Economy of Scale of Energy Intensity in Aquifer Storage and Recovery (ASR)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.1.1. H2Oaks
2.1.2. Sand Hollow
2.2. Methods
2.2.1. H2Oaks Data Set
2.2.2. Sand Hollow Data Set
3. Results
3.1. H2Oaks Gravity-Fed Recharge
3.2. H2Oaks Recovery
3.3. Sand Hollow Recovery
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahajan, S.; Martinez, J. Water, water, but not everywhere: Analysis of shrinking water bodies using open access satellite data. Int. J. Sustain. Dev. World Ecol. 2021, 28, 326–338. [Google Scholar] [CrossRef]
- Snyder, G.L.; Pyne, R.D.G.; Morrison, K.; Nixon, K. San Antonio Water System, Texas Carrizo Aquifer Storage Recovery Program. Groundwater 2022, 60, 641–647. [Google Scholar] [CrossRef]
- Hutchinson, A.S.; Woodside, G.D.; Herndon, R.L. Increasing the Sustainable Yield of the Orange County Groundwater Basin with Managed Aquifer Recharge. Groundwater 2022, 60, 628–633. [Google Scholar] [CrossRef]
- DOE (United States Department of Energy). Energy Demands On Water Resources: Report to Congress on the Interdependency of Energy and Water (no. 201107); DOE: Washington, DC, USA, 2006.
- Rojanasakul, M.; Flavelle, C.; Migliozzi, B.; Murray, E. America Is Using Up Its Groundwater Like There’s No Tomorrow. New York Times, 28 August 2023. Available online: https://www.nytimes.com/interactive/2023/08/28/climate/groundwater-drying-climate-change.html (accessed on 1 November 2022).
- Searcey, D.; Erdenesanaa, D. A Tangle of Rules to Protect America’s Water is Falling Short. New York Times, 2 November 2023. Available online: https://www.nytimes.com/interactive/2023/11/02/climate/us-groundwater-depletion-rules.html?unlocked_article_code=1.70w.olqP.O3kwpYa6Ney6&smid=url-share (accessed on 1 November 2022).
- Konikow, L.F. Long-Term Groundwater Depletion in the United States. Groundwater 2015, 53, 2–9. [Google Scholar] [CrossRef]
- Pyne, R.D.G. Groundwater Recharge and Wells: A Guide to Aquifer Storage and Recovery, 1st ed.; CRC Press, Inc.: Boca Raton, FL, USA, 1995; p. 400. [Google Scholar]
- Hussey, K.; Pittock, J. The Energy—Water Nexus: Managing the Links between Energy and Water for a Sustainable Future. Ecol. Soc. 2012, 17, 31. [Google Scholar] [CrossRef]
- EPA (U.S. Environmental Protection Agency). Ensuring a Sustainable Future: An Energy Management Guidebook for Wastewater and Water Utilities; EPA: Washington DC, USA, 2008.
- Sanders, K.T.; Webber, M.E. Evaluating the energy consumed for water use in the United States. Environ. Res. Lett. 2012, 7, 034034. [Google Scholar] [CrossRef]
- Twomey, K.M.; Webber, M.E. Evaluating the Energy Intensity of the US Public Water System. In Proceedings of the ASME 2011 5th International Conference on Energy Sustainability, Washington, DC, USA, 7–10 August 2011. [Google Scholar] [CrossRef]
- Jones, S.C.; Sowby, R.B. Quantifying Energy Use in the US Public Water Industry—A Summary. ASCE EWRI Curr. 2014, 16, 6–9. [Google Scholar]
- Sowby, R.B.; Burian, S.J. Survey of Energy Requirements for Public Water Supply in the United States. J. AWWA 2017, 109, E320–E330. [Google Scholar] [CrossRef]
- Chini, C.M.; Stillwell, A.S. The State of U.S. Urban Water: Data and the Energy-Water Nexus. Water Resour. Res. 2018, 54, 1796–1811. [Google Scholar] [CrossRef]
- Cohen, R.; Wolff, G.; Nelson, B. Energy Down The Drain: The Hidden Costs of California’s Water Supply; Natural Resources Defense Council and Pacific Institute (NRDC): Oakland, CA, USA, 2004. [Google Scholar]
- Goldstein, R.; Smith, W. Water & Sustainability (Volume 4): US Electricity Consumption for Water Supply & Treatment—The Next Half Century; Electric Power Research Institute (EPRI): Palo Alto, CA, USA, 2002. [Google Scholar]
- Plappally, A.K.; Lienhard, V.J.H. Energy requirements for water production, treatment, end use, reclamation, and disposal. Renew. Sustain. Energy Rev. 2012, 16, 4818–4848. [Google Scholar] [CrossRef]
- Klein, G. California’s Water-Energy Relationship (California, USA); California Energy Commission (CEC): Sacramento, CA, USA, 2005.
- Sowby, R.B.; Krieger, K.M. Derivation and Use of Pump Energy Intensity Equation for Water System Energy Analysis. Authorea 2023. [Google Scholar] [CrossRef]
- Sowby, R.B.; Burian, S.J. Statistical Model and Benchmarking Procedure for Energy Use by US Public Water Systems. J. Sustain. Water Built Environ. 2018, 4, 04018010. [Google Scholar] [CrossRef]
- Ahlfeld, D.P.; Laverty, M.M. Analytical solutions for minimization of energy use for groundwater pumping. Water Resour. Res. 2011, 47, W06508. [Google Scholar] [CrossRef]
- Martin, D.L.; Dorn, T.W.; Melvin, S.R.; Corr, A.J.; Kranz, W.L. Evaluating Energy Use for Pumping Irrigation Water. In Proceedings of the 2011 Central Plains Irrigation Conference, Burlington, CO, USA, 22–23 February 2011; Available online: http://hdl.handle.net/10217/47726 (accessed on 10 December 2022).
- Sowby, R.B.; Jones, S.C.; Christiansen, S.; Jensen, M. Energy Management Program Leads to Operational Improvements. Opflow 2019, 45, 10–14. [Google Scholar] [CrossRef]
- Sowby, R.B.; Morehead, N.; Burdette, S. Review of Energy Management Guidance for Water and Wastewater Utilities. Energy Nexus 2023, 11, 100235. [Google Scholar] [CrossRef]
- Majumdar, S.; Miller, G.R.; Sheng, Z. Optimizing Multiwell Aquifer Storage and Recovery Systems for Energy Use and Recovery Efficiency. Groundwater 2021, 59, 629–643. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, P.A. Deformation-Induced Changes in Hydraulic Head During Ground-Water Withdrawal. Groundwater 1996, 34, 1082–1089. [Google Scholar] [CrossRef]
- DOE (U.S. Department of Energy). The Water-Energy Nexus: Challenges and Opportunities; DOE: Washington, DC, USA, 2014; p. 238.
- Pyne, R.D.G. Water Quality in Aquifer Storage and Recovery (ASR) Wells. 2003. Available online: http://asrforum.com/fatestudy/documents/asrpopa111503.pdf (accessed on 25 October 2022).
- Fatkhutdinov, A.; Stefan, C. Multi-Objective Optimization of Managed Aquifer Recharge. Groundwater 2018, 57, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Sowby, R.B.; Thompson, M.J. Energy Profiles of Nine Water Treatment Plants in the Salt Lake City Area of Utah and Implications for Planning, Design, and Operation. J. Environ. Eng. 2021, 147, 04021018. [Google Scholar] [CrossRef]
- Christensen, L.R.; Greene, W.H. Economies of Scale in U.S. Electric Power Generation. J. Politi Econ. 1976, 84, 655–676. [Google Scholar] [CrossRef]
- Gómez-Reino, J.L.; Lago-Peñas, S.; Martinez-Vazquez, J. Evidence on Economies of Scale in Local Public Service Provision: A Meta-Analysis. Int. Cent. Public Policy ICEEP Work. Papers 2021, 215, 16–21. [Google Scholar] [CrossRef]
- Kim, H.Y.; Clark, R.M. Economies of Scale and Scope in Water Supply. Reg. Sci. Urban Econ. 1988, 18, 479–502. [Google Scholar] [CrossRef]
- Shih, J.; Harrington, W.; Pizer, W.A.; Gillingham, K. Economies of scale in community water systems. J. AWWA 2006, 98, 100–108. [Google Scholar] [CrossRef]
- Cetrulo, T.B.; Marques, R.C.; Malheiros, T.F. An analytical review of the efficiency of water and sanitation utilities in developing countries. Water Res. 2019, 161, 372–380. [Google Scholar] [CrossRef] [PubMed]
- WCWCD (Washington County Conservancy District). Reservoirs. WCWCD. Available online: https://www.wcwcd.org/infrastructure/reservoirs/ (accessed on 22 September 2023).
- Marston, T.M.; Nelson, N.C. Assessment of Managed Aquifer Recharge at Sand Hollow Reservoir, Washington County, Utah, Updated to Conditions through 2016: U.S. Geological Survey Open-File Report 2018-1140; United States Geological Survey: Reston, VA, USA, 2018. [CrossRef]
- Carlson, S.W.; Walburger, A. Energy Index Development for Benchmarking Water and Wastewater Utilities; AwwaRF: Denver, CO, USA, 2007. [Google Scholar]
- EIA (U.S. Energy Information Administration). Electricity Data Browser. Available online: https://www.eia.gov/electricity/data/browser/ (accessed on 1 September 2023).
- Marques, R.C.; De Witte, K. Is big better? On scale and scope economies in the Portuguese water sector. Econ. Model. 2011, 28, 1009–1016. [Google Scholar] [CrossRef]
- Turley, G.; McDonagh, J.; McNena, S.; Grzedzinski, A. Optimum Territorial Reforms in Local Government: An Empirical Analysis of Scale Economies in Ireland. Econ. Soc. Rev. 2018, 49, 463–488. [Google Scholar]
- Prieto, Á.M.; Zofío, J.L.; Álvarez, I. Cost economies, urban patterns and population density: The case of public infrastructure for basic utilities. Pap. Reg. Sci. 2015, 94, 795–816. [Google Scholar] [CrossRef]
- Strazzabosco, A.; Conrad, S.; Lant, P.; Kenway, S. Expert Opinion on Influential Factors Driving Renewable Energy Adoption in the Water Industry. Renew. Energy 2020, 162, 754–765. [Google Scholar] [CrossRef]
- Chini, C.M.; Stillwell, A.S. Where Are All the Data? The Case for a Comprehensive Water and Wastewater Utility Database. J. Water Resour. Plan. Manag. 2017, 143, 01816005. [Google Scholar] [CrossRef]
- Sowby, R.B.; Burian, S.J.; Chini, C.M.; Stillwell, A.S. Data Challenges and Solutions in Energy-for-Water: Experience From Two Recent Studies. J. AWWA 2019, 111, 28–33. [Google Scholar] [CrossRef]
- Alqahtani, A.; Sale, T. Optimizing Aquifer Storage and Recovery Wellfield Operations to Minimize Energy Consumption. J. Water Resour. Plan. Manag. 2020, 146, 04020069. [Google Scholar] [CrossRef]
- Miller, K.; Milman, A.; Burson, M.; Tracy, J.; Kiparsky, M. Groundwater Recharge for Drought and Endangered Species Protection: The H2Oaks Aquifer to Aquifer Transfer for Storage and Recovery, San Antonio, Texas. Case Stud. Environ. 2021, 5, 1118198. [Google Scholar] [CrossRef]
- Alam, S.; Gebremichael, M.; Ban, Z.; Scanlon, B.R.; Senay, G.; Lettenmaier, D.P. Post-Drought Groundwater Storage Recovery in California’s Central Valley. Water Resour. Res. 2021, 57, e2021WR030352. [Google Scholar] [CrossRef]
- Wendt, E.D.; van Loon, A.F.; Scanlon, B.R.; Hannah, D.M. Managed aquifer recharge as a drought mitigation strategy in heavily-stressed aquifers. Environ. Res. Lett. 2021, 16, 014046. [Google Scholar] [CrossRef]
- Yang, Q.; Scanlon, B.R. How Much Water Can Be Captured from Flood Flows to Store in Depleted Aquifers for Mitigating Floods and Droughts? A Case Study from Texas. Environ. Res. Lett. 2019, 14, 054011. [Google Scholar] [CrossRef]
- Alqahtani, A.; Sale, T.; Ronayne, M.J.; Hemenway, C. Demonstration of Sustainable Development of Groundwater through Aquifer Storage and Recovery (ASR). Water Resour. Manag. 2021, 35, 429–445. [Google Scholar] [CrossRef]
- Gibson, M.T.; Campana, M.E.; Nazy, D. Estimating Aquifer Storage and Recovery (ASR) Regional and Local Suitability: A Case Study in Washington State, USA. Hydrology 2018, 5, 7. [Google Scholar] [CrossRef]
- Smith, W.B.; Miller, G.R.; Sheng, Z. Assessing Aquifer Storage and Recovery Feasibility in the Gulf Coastal Plains of Texas. J. Hydrol. Reg. Stud. 2017, 14, 92–108. [Google Scholar] [CrossRef]
Year | USD/kWh |
---|---|
2017 | 0.061 |
2018 | 0.059 |
2019 | 0.060 |
2020 | 0.059 |
2021 | 0.062 |
2022 | 0.069 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rapp, A.H.; Sowby, R.B.; Williams, G. Economy of Scale of Energy Intensity in Aquifer Storage and Recovery (ASR). Water 2024, 16, 503. https://doi.org/10.3390/w16030503
Rapp AH, Sowby RB, Williams G. Economy of Scale of Energy Intensity in Aquifer Storage and Recovery (ASR). Water. 2024; 16(3):503. https://doi.org/10.3390/w16030503
Chicago/Turabian StyleRapp, Alyson H., Robert B. Sowby, and Gustavious Williams. 2024. "Economy of Scale of Energy Intensity in Aquifer Storage and Recovery (ASR)" Water 16, no. 3: 503. https://doi.org/10.3390/w16030503
APA StyleRapp, A. H., Sowby, R. B., & Williams, G. (2024). Economy of Scale of Energy Intensity in Aquifer Storage and Recovery (ASR). Water, 16(3), 503. https://doi.org/10.3390/w16030503