelberg, Germany; London, UK; New York, NY, USA; Oxford, UK; Paris, France; San Diego, CA, USA; San Francisco, CA, USA; Singapore; Sydney, Australia; Tokyo, Japan, 2005; p. 336. [Google Scholar]
- Asquith, G.B.; Krygowski, D. Basic Well Log Analysis, 2nd ed.; AAPG: Tulsa, OK, USA, 2004; pp. 1–244. [Google Scholar]
- Ellis, D.V.; Singer, J.M. Well Logging for Earth Scientists, 2nd ed.; Springer: Dordrecht, The Netherlands, 2008; p. 692. ISBN 978-1-4020-3738-2. [Google Scholar]
- Janowski, M. The possibilities of using geothermal waters for recreational and balneological purposes-technical-economic aspect. Tech. Poszuk. Geol. 2011, 1, 257–265. [Google Scholar]
- Chowaniec, J.; Poprawa, D.; Witek, K. Występowanie wód geotermalnych w polskiej części Karpat. Prz. Geol. 2001, 49, 734–742. [Google Scholar]
- Dowgiałło, J. The Sudetic geothermal region of Poland. Geothermics 2002, 31, 343–359. [Google Scholar] [CrossRef]
- Górecki, W.; Ciągło, J. Perspektywiczne lokalizacje dla zagospodarowania energii geotermalnej na Niżu Polskim. Tech. Poszuk. Geol. 2007, 47, 35–40. [Google Scholar]
- Chowaniec, J. Studium hydrogeologii zachodniej części Karpat polskich. Biul. Państw. Inst. Geol. 2009, 434, 1–98. [Google Scholar]
- Górecki, W.; Hajto, M.; Strzetelski, W.; Szczepański, A. Dolnokredowy oraz dolnojurajski zbiornik wód geotermalnych na Niżu Polskim. Prz. Geol. 2010, 58, 589–593. [Google Scholar]
- Hajto, M. Geothermal potential of the Outer Western Carpathians. Tech. Poszuk. Geol. 2011, 50, 37–49. [Google Scholar]
- Górecki, W.; Hajto, M.; Szczepański, A.; Oszczypko, N. (Eds.) Atlas Zasobów Wód i Energii Geotermalnej Karpat Zachodnich; AGH UST FGGEP Department of Fossil Fuels, Ministry of Environment: Krakow, Poland, 2011; p. 772.
- Sapińska-Śliwa, A. History of Exploitation of Thermal Waters in Uniejów. Biuletyn Uniejowski 2012, 1, 63–76. [Google Scholar]
- Górecki, W.; Sowiżdżał, A.; Jasnos, J.; Papiernik, B. (Eds.) Atlas Geotermalny Zapadliska Przedkarpackiego; AGH UST FGGEP Department of Fossil Fuels: Krakow, Poland, 2012; p. 418.
- Górecki, W.; Hajto, M.; Sadurski, A.; Szczepański, A. (Eds.) Atlas Zasobów Geotermalnych Na Niżu Polskim—Formacje Paleozoiku; KrakówAGH UST FGGEP Department of Fossil Fuels: Krakow, Poland, 2006; p. 240.
- Sowiżdżał, A.; Papiernik, B.; Machowski, G.; Hajto, M. Characterization of petrophysical parameters of the Lower Triassic deposits in prospective location for Enhanced Geothermal System (central Poland). Geol. Q. 2013, 57, 729–744. [Google Scholar] [CrossRef] [Green Version]
- Bujakowski, W.; Tomaszewska, B. (Eds.) Atlas of the Possible use of Geothermal Waters for Combined Production of Electricity and Heat Using Binary System in Poland; MEERI PAS: Krakow, Poland, 2014; p. 305. [Google Scholar]
- Górecki, W.; Sowiżdżał, A.; Hajto, M.; Wachowicz-Pyzik, A. Atlases of geothermal waters and energy resources in Poland. Environ. Earth Sci. 2015, 74, 7487–7495. [Google Scholar] [CrossRef] [Green Version]
- Kępińska, B. (Ed.) Energia Geotermalna-Podstawa Niskoemisyjnego Ciepłownictwa, Poprawy Warunków Życia I Zrównoważonego Rozwoju-Wstępne Studia Możliwości Dla Wybranych Obszarów W Polsce. Raport z Wizyt Studyjnych. 2017, pp. 18–40. Available online: http://www.eeagrants.agh.edu.pl/wp-content/uploads/2017/12/EOG-Raport-GeoHeatPol-2017.pdf (accessed on 21 November 2020).
- Górecki, W.; Hajto, M.; Augustyńska, J.; Jasnos, J. (Eds.) Geothermal Atlas of the Eastern Carpathians; AGH UST FGGEP, Department of Fossil Fuels: Krakow, Poland, 2013; p. 791.
- Malata, T.; Żytko, K. (Eds.) Profile Głębokich Otworów Wiertniczych PIG Kuźmina 1; Polish Geological Institute: Warsaw, Poland, 2006; Volume 110, p. 70. [Google Scholar]
- Sokołowski, J. Dokumentacja geosynoptyczna otworu geotermalnego Bańska IG-1. Geosynop. I Geotermi. 1992, 1, 1–119. [Google Scholar]
- Dowgiałło, J. The Sudetic geothermal region of Poland—New findings and further prospects. In Proceedings of the World Geothermal Congress, Kyushu-Tohoku, Japan, 28 May–10 June 2000. [Google Scholar]
- Wójcicki, A.; Sowiżdżał, A.; Bujakowski, W. Evaluation of Potential, Thermal Balance and Prospective Geological Structures for Needs of Closed Geothermal Systems (Hot Dry Rocks) in Poland; Ministry of Environment: Warsaw, Poland; Krakow, Poland, 2013; p. 246.
- Rybach, L. (Ed.) Radioactive Heat Production; a Physical Property Determined by the Chemistry in the Physical and Chemistry of Minerals and Rocks; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1976. [Google Scholar]
- Rybach, L. Determination of heat production rate. In Handbook of the Terrestial Heat Flow Density Determination; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988; pp. 125–142. [Google Scholar]
- Bücker, C.; Rybach, L. A simple method to determine heat production from gamma ray logs. Mar. Petrol. Geol. 1996, 13, 373–375. [Google Scholar] [CrossRef]
- Allen, D.; Carry, S.; Freedman, B.; Andreani, M.; Klopf, W.; Badry, R.; Flaum, C.; Kenyon, B.; Kleinberg, R.; Gossenberg, P.; et al. How to Use Borehole Nuclear Magnetic Resonance. Oceanogr. Lit. Rev. 1998, 3, 586–587. [Google Scholar]
- Coates, G.R.; Xiao, L.; Prammer, M.G. NMR Logging Principles & Applications; Halliburton Energy Services: Houston, DE, USA, 1999; p. 235. [Google Scholar]
- Szewczyk, J.; Gientka, D. Terrestrial heat flow density in Poland—A new approach. Geol. Q. 2009, 53, 125–140. [Google Scholar]
- Schön, J.H. Physical Properties of Rocks: Fundamentals and Principles of Petrophysics, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2015; p. 497. ISBN 978-0-08-100404-3. [Google Scholar]
- Doveton, J.; Förster, A.; Merriam, D.F. Predicting thermal conductivity from petrophysical logs: A Midcontinent Paleozoic case study. In Proceedings of the IAMG’97, CIMNE, Barcelona, Spain, 22–27 September 1997. [Google Scholar]
- Janowski, M. Heating pomp as ecologic heat source? In Proceedings of the Ogólnopolski Kongres Geotermalny Geotermia w Polsce-doświadczenia, stan aktualny, perspektywy rozwoju, Radziejowice, Poland, 17–19 October 2007. [Google Scholar]
- Ciapała, B.; Janowski, M. Shallow bedrock layers temperature local variability—Trivia or touchstone? historic view and possible application. In Proceedings of the VI Polish Geothermal Congress, Zakopane, Poland, 23–25 October 2018; p. 21, ISBN 978-83-65874-02-3. [Google Scholar]
- Available online: http://www.geofizyka.agh.edu.pl/en/laboratory-of-elastic-and-mechanical-property/ (accessed on 21 November 2020).
- Corrigan, J. 2003-Correcting Bottom-Hole Temperature Data. Available online: https://www.zetaware.com/utilities/bht/horner.html (accessed on 21 November 2020).
- Pasquale, V.; Verdoya, M.; Chiozzi, P. Geothermics, Heat Flow in the Lithosphere, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2017; p. 138. ISBN 978-3-319-52083-4. [Google Scholar]
- Dziadzio, P.S.; Matyasik, I.; Garecka, M.; Szydło, A. Lower Oligocene Menilite Beds, Polish Outer Carpathians: Supposed deep-sea flysch locally reinterpreted as shelfal, based on new sedimentological, micropalaeontological and organic-geochemical data. Pr. Naukowe Inst. Naft. i Gazu 2016, 120. [Google Scholar] [CrossRef]
- Plewa, M. Wyniki Badań Cieplnej Przewodności Właściwej I Gęstości Powierzchniowego Strumienia Cieplnego Ziemi W Otworze Kuźmina 1 Na Podstawie Pomiarów Laboratoryjnych Próbek Skał; W: Program poszukiwań fałdów wgłębnych w Karpatach w oparciu o wyniki super głębokiego wiercenia Kuźmina 1; Centr. Arch. Geol. Państw. Inst. Geol., Oddz. Karpacki.: Kraków, Poland, 1989. [Google Scholar]
- Nagórski, Z. Modelowanie Przewodzenia Ciepła Za Pomocą Arkusza Kalkulacyjnego; Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, Poland, 2001; pp. 114–116. [Google Scholar]
- Nagórski, Z. Modelowanie Przepływu Ciepła Metodą KM3R; Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, Poland, 2014; pp. 186–191. ISBN 978-83-7814-085-6. [Google Scholar]
- Ciapała, B.; Hajto, M.; Janowski, M. Analytical models of the borehole heat exchanger ground heat source exploitation (GeoPLASMA-CE). In Proceedings of the VI Polish Geothermal Congress, Zakopane, Poland, 23–25 October 2018; p. 11, ISBN 978-83-65874-02-3. [Google Scholar]
- Puskarczyk, E. Ocena Własności Zbiornikowych Skał Przy Wykorzystaniu Zjawiska Magnetycznego Rezonansu Jądrowego. Ph.D. Thesis, AGH University of Science and Technology, Main Library, Krakow, Poland, 2011; p. 135. [Google Scholar]
- Romero, P.A. NMR Rock Typing. 2016, p. 5. Available online: http:http://www.geoneurale.com/documents/RockTypingusingNMR1.pdf (accessed on 21 November 2020).
- Coates, G.R.; Dumanoir, J.L. A New Approach to Improved Log Derived Permeability. The Log Analyst, January–February 1974; 17. [Google Scholar]
- Zawisza, L. Simplified method of absolute permeability estimation of porous beds. Arch. Min. Sci. 1993, 38, 343–352. [Google Scholar]
- Szabó, N.P.; Dobróka, M.; Turai, E.; Szűcs, P. Factor analysis of borehole logs for evaluating formation shaliness: A hydrogeophysical application for ground water studies. Hydrogeol. J. 2014, 22, 511–526. [Google Scholar] [CrossRef]
- Marchais, T.; Pérot, B.; Carasco, C.; Allinei, P.-G.; Chaussonnet, J.-L.; Toubon, H. Gamma-ray spectroscopy measurements and simulations for uranium mining. EPJ Web Conf. 2018, 170. [Google Scholar] [CrossRef] [Green Version]
- Ross, P.-S.; Bourke, A. High-Resolution Gamma Ray Attenuation Density Measurements on Mining Exploration Drill Cores, Including Cut Cores. J. Appl. Geophys. 2018, 136, 262–268. [Google Scholar] [CrossRef] [Green Version]
- Abbady, A.G.E.; Al-Ghamdi, A.H. Heat production rate of radioactive elements of granite rocks in north and southeastern Arabian shield Kingdom of Saudi Arabia. J. Radiat. Res. Appl. Sci. 2018, 11, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Aisabokhae, J.; Adeoye, M. Spatial distribution of radiogenic heat in the Iullemmeden basin—Precambrian basement transition zone, NW Nigeria. Geol. Geophys. Environ. 2020, 46, 239–250. [Google Scholar]
- Lund, J.; Sanner, B.; Rybach, L.; Curtis, R.; Hellström, G. Geothermal (ground–source) heat pumps, a world overview. GHC Bull. 2004, 25, 1–10. [Google Scholar]
- Rybach, L.; Eugster, W.J. Sustainability aspects of geothermal heat pumps. In Proceedings of the 27th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA, 28–30 January 2002; pp. 57–64. [Google Scholar]
Rock Type/Element | Concentration [ppm/Weight] | Heat Production [10−11 W/kg] | |||||
---|---|---|---|---|---|---|---|
U | Th | K | U | Th | K | Total | |
Granite | 4.6 | 18 | 33 | 43.8 | 46.1 | 11.5 | 101 |
Alkali basalt | 0.75 | 2.5 | 12 | 7.1 | 6.4 | 4.2 | 18 |
Continental crust | 1.2 | 4.5 | 15.5 | 11.4 | 11.5 | 5.4 | 28 |
Mantle | 0.025 | 0.087 | 70 | 0.238 | 0.223 | 0.024 | 0.49 |
GT-1 | Both Boreholes—GT-1 and GT-2 | GT-2 | |||
---|---|---|---|---|---|
Depth Interval [m] | Lithology | Stratigraphy | Stratigraphy Code | Lithology | Depth Interval [m] |
0.0–76.0 | Sand, clay, sandy clay, loam, brown coal | Quaternary + Neogene + Paleogene | Q + Ng + Pg | Sand, clay, sandy clay, loam, brown coal | 0.0–59.0 |
76.0–195.5 | Marly limestones, marls, marly claystones, claystones | Upper Cretaceous | K3 | Marly limestones, marls, marly claystones, claystones | 59–142 |
195.5–541.0 | Sandstones, claystones, limestone inserts | Lower Cretaceous | K1 | Claystones, marly claystones, shaly sandstones, | 142–553 |
541–1267 | Gypsum, marls, limestones, marlyclaystones | Upper Jurassic | J3 | Gypsum, marls, marly limestones, limestones | 553–1279.5 |
1267–1776.5 | Alternate packets of sandstones, shaly sandstones, claystones | Middle Jurassic | J2 | Alternate packets of sandstones, shaly sandstones, claystones | 1279.5–1792.5 |
1776.5–1820 | Sandstones with admixture of calcareous substance | Lower Jurassic | J1; Borucice Beds | Sandstones with admixture of calcareous substance | 1792.5–1829 |
1820–1905 | Mudstones and claystones with calcareous substance | Lower Jurassic | J1; Ciechocinek Beds | Mudstones and claystones with calcareous substance | 1829–1936.5 |
1905–1971 | Sandstones with mudstone and claystone intercalations | Lower Jurassic | J1; Upper Sławęcice Beds | Sandstones with mudstone and claystone intercalations | 1936.5–1973.5 |
1971–2132 | Sandstone, mudstone, claystone | Lower Jurassic | J1; Main Sławęcice Beds | Sandstones separated with mudstone and claystone | 1973.5–2136 |
2132–2335.5 | Thick-layered sandstones | Lower Jurassic | J1; Ksawerów and Kłodawa Beds | Thick-layered sandstones, locally separated with claystones and mudstones | 2136–2349 |
2335.5–2528 | Sandstones intercalated by mudstones and claystones | Upper Triassic | TRe; Rhaetian | Clayey and muddy formation with sandstones | 2349–2362 * |
2528–2755 | Clayey and muddy formations with calcareous and dolomitic substance | Upper Triassic | TK; Keuper | ||
2755–2883.5 | Carbonate–anhydrite formations: dolomites, anhydrite, marls | Middle Triassic | T2; Muschelkalk | ||
2883.5–2925 * | Marly claystones, marls, marly and dolomitic limestones | Lower Triassic | Tp3; BunterSandstone (Ret) |
Bottom Hole Temperature, BHT | Production Log Temperature | |||||
---|---|---|---|---|---|---|
GT-1 | GT-2 | GT-2 | ||||
Depth [m] | BHT [°C] | Temp_Calc [°C] | Depth [m] | BHT [°C] | Depth [m] | Temp [°C] |
20 | 8 | |||||
403 | 24 | 22.99 | ||||
1892.5 | 51 | 53.67 | 1922 | 50 | 2320 | 64.2 |
2351 | 62 | 67.58 | 2361 | 59 | ||
2769 | 71 | 75.07 | ||||
2925.5 | 72 | 76.92 |
Statistics | Stratigraphy/Formation/ Depth Interval [m], λ [W/m/°K] | RHOB [g/cm3] | U [ppm] | Th [ppm] | K [%] | A [μW/m3] |
---|---|---|---|---|---|---|
Min | J1, Ciechocinek Beds, 1820–1905, 2.47 | 2.21 | 0.19 | 1.14 | 1.34 | 0.262 |
Aver. | 2.47 | 1.90 | 4.50 | 1.99 | 0.919 | |
Hyp. Aver. | 2.47 | 1.31 | 3.71 | 1.93 | 0.863 | |
Max | 2.67 | 3.75 | 7.79 | 3.29 | 1.334 | |
Min | J1, Upper Sławęcice Beds 1905–1971, 2.80 | 2.20 | 0.06 | 0.25 | 1.03 | 0.196 |
Aver. | 2.26 | 0.87 | 2.82 | 1.82 | 0.616 | |
Hyp. Aver. | 2.26 | 0.53 | 1.67 | 1.70 | 0.512 | |
Max | 2.51 | 3.79 | 9.48 | 3.58 | 1.520 | |
Min | J1, Main Sławęcice Beds 1971–2132, 2.90 | 2.19 | 0.06 | 0.31 | 1.06 | 0.184 |
Aver. | 2.27 | 1.09 | 3.80 | 1.58 | 0.618 | |
Hyp. Aver | 2.27 | 0.55 | 2.19 | 1.51 | 0.449 | |
Max | 2.49 | 5.41 | 11.14 | 2.76 | 1.882 | |
Min | J1, Ksawerów and Kłodawa Beds 2132–2335.5, 3.72 | 2.19 | 0.01 | 0.24 | 0.82 | 0.150 |
Aver. | 2.24 | 0.61 | 2.27 | 1.25 | 0.348 | |
Hyp. Aver | 2.24 | 0.34 | 1.54 | 1.22 | 0.291 | |
Max | 2.52 | 5.50 | 14.66 | 2.97 | 2.167 | |
Min | TRe, Rhaetian, 2335.5–2528, 2.38 | 2.20 | 0.09 | 0.67 | 1.29 | 0.184 |
Aver. | 2.39 | 1.99 | 7.31 | 3.03 | 1.071 | |
Hyp. Aver | 2.39 | 0.89 | 4.31 | 2.61 | 0.704 | |
Max | 2.85 | 6.79 | 25.37 | 4.38 | 3.202 | |
Min | TK, Keuper, 2528–2755, 2.73 | 2.20 | 0.31 | 3.25 | 1.83 | 0.740 |
Aver. | 2.49 | 3.01 | 9.17 | 3.42 | 1.588 | |
Hyp. Aver | 2.48 | 2.38 | 8.80 | 3.27 | 1.499 | |
Max | 2.95 | 8.29 | 12.89 | 4.99 | 3.024 | |
Min | T2, Muschelkalk, 2755–2883.5, 3.75 | 2.21 | 0.54 | 0.98 | 0.45 | 0.348 |
Aver. | 2.65 | 2.08 | 3.60 | 1.10 | 0.879 | |
Hyp. Aver | 2.64 | 1.92 | 3.04 | 1.01 | 0.817 | |
Max | 2.91 | 4.28 | 8.32 | 2.98 | 1.497 | |
Min | T3, BunterSandstone, 2883.5–2906.8 (2925.4), 3.22 | 2.21 | 0.93 | 3.17 | 0.93 | 0.643 |
Aver. | 2.59 | 1.59 | 6.75 | 1.59 | 1.231 | |
Hyp. Aver | 2.59 | 1.51 | 6.35 | 1.51 | 1.120 | |
Max | 2.70 | 2.69 | 10.11 | 2.69 | 1.603 |
Formation | λ [W/m°K] | Formation | λ [W/m°K] |
---|---|---|---|
Upper Krosno Beds | 1.68 | Inoceramus Beds | 2.88 |
Lower Krosno Beds | 2.36 | Spas Beds | 2.15–2.37 |
Menilite Beds | 2.03 | Kuźmina Sandstones | 2.99 |
Hieroglyphic Beds and Variegated Shales | 3.19 | Stebnik Beds | 2.41 |
Stratigraphy/Formation/ Depth Interval [m], Lithology, λ [W/m/°K] | RHOB [g/cm3] | U [ppm] | Th [ppm] | K [%] | A [μW/m3] |
---|---|---|---|---|---|
Oligocene, Krosno Beds,745–1692, fine grained sandstones—marly, limy and dolomitic, mudstone shales, 2.36 | 2.61 | 3.21 | 7.04 | 4.84 | 1.771 |
Lower Oligocene, Menilite Beds, 1692–1789.3, shales, fine grained sandstones—limy and dolomitic, 2.03 | 2.49 | 5.04 | 7.23 | 4.50 | 2.361 |
Lower Oligocene/Upper Eocene, Globigerine Beds, 1789.3–11795, marls with enclosure of shales, 1.25 | 2.19 | 3.21 | 9.13 | 5.75 | 1.656 |
Eocene, the First Variegated Shales, 1795–2041, shales, 2.10 | 2.28 | 3.92 | 12.06 | 5.99 | 2.085 |
Eocene, the First Ciężkowice Sandstone, 2041–2097.5, heterogranular sandstones, up to conglomerates, laminated with shales, 2.47 | 2.50 | 2.44 | 5.36 | 4.26 | 1.394 |
Eocene, the Second Variegated Shales, 2097.5–2108, shales, 2.15 | 2.36 | 3.29 | 9.18 | 5.64 | 1.840 |
Eocene, the Second Ciężkowice Sandstone, 2108–2181.3, hetero-granular sandstones, up to gravel facies, locally mudstone type, 2.48 | 2.55 | 2.26 | 4.47 | 3.80 | 1.249 |
Eocene, the Third and Forth Variegated Shales, 2181,3–2250, shale, 2.20 | 2.46 | 3.51 | 9.77 | 5.31 | 1.972 |
Paleocene, Upper Istebna Shales, 2250–2734, shales—limy, clayey, partially marly, 2.00 | 2.36 | 0.22 | 9.62 | 3.58 | 1.499 |
Paleocene, Upper Istebna Sandstones, 2734–2917, fine and middle grained sandstones, laminated with shales, 2.48 | 2.46 | 0.25 | 5.47 | 3.13 | 1.114 |
Paleocene, Lower Istebna Shales, 2917–2948, shales—limy, clayey, partially marly, 2.00 | 2.33 | 0.26 | 6.27 | 3.38 | 1.120 |
Upper Cretaceous, Lower Istebna Sandstone, 2948–3500, fine grained sandstones to mudstones, laminated with shales, 2.50 | 2.48 | 0.25 | 4.49 | 2.97 | 0.998 |
Description | Heat Flux [mW/m2] | Description | Thermal Power [mW/m2] | ||
---|---|---|---|---|---|
GT-1 | S-1 | GT-1 | S-1 | ||
Earth surface heat flux | Thermal power in the column of the base area equal to 1m2 | 0.794 | 4.264 | ||
Without radiogenic heat | 53.89 | 53.41 | |||
with radiogenic heat | 53.98 | 54.65 | |||
Difference | 0.09 | 1.24 | Thermal power ratio (S-1/GT-1) | 5.370 | |
Heat flux at the bottom of the borehole | 53.19 | 50.41 | |||
Difference between heat flux in the neutral layer and borehole bottom | 0.70 | 2.00 | Difference heat flux ratio (S-1/GT-1) | 2.857 |
GR Class [API] | TRe, Rhaetian | TK, Keuper |
---|---|---|
Number od Data | ||
30 | 424 | 0 |
60 | 156 | 177 |
90 | 820 | 1010 |
120 | 523 | 1009 |
150 | 2 | 41 |
180 | 6 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarzyna, J.A.; Baudzis, S.; Janowski, M.; Puskarczyk, E. Geothermal Resources Recognition and Characterization on the Basis of Well Logging and Petrophysical Laboratory Data, Polish Case Studies. Energies 2021, 14, 850. https://doi.org/10.3390/en14040850
Jarzyna JA, Baudzis S, Janowski M, Puskarczyk E. Geothermal Resources Recognition and Characterization on the Basis of Well Logging and Petrophysical Laboratory Data, Polish Case Studies. Energies. 2021; 14(4):850. https://doi.org/10.3390/en14040850
Chicago/Turabian StyleJarzyna, Jadwiga A., Stanisław Baudzis, Mirosław Janowski, and Edyta Puskarczyk. 2021. "Geothermal Resources Recognition and Characterization on the Basis of Well Logging and Petrophysical Laboratory Data, Polish Case Studies" Energies 14, no. 4: 850. https://doi.org/10.3390/en14040850
APA StyleJarzyna, J. A., Baudzis, S., Janowski, M., & Puskarczyk, E. (2021). Geothermal Resources Recognition and Characterization on the Basis of Well Logging and Petrophysical Laboratory Data, Polish Case Studies. Energies, 14(4), 850. https://doi.org/10.3390/en14040850