Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (307)

Search Parameters:
Keywords = energy recharging efficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
41 pages, 6887 KiB  
Review
Charging the Future with Pioneering MXenes: Scalable 2D Materials for Next-Generation Batteries
by William Coley, Amir-Ali Akhavi, Pedro Pena, Ruoxu Shang, Yi Ma, Kevin Moseni, Mihrimah Ozkan and Cengiz S. Ozkan
Nanomaterials 2025, 15(14), 1089; https://doi.org/10.3390/nano15141089 - 14 Jul 2025
Viewed by 495
Abstract
MXenes, a family of two-dimensional carbide and nitride nanomaterials, have demonstrated significant promise across various technological domains, particularly in energy storage applications. This review critically examines scalable synthesis techniques for MXenes and their potential integration into next-generation rechargeable battery systems. We highlight both [...] Read more.
MXenes, a family of two-dimensional carbide and nitride nanomaterials, have demonstrated significant promise across various technological domains, particularly in energy storage applications. This review critically examines scalable synthesis techniques for MXenes and their potential integration into next-generation rechargeable battery systems. We highlight both top-down and emerging bottom-up approaches, exploring their respective efficiencies, environmental impacts, and industrial feasibility. The paper further discusses the electrochemical behavior of MXenes in lithium-ion, sodium-ion, and aluminum-ion batteries, as well as their multifunctional roles in solid-state batteries—including as electrodes, additives, and solid electrolytes. Special emphasis is placed on surface functionalization, interlayer engineering, and ion transport properties. We also compare MXenes with conventional graphite anodes, analyzing their gravimetric and volumetric performance potential. Finally, challenges such as diffusion kinetics, power density limitations, and scalability are addressed, providing a comprehensive outlook on the future of MXenes in sustainable energy storage technologies. Full article
(This article belongs to the Special Issue Pioneering Nanomaterials: Revolutionizing Energy and Catalysis)
Show Figures

Figure 1

29 pages, 2500 KiB  
Article
PHEV Routing with Hybrid Energy and Partial Charging: Solved via Dantzig–Wolfe Decomposition
by Zhenhua Chen, Qiong Chen, Cheng Xue and Yiying Chao
Mathematics 2025, 13(14), 2239; https://doi.org/10.3390/math13142239 - 10 Jul 2025
Viewed by 282
Abstract
This study addresses the Plug-in Hybrid Electric Vehicle Routing Problem (PHEVRP), an extension of the classical VRP that incorporates energy mode switching and partial charging strategies. We propose a novel routing model that integrates three energy modes—fuel-only, electric-only, and hybrid—along with partial recharging [...] Read more.
This study addresses the Plug-in Hybrid Electric Vehicle Routing Problem (PHEVRP), an extension of the classical VRP that incorporates energy mode switching and partial charging strategies. We propose a novel routing model that integrates three energy modes—fuel-only, electric-only, and hybrid—along with partial recharging decisions to enhance energy flexibility and reduce operational costs. To overcome the computational challenges of large-scale instances, a Dantzig–Wolfe decomposition algorithm is designed to efficiently reduce the solution space via column generation. Experimental results demonstrate that the hybrid-mode with partial charging strategy consistently outperforms full-charging and single-mode approaches, especially in clustered customer scenarios. To further evaluate algorithmic performance, an Ant Colony Optimization (ACO) heuristic is introduced for comparison. While the full model fails to solve instances with more than 30 customers, the DW algorithm achieves high-quality solutions with optimality gaps typically below 3%. Compared to ACO, DW consistently provides better solution quality and is faster in most cases, though its computation time may vary due to pricing complexity. Full article
Show Figures

Figure 1

32 pages, 4753 KiB  
Review
Prospective Obstacles and Improvement Strategies of Manganese-Based Materials in Achieving High-Performance Rechargeable Zinc–Air Batteries
by Zhangli Ye, Tianjing Wu, Lanhua Yi and Mingjun Jing
Batteries 2025, 11(7), 255; https://doi.org/10.3390/batteries11070255 - 8 Jul 2025
Viewed by 690
Abstract
Zinc–air batteries (ZABs) are crucial for renewable energy conversion and storage due to their cost-effectiveness, excellent safety, and superior cycling stability. However, developing efficient and affordable bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) at the air [...] Read more.
Zinc–air batteries (ZABs) are crucial for renewable energy conversion and storage due to their cost-effectiveness, excellent safety, and superior cycling stability. However, developing efficient and affordable bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) at the air cathode remains a significant challenge. Manganese (Mn)-based materials, known for their tunable oxidation states, adaptable crystal structures, and environmental friendliness, are regarded as the most promising candidates. This review systematically summarizes recent advances in Mn-based bifunctional catalysts, concentrating on four primary categories: Mn–N–C electrocatalysts, manganese oxides, manganates, and other Mn-based compounds. By examining the intrinsic merits and limitations of each category, we provide a comprehensive discussion of optimization strategies, which include morphological modulation, structural engineering, carbon hybridization, heterointerface construction, heteroatom doping, and defect engineering, aimed at enhancing catalytic performance. Additionally, we critically address existing challenges and propose future research directions for Mn-based materials in rechargeable ZABs, offering theoretical insights and design principles to advance the development of next-generation energy storage systems. Full article
Show Figures

Figure 1

40 pages, 5045 KiB  
Review
RF Energy-Harvesting Techniques: Applications, Recent Developments, Challenges, and Future Opportunities
by Stella N. Arinze, Emenike Raymond Obi, Solomon H. Ebenuwa and Augustine O. Nwajana
Telecom 2025, 6(3), 45; https://doi.org/10.3390/telecom6030045 - 1 Jul 2025
Viewed by 1182
Abstract
The increasing demand for sustainable and renewable energy solutions has made radio frequency energy harvesting (RFEH) a promising technique for powering low-power electronic devices. RFEH captures ambient RF signals from wireless communication systems, such as mobile networks, Wi-Fi, and broadcasting stations, and converts [...] Read more.
The increasing demand for sustainable and renewable energy solutions has made radio frequency energy harvesting (RFEH) a promising technique for powering low-power electronic devices. RFEH captures ambient RF signals from wireless communication systems, such as mobile networks, Wi-Fi, and broadcasting stations, and converts them into usable electrical energy. This approach offers a viable alternative for battery-dependent and hard-to-recharge applications, including streetlights, outdoor night/security lighting, wireless sensor networks, and biomedical body sensor networks. This article provides a comprehensive review of the RFEH techniques, including state-of-the-art rectenna designs, energy conversion efficiency improvements, and multi-band harvesting systems. We present a detailed analysis of recent advancements in RFEH circuits, impedance matching techniques, and integration with emerging technologies such as the Internet of Things (IoT), 5G, and wireless power transfer (WPT). Additionally, this review identifies existing challenges, including low conversion efficiency, unpredictable energy availability, and design limitations for small-scale and embedded systems. A critical assessment of current research gaps is provided, highlighting areas where further development is required to enhance performance and scalability. Finally, constructive recommendations for future opportunities in RFEH are discussed, focusing on advanced materials, AI-driven adaptive harvesting systems, hybrid energy-harvesting techniques, and novel antenna–rectifier architectures. The insights from this study will serve as a valuable resource for researchers and engineers working towards the realization of self-sustaining, battery-free electronic systems. Full article
(This article belongs to the Special Issue Advances in Wireless Communication: Applications and Developments)
Show Figures

Figure 1

43 pages, 7921 KiB  
Review
From Theory to Experiment: Reviewing the Role of Graphene in Li-Ion Batteries Through Density Functional Theory
by Ghada AlJaber, Basheer AlShammari and Bandar AlOtaibi
Nanomaterials 2025, 15(13), 992; https://doi.org/10.3390/nano15130992 - 26 Jun 2025
Viewed by 642
Abstract
Rechargeable Lithium-ion batteries (LIBs) have experienced swift advancement and widespread commercialization in electronic devices and electric vehicles, driven by their exceptional efficiency, energy capacity, and elevated power density. However, to promote sustainable energy development there is a dire need to further extend the [...] Read more.
Rechargeable Lithium-ion batteries (LIBs) have experienced swift advancement and widespread commercialization in electronic devices and electric vehicles, driven by their exceptional efficiency, energy capacity, and elevated power density. However, to promote sustainable energy development there is a dire need to further extend the search for developing and optimizing the existing anode active energy storage materials. This has steered research towards carbon-based anode materials, particularly graphene, to promote and develop sustainable and efficient LIB technology that can drive the next wave of industrial innovation. In this regard, density functional theory (DFT) computations are considered a powerful tool to elucidate chemical and physical properties at an atomistic scale and serve as a transformative framework, catalyzing the discovery of novel high-performance anode materials for LIBs. This review highlights the computational progress in graphene and graphene composites to design better graphene-based anode materials for LIBs. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Graphical abstract

20 pages, 2286 KiB  
Article
Optimizing PHEV Routing with Hybrid Mode and Partial Charging via Labeling-Based Methods
by Zhenhua Chen, Qiong Chen, Yiying Chao and Cheng Xue
Mathematics 2025, 13(13), 2092; https://doi.org/10.3390/math13132092 - 25 Jun 2025
Viewed by 289
Abstract
This study investigates a variant of the shortest path problem (SPP) tailored for plug-in hybrid electric vehicles (PHEVs), incorporating two practical features: hybrid energy mode switching and partial charging. A novel modeling framework is proposed that enables PHEVs to dynamically switch between electricity [...] Read more.
This study investigates a variant of the shortest path problem (SPP) tailored for plug-in hybrid electric vehicles (PHEVs), incorporating two practical features: hybrid energy mode switching and partial charging. A novel modeling framework is proposed that enables PHEVs to dynamically switch between electricity and fuel along each edge and to recharge partially at charging stations. Unlike most prior studies that rely on more complex modeling approaches, this paper introduces a compact mixed-integer linear programming (MILP) model that remains directly solvable using commercial solvers such as Gurobi. To address large-scale networks, a customized labeling algorithm is developed for an efficient solution. Numerical results on benchmark networks show that the hybrid mode and partial charging can reduce total cost by up to 29.76% and significantly affect route choices. The proposed algorithm demonstrates strong scalability, solving instances with up to 33,000 nodes while maintaining near-optimal performance, with less than 5% deviation in smaller cases. Full article
Show Figures

Figure 1

49 pages, 3392 KiB  
Review
Solid-State Batteries: Chemistry, Battery, and Thermal Management System, Battery Assembly, and Applications—A Critical Review
by Emre Biçer, Ahmet Aksöz, Recep Bakar, Çağla Odabaşı, Willar Vonk, Maria Inês Soares, Rafaela Gonçalves, Emanuel Lourenço, Atakan Uzel, Tülay Aksoy, Zeynep Özserçe Haste, Burcu Oral, Ömer Eroğlu, Burçak Asal and Saadin Oyucu
Batteries 2025, 11(6), 212; https://doi.org/10.3390/batteries11060212 - 27 May 2025
Viewed by 2717
Abstract
Li-ion batteries (LIBs) have become the preferred choice in electric vehicles (EVs) for reducing CO2 emissions, enhancing energy efficiency, and enabling rechargeability. They are extensively used in mobile electronics, EVs, grid storage, and other applications due to their high power, low self-discharge [...] Read more.
Li-ion batteries (LIBs) have become the preferred choice in electric vehicles (EVs) for reducing CO2 emissions, enhancing energy efficiency, and enabling rechargeability. They are extensively used in mobile electronics, EVs, grid storage, and other applications due to their high power, low self-discharge rate, wide operating temperature range, lack of memory effect, and environmental friendliness. However, commercial LIBs face safety and energy density challenges, primarily due to volatile and flammable liquid electrolytes and moderate energy densities. To address these issues, advanced materials are being explored for improved performance in battery components such as the anode, cathode, and electrolyte. All-solid-state batteries (ASSEBs) emerge as a promising alternative to liquid electrolyte LIBs, offering higher energy density, better stability, and enhanced safety. Despite challenges like lower ionic transport, ongoing research is advancing ASSEBs’ commercial viability. This paper critically reviews the state of the art in ASSEBs, including electrolyte compositions, production techniques, battery management systems (BMSs), thermal management systems, and environmental performance. It also assesses ASSEB applications in EVs, consumer electronics, aerospace, defense, and renewable energy storage, highlighting the potential for a more sustainable and efficient energy future. Full article
(This article belongs to the Special Issue Electrolytes for Solid State Batteries—2nd Edition)
Show Figures

Figure 1

26 pages, 5819 KiB  
Review
Hybrid Energy Harvesting Applications of ZnO Nanorods for Future Implantable and Wearable Devices
by Kathalingam Adaikalam and Hyun-Seok Kim
Micromachines 2025, 16(6), 605; https://doi.org/10.3390/mi16060605 - 22 May 2025
Viewed by 618
Abstract
The currently used electrical energy devices for portable applications are in limited life and need of frequent recharging, it is a big bottleneck for wireless and transportation systems. The scientific community is motivated to find innovative and efficient devices to convert environmental energy [...] Read more.
The currently used electrical energy devices for portable applications are in limited life and need of frequent recharging, it is a big bottleneck for wireless and transportation systems. The scientific community is motivated to find innovative and efficient devices to convert environmental energy into useful forms. Nanogenerator can mitigate this issue by harvesting ambient energy of different forms into useful electrical energy. Particularly flexible nanogenerators can efficiently convert ambient mechanical energy into electrical energy which can be fruitfully used for self-powered sensors and electronic appliances. Zinc oxide is an interesting photosensitive and piezoelectric material that is expected to play a vital role in the synergetic harvesting of environmental thermal, sound, mechanical, and solar energies. As ZnO can be synthesized using easy methods and materials at low cost, the conversion efficiencies of solar and other energy forms can increase considerably. ZnO is a versatile material with interesting semiconducting, optical, and piezoelectric properties; it can be used advantageously to harvest more than one type of ambient energy. The coupled semiconducting and piezoelectric properties of ZnO are attractive for fabricating nanogenerators capable of harvesting both ambient optical and mechanical energies simultaneously. These nanolevel conversion devices are much required to power remote and implantable devices without the need for additional power sources. The present review briefly discusses the principles and mechanisms of different energy harvesting abilities of ZnO nanorods and their composites by consolidating available literature. In addition, the developments taking place in nanogenerators of different kinds—such as photovoltaic, piezoelectric, pyroelectric, and triboelectrics for self-powered technology—and their progress in hybrid energy harvesting application is reviewed. Full article
Show Figures

Figure 1

24 pages, 4137 KiB  
Article
Optimized Support System for Mobility in the Logistics Processes of Routes with Electric Trucks
by Patrícia Gomes Dallepiane, Camilo Sepulveda Rangel, Leandro Mallmann, Felipe Gomes Dallepiane and Luciane Silva Neves
Sustainability 2025, 17(10), 4607; https://doi.org/10.3390/su17104607 - 17 May 2025
Viewed by 668
Abstract
The implementation of innovative strategies in transportation is fundamental for the transition to sustainable mobility in road freight transport. Electric trucks provide a sustainable solution, significantly contributing to the reduction in pollutant emissions, lower operational costs, and the ability to recharge from renewable [...] Read more.
The implementation of innovative strategies in transportation is fundamental for the transition to sustainable mobility in road freight transport. Electric trucks provide a sustainable solution, significantly contributing to the reduction in pollutant emissions, lower operational costs, and the ability to recharge from renewable energy sources. In this context, this article proposes a methodology to support sustainable mobility optimization considering the variables related to the logistical problems of electric vehicles (recharging time and autonomy), which allows for routes to be compared based on the shortest time, lowest costs, and shortest distance for delivering goods while integrating recharge time windows into optimized routes. The study results reveal that additional recharging can significantly impact total travel time and total costs due to variable tariffs at charging stations. Consequently, the model assists in improving resource management and delivery schedule management, thereby increasing operational efficiency and correcting potential conflicts or delays. Therefore, the method provides mobility as a service and offers greater flexibility to decision-makers in selecting the path that best meets delivery objectives, aiming to propose solutions to reduce the impact on the logistics process through the adoption of electric trucks in last-mile freight transport. Full article
Show Figures

Figure 1

13 pages, 1752 KiB  
Article
Insights on Polyidide Shuttling of Zn-I2 Batteries by I3/I Electrolytes Based on the Dual-Ion Battery System
by Xingqi Chang and Andreu Cabot
Nanomaterials 2025, 15(10), 738; https://doi.org/10.3390/nano15100738 - 14 May 2025
Viewed by 428
Abstract
The rechargeable zinc-iodine (Zn-I2) battery is a promising energy storage system due to its high theoretical capacity, low cost, and safety. So far, most researchers agree that the poor electrical conductivity of iodine and the shuttling of polyiodide lead to a [...] Read more.
The rechargeable zinc-iodine (Zn-I2) battery is a promising energy storage system due to its high theoretical capacity, low cost, and safety. So far, most researchers agree that the poor electrical conductivity of iodine and the shuttling of polyiodide lead to a rapid decrease in capacity and low coulombic efficiency (CE) during cycling, which seriously hinders their further development and application. Herein, to understand the polyidide shuttling effects in Zn-I2 battery, we utilize I3/I electrolytes as the active capacity source coupled with carbon cloth, devoid-of-iodine (I2) loading cathode, to simulate the behavior of the shuttling of polyidide in the Zn-I2 battery, based on the concept of a dual-ion battery system. Experiments show that these batteries exhibit a specific capacity of 0.24 mAh·cm−2 at 1.0 A·cm−2 and 0.2 mAh·cm−2 at 20 A·cm−2, corresponding to 1.0~1.3 mg active mass of I2, based on the 2I/I2 redox couple (221 mAh·g−1). It is noteworthy that the inclusion of polyiodide enhances the electrochemical and redox activity, which is advantageous for electrochemical performance; however, it is limited to the polyiodine reduction on the Zn surface (Zn + I3 → 3I + Zn2+). Full article
(This article belongs to the Topic Advanced Energy Storage in Aqueous Zinc Batteries)
Show Figures

Graphical abstract

35 pages, 4575 KiB  
Review
Advances in Metal-Organic Frameworks (MOFs) for Rechargeable Batteries and Fuel Cells
by Christos Argirusis, Niyaz Alizadeh, Maria-Εleni Katsanou, Nikolaos Argirusis and Georgia Sourkouni
Batteries 2025, 11(5), 192; https://doi.org/10.3390/batteries11050192 - 14 May 2025
Cited by 1 | Viewed by 1067
Abstract
The growing demand for energy, coupled with the unsustainable nature of fossil fuels due to global warming and the greenhouse effect, have led to the advancement of renewable energy production concepts. Innovations such as photovoltaics, wind energy, and infrared energy harvesters are emerging [...] Read more.
The growing demand for energy, coupled with the unsustainable nature of fossil fuels due to global warming and the greenhouse effect, have led to the advancement of renewable energy production concepts. Innovations such as photovoltaics, wind energy, and infrared energy harvesters are emerging as viable solutions. The challenge lies in the stochastic nature of renewable energy sources, which necessitates the implementation of electrical energy storage solutions, whether through batteries, supercapacitors, or hydrogen production. In this regard, innovative materials are essential to address the questions associated with these technologies. Metal-organic frameworks (MOFs) are crucial for achieving clean and efficient energy conversion in fuel cells and storage in batteries and supercapacitors. Metal-organic frameworks (MOFs) can be used as electrocatalytic materials, membranes for electrolytes, and energy storage materials. They exhibit exceptional design versatility, large surface, and can be functionalized with ligands with several charges and metallic centers. This article offers an in-depth examination of materials and devices utilizing metal-organic frameworks (MOFs) for electrochemical processes concerning the generation, transformation, and storage of electrical energy. This review specifically focuses on rechargeable batteries and fuel cells that incorporate MOFs. Finally, an outlook on the potential applications of MOFs in electrochemical industries is presented. Full article
(This article belongs to the Special Issue Novel Materials for Rechargeable Batteries)
Show Figures

Figure 1

34 pages, 11293 KiB  
Review
Recent Advances in the Application of MOFs in Supercapacitors
by Christos Argirusis, Maria-Eleni Katsanou, Niyaz Alizadeh, Nikolaos Argirusis and Georgia Sourkouni
Batteries 2025, 11(5), 181; https://doi.org/10.3390/batteries11050181 - 2 May 2025
Cited by 1 | Viewed by 1833
Abstract
As the need for energy is constantly increasing and in the long term fossil fuels are not an option because of global overheating due to the greenhouse effect, alternative energy production concepts such as photovoltaics, wind energy, IR energy harvesters etc., have been [...] Read more.
As the need for energy is constantly increasing and in the long term fossil fuels are not an option because of global overheating due to the greenhouse effect, alternative energy production concepts such as photovoltaics, wind energy, IR energy harvesters etc., have been developed. The problem is that renewable energy sources are stochastic, and therefore there is a need for electrical energy storage either in rechargeable batteries or in high-performance supercapacitors. In this respect, novel materials are needed to meet the challenges that are related to these technologies. Metal–organic frameworks (MOFs) represent highly promising materials for energy storage applications in supercapacitors (SCs) and thus in recent years have become essential for clean and efficient energy conversion and storage. Metal–organic frameworks (MOFs) present numerous benefits as electrocatalysts, electrolyte membranes, and fuel storage materials; they exhibit exceptional design versatility, extensive surface-to-volume ratios, and permit functionalization with multivalent ligands and metal centers. Here we present an overview of MOF-based materials for electrical energy storage using high-performance supercapacitors. This review deals with recent advances in MOF-based materials for supercapacitors. Finally, an outlook on the future use and restrictions of MOFs in electrochemical applications, with focus on supercapacitors, is given. Full article
(This article belongs to the Special Issue High-Performance Supercapacitors: Advancements & Challenges)
Show Figures

Figure 1

16 pages, 10922 KiB  
Article
Automatic and Versatile Test Bench for Data Collection on Battery Cells
by Esteban Marsal, Nicolás Martínez, Alfredo Pérez Vega-Leal, Federico Barrero, Mohamad Hamdan and Manuel G. Satué
Energies 2025, 18(9), 2304; https://doi.org/10.3390/en18092304 - 30 Apr 2025
Viewed by 429
Abstract
Rechargeable batteries are a key component of sustainable future systems, as their performance directly affects energy efficiency, maintenance costs, and system reliability. Assessing performance requires evaluating parameters such as the state of health (SoH) of the battery, which necessitates developing a system capable [...] Read more.
Rechargeable batteries are a key component of sustainable future systems, as their performance directly affects energy efficiency, maintenance costs, and system reliability. Assessing performance requires evaluating parameters such as the state of health (SoH) of the battery, which necessitates developing a system capable of efficiently gathering large amounts of data. This article presents a safe, simple, versatile, and automated system designed to test and characterize various types of battery cells. The system is conceived as a practical tool capable of automatically collecting the required data for analysis, thus enabling the determination of the performance parameters of a battery cell. The proposed system incorporates an innovative approach based on the concatenation of charge/discharge data, allowing for a more reliable evaluation of battery performance. Experimental tests show the interest and performance behavior of the proposed system. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

17 pages, 4793 KiB  
Article
Ultrafast Rechargeable Aluminum-Chlorine Batteries Enabled by a Confined Chlorine Conversion Chemistry in Molten Salts
by Junling Huang, Linhan Xu, Yu Wang, Xiaolin Wu, Meng Zhang, Hao Zhang, Xin Tong, Changyuan Guo, Kang Han, Jianwei Li, Jiashen Meng and Xuanpeng Wang
Materials 2025, 18(8), 1868; https://doi.org/10.3390/ma18081868 - 18 Apr 2025
Viewed by 512
Abstract
Rechargeable metal chloride batteries, with their high discharge voltage and specific capacity, are promising for next-generation sustainable energy storage. However, sluggish solid-to-gas conversion kinetics between solid metal chlorides and gaseous Cl2 cause unsatisfactory rate capability and limited cycle life, hindering their further [...] Read more.
Rechargeable metal chloride batteries, with their high discharge voltage and specific capacity, are promising for next-generation sustainable energy storage. However, sluggish solid-to-gas conversion kinetics between solid metal chlorides and gaseous Cl2 cause unsatisfactory rate capability and limited cycle life, hindering their further applications. Here we present a rechargeable aluminum-chlorine (Al-Cl2) battery that relies on a confined chlorine conversion chemistry in a molten salt electrolyte, exhibiting ultrahigh rate capability and excellent cycling stability. Both experimental analysis and theoretical calculations reveal a reversible solution-to-gas conversion reaction between AlCl4 and Cl2 in the cathode. The designed nitrogen-doped porous carbon cathode enhances Cl2 adsorption, thereby improving the cycling lifespan and coulombic efficiency of the battery. The resulting Al-Cl2 battery demonstrates a high discharge plateau of 1.95 V, remarkable rate capability without capacity decay at different rates from 5 to 50 A g−1, and good cycling stability with over 1200 cycles at a rate of 10 A g−1. Additionally, we implemented a carbon nanofiber membrane on the anode side to mitigate dendrite growth, which further extends the cycle life to 3000 cycles at an ultrahigh rate of 30 A g−1. This work provides a new perspective on the advancement of high-rate metal chloride batteries. Full article
(This article belongs to the Special Issue Advanced Electrode Materials for Batteries: Design and Performance)
Show Figures

Figure 1

17 pages, 428 KiB  
Article
Dynamic UAV Task Allocation and Path Planning with Energy Management Using Adaptive PSO in Rolling Horizon Framework
by Zhen Han and Weian Guo
Appl. Sci. 2025, 15(8), 4220; https://doi.org/10.3390/app15084220 - 11 Apr 2025
Cited by 3 | Viewed by 885
Abstract
Unmanned aerial vehicles (UAVs) are increasingly deployed in dynamic environments for applications such as surveillance, delivery, and data collection, where efficient task allocation and path planning are critical to minimizing mission completion time while managing limited energy resources. This paper proposes a novel [...] Read more.
Unmanned aerial vehicles (UAVs) are increasingly deployed in dynamic environments for applications such as surveillance, delivery, and data collection, where efficient task allocation and path planning are critical to minimizing mission completion time while managing limited energy resources. This paper proposes a novel approach that integrates energy management into a rolling horizon framework for dynamic UAV task allocation and path planning. We introduce an enhanced Particle Swarm Optimization (PSO) algorithm, incorporating adaptive perturbation strategies and a local search mechanism based on simulated annealing, to optimize UAV task assignments and routes. The rolling horizon framework enables the system to adapt to evolving task demands over time. Energy consumption is explicitly modeled, accounting for flight, computation, and recharging at designated stations, ensuring practical applicability. Extensive simulations demonstrate that the proposed method reduces the mission makespan significantly compared to conventional static planning approaches, while effectively balancing energy usage and recharging requirements. These results highlight the potential of our approach for real-world UAV operations in dynamic settings. Full article
(This article belongs to the Topic Electronic Communications, IOT and Big Data, 2nd Volume)
Show Figures

Figure 1

Back to TopTop