Skip Content
You are currently on the new version of our website. Access the old version .

Hydrology

Hydrology is an international, peer-reviewed, open access journal on hydrology published monthly online by MDPI.
The American Institute of Hydrology (AIH) and Japanese Society of Physical Hydrology (JSPH) are affiliated with Hydrology and their members receive discounts on the article processing charges.
Quartile Ranking JCR - Q2 (Water Resources)

All Articles (1,659)

This study assesses groundwater quality and nitrate-related health risks in the Skhirat coastal aquifer (Morocco) using a multidisciplinary approach. A total of thirty groundwater wells were sampled and analyzed for physico-chemical properties, including major ions and nutrients. Multivariate statistical analyses were employed to explore contamination sources. Pollution indices such as the Groundwater Pollution Index (GPI) and Nitrate Pollution Index (NPI) were computed, and Monte Carlo simulations (MCSs) were conducted to assess nitrate-related health risks through ingestion and dermal exposure. Furthermore, Random Forest (RF), Gradient Boosting Regression (GBR), Support Vector Regression (SVR) with radial basis function kernel, and Artificial Neural Networks (ANN) models were tested for predicting groundwater pollution indices. Results of hydrochemical facies revealed Na+-Cl dominance in 47% of the samples, suggesting strong marine influence, while nitrate concentrations reached up to 89.3 mg/L, exceeding World Health Organization (WHO) limits in 26.7% of the sites. Pollution indices indicated that 33.3% of samples exhibited moderate to high GPI values, with 36.7% of the samples exceeding the threshold for NPI. The MCS for nitrate health risk revealed that 43% of the samples posed non-carcinogenic health risks to children (Hazard Index (HI) > 1). RF outperformed other models in predicting GPI (R2 = 0.76) and NPI (R2 = 0.95). Spatial prediction maps visualized contamination hotspots aligned with intensive horticultural activity. This integrated methodology offers a robust framework to diagnose groundwater pollution sources and predict future risks.

3 February 2026

Maps illustrating sampling site and its geology and elevation.

Selenium contamination in arid agricultural basins remains a key ecological concern, yet the Wister Unit of the Imperial Wildlife Area has received comparatively little hydrochemical study. This investigation provides the most integrated assessment to date of selenium, salinity, nitrate, stable water isotopes (δ2H and δ18O), and selected redox-sensitive trace elements within the Wister Unit and its contributing open agricultural drains, with the goal of identifying controls on selenium concentrations and mobility. Water samples from open agricultural drains, shallow groundwater tile drains, canal project water, and tailwater return flow were analyzed for Total Dissolved Solids (TDS), major ions, nutrients, selenium, and stable water isotopes. A subset of samples was anlayzed for iron, manganese, and vanadium. Overall, 71% of open drain and tile drain samples collected in this study exceeded the U.S. Environmental Protection Agency aquatic-life criterion of 5 µg/L, indicating persistent ecological risk. All waters plotted along an evaporation trajectory originating from imported Colorado River irrigation water; however, isotopic enrichment did not scale directly with salinity. Pure evaporation models predicted much lower TDS values than observed, and the most evaporated samples were not the most saline or selenium-rich. These results demonstrate that simple soil water evaporation alone cannot explain the data. Instead, the broad isotopic range at similar salinities reflects a secondary process in which salts that accumulated in soils during dry or average years are later mobilized and flushed during periods of surplus water and heavy irrigation. Low dissolved iron, manganese, and vanadium concentrations in a subset of water samples indicate predominantly oxidizing conditions, under which selenium behaves conservatively during salt leaching, producing a strong correlation with TDS. Selenium levels measured in Wister Unit are generally lower than those reported in nearby areas during the 1990s–2000s, implying changes in salt accumulation, hydrologic routing, or agricultural practices. These results refine the conceptual model for the Wister Unit and motivate future work on selenium speciation, nitrate isotope tracing, time series monitoring, and soil-salt interactions.

3 February 2026

Study area location map showing stations numbers for samples collected from open agricultural drains, groundwater discharge points from subsurface groundwater tile drains, canal project water, and tailwater return flow feeding into Wister Unit. Inset map shows location of Coachella and Imperial Valleys. The numbers correspond to sample numbers in Table 1 and Table 2.

Investigating the Influence of Geological Uncertainty on Urban Hydrogeological Modeling

  • Charalampos Ntigkakis,
  • Stephen Birkinshaw and
  • Ross Stirling

Groundwater models form the basis for investigating subsurface processes that relate to groundwater flow. Urban cover, however, usually inhibits the collection of new subsurface or geological data. Therefore, models usually depend on existing, poor-quality, or scarce datasets. The geological domain is an integral part of any groundwater model, and as such, understanding the model’s sensitivity to the geological interpretation is key to constraining uncertainty. This research uses a recent advancement in mitigating uncertainty in geological modeling to investigate how different geological interpretations affect groundwater model uncertainty. Using the Ouseburn catchment, Newcastle upon Tyne, UK, as a case study, it estimates baseflows and uses them to develop an ensemble of coupled distributed groundwater recharge and groundwater flow models using SWAc and MODFLOW, and performs a Monte Carlo analysis on the different model formulations. Results indicate that even though river baseflows are not highly affected, there is a connection between simulated groundwater level sensitivity and areas of high geological uncertainty. As the interest in the urban subsurface grows, constraining uncertainty in groundwater models is especially important for urban planning, policy making, water resources, and groundwater flooding protection. Therefore, constraining uncertainty from geological datasets is key to robust groundwater modeling.

2 February 2026

Location of the Ouseburn catchment (contains: Map data from OpenStreetMap; OS data © Crown copyright 2025; EA data © Crown copyright 2025; coordinates in EPSG:27700).

Effective management of transitional waters requires collaboration between administrative and scientific institutions, in line with the sustainable water management principles established by the Water Framework Directive (WFD, 2000/60/EC). The Cadiz and San Fernando salt marshes, classified as wetlands of international importance, currently exhibit an ecological and chemical status that is “worse than good.” However, there is still a lack of high-resolution, spatially explicit tools to identify where contaminants are most likely to accumulate in highly modified transitional waters, which limits effective monitoring and management strategies. This study aims to fill this gap by combining a high-resolution hydrodynamic model with a Lagrangian-particle-tracking approach to determine areas most vulnerable to contaminant accumulation from wastewater discharges. Simulations across multiple tidal cycles revealed that contamination is concentrated near discharge points and in low-flow channels, with tidal dynamics strongly influencing transport patterns. Key findings indicate that certain marsh sectors consistently experience higher contaminant exposure, highlighting priority areas for monitoring and management. The study provides novel insights by integrating modeling tools to produce a vulnerability classification of high-, medium-, and low-risk zones. These results contribute to the broader scientific understanding of contaminant dynamics in transitional waters and offer a transferable framework for improving wetland management in other heavily modified coastal systems.

2 February 2026

(a): Map of Spain showing the national context of the study area, indicated by a black circle. (b): Map of the study area with calculation grids and the main locations of calibration points and boundary conditions with the black rectangle outlining the study area. (c): Study area with the red numbers indicating the positions of the 17 spill points. Numbers 1 to 13 represent the points in operation at the start of the study, and numbers 14 to 17 represent those eligible for licensing. The green letters represent the nine control points verified by AEWA. The red numbers represent the positions of the 17 spill points.

News & Conferences

Issues

Open for Submission

Editor's Choice

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Hydrology - ISSN 2306-5338