Economy of Scale of Energy Intensity in Aquifer Storage and Recovery (ASR)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
2.1.1. H2Oaks
2.1.2. Sand Hollow
2.2. Methods
2.2.1. H2Oaks Data Set
2.2.2. Sand Hollow Data Set
3. Results
3.1. H2Oaks Gravity-Fed Recharge
3.2. H2Oaks Recovery
3.3. Sand Hollow Recovery
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahajan, S.; Martinez, J. Water, water, but not everywhere: Analysis of shrinking water bodies using open access satellite data. Int. J. Sustain. Dev. World Ecol. 2021, 28, 326–338. [Google Scholar] [CrossRef]
- Snyder, G.L.; Pyne, R.D.G.; Morrison, K.; Nixon, K. San Antonio Water System, Texas Carrizo Aquifer Storage Recovery Program. Groundwater 2022, 60, 641–647. [Google Scholar] [CrossRef]
- Hutchinson, A.S.; Woodside, G.D.; Herndon, R.L. Increasing the Sustainable Yield of the Orange County Groundwater Basin with Managed Aquifer Recharge. Groundwater 2022, 60, 628–633. [Google Scholar] [CrossRef]
- DOE (United States Department of Energy). Energy Demands On Water Resources: Report to Congress on the Interdependency of Energy and Water (no. 201107); DOE: Washington, DC, USA, 2006.
- Rojanasakul, M.; Flavelle, C.; Migliozzi, B.; Murray, E. America Is Using Up Its Groundwater Like There’s No Tomorrow. New York Times, 28 August 2023. Available online: https://www.nytimes.com/interactive/2023/08/28/climate/groundwater-drying-climate-change.html (accessed on 1 November 2022).
- Searcey, D.; Erdenesanaa, D. A Tangle of Rules to Protect America’s Water is Falling Short. New York Times, 2 November 2023. Available online: https://www.nytimes.com/interactive/2023/11/02/climate/us-groundwater-depletion-rules.html?unlocked_article_code=1.70w.olqP.O3kwpYa6Ney6&smid=url-share (accessed on 1 November 2022).
- Konikow, L.F. Long-Term Groundwater Depletion in the United States. Groundwater 2015, 53, 2–9. [Google Scholar] [CrossRef]
- Pyne, R.D.G. Groundwater Recharge and Wells: A Guide to Aquifer Storage and Recovery, 1st ed.; CRC Press, Inc.: Boca Raton, FL, USA, 1995; p. 400. [Google Scholar]
- Hussey, K.; Pittock, J. The Energy—Water Nexus: Managing the Links between Energy and Water for a Sustainable Future. Ecol. Soc. 2012, 17, 31. [Google Scholar] [CrossRef]
- EPA (U.S. Environmental Protection Agency). Ensuring a Sustainable Future: An Energy Management Guidebook for Wastewater and Water Utilities; EPA: Washington DC, USA, 2008.
- Sanders, K.T.; Webber, M.E. Evaluating the energy consumed for water use in the United States. Environ. Res. Lett. 2012, 7, 034034. [Google Scholar] [CrossRef]
- Twomey, K.M.; Webber, M.E. Evaluating the Energy Intensity of the US Public Water System. In Proceedings of the ASME 2011 5th International Conference on Energy Sustainability, Washington, DC, USA, 7–10 August 2011. [Google Scholar] [CrossRef]
- Jones, S.C.; Sowby, R.B. Quantifying Energy Use in the US Public Water Industry—A Summary. ASCE EWRI Curr. 2014, 16, 6–9. [Google Scholar]
- Sowby, R.B.; Burian, S.J. Survey of Energy Requirements for Public Water Supply in the United States. J. AWWA 2017, 109, E320–E330. [Google Scholar] [CrossRef]
- Chini, C.M.; Stillwell, A.S. The State of U.S. Urban Water: Data and the Energy-Water Nexus. Water Resour. Res. 2018, 54, 1796–1811. [Google Scholar] [CrossRef]
- Cohen, R.; Wolff, G.; Nelson, B. Energy Down The Drain: The Hidden Costs of California’s Water Supply; Natural Resources Defense Council and Pacific Institute (NRDC): Oakland, CA, USA, 2004. [Google Scholar]
- Goldstein, R.; Smith, W. Water & Sustainability (Volume 4): US Electricity Consumption for Water Supply & Treatment—The Next Half Century; Electric Power Research Institute (EPRI): Palo Alto, CA, USA, 2002. [Google Scholar]
- Plappally, A.K.; Lienhard, V.J.H. Energy requirements for water production, treatment, end use, reclamation, and disposal. Renew. Sustain. Energy Rev. 2012, 16, 4818–4848. [Google Scholar] [CrossRef]
- Klein, G. California’s Water-Energy Relationship (California, USA); California Energy Commission (CEC): Sacramento, CA, USA, 2005.
- Sowby, R.B.; Krieger, K.M. Derivation and Use of Pump Energy Intensity Equation for Water System Energy Analysis. Authorea 2023. [Google Scholar] [CrossRef]
- Sowby, R.B.; Burian, S.J. Statistical Model and Benchmarking Procedure for Energy Use by US Public Water Systems. J. Sustain. Water Built Environ. 2018, 4, 04018010. [Google Scholar] [CrossRef]
- Ahlfeld, D.P.; Laverty, M.M. Analytical solutions for minimization of energy use for groundwater pumping. Water Resour. Res. 2011, 47, W06508. [Google Scholar] [CrossRef]
- Martin, D.L.; Dorn, T.W.; Melvin, S.R.; Corr, A.J.; Kranz, W.L. Evaluating Energy Use for Pumping Irrigation Water. In Proceedings of the 2011 Central Plains Irrigation Conference, Burlington, CO, USA, 22–23 February 2011; Available online: http://hdl.handle.net/10217/47726 (accessed on 10 December 2022).
- Sowby, R.B.; Jones, S.C.; Christiansen, S.; Jensen, M. Energy Management Program Leads to Operational Improvements. Opflow 2019, 45, 10–14. [Google Scholar] [CrossRef]
- Sowby, R.B.; Morehead, N.; Burdette, S. Review of Energy Management Guidance for Water and Wastewater Utilities. Energy Nexus 2023, 11, 100235. [Google Scholar] [CrossRef]
- Majumdar, S.; Miller, G.R.; Sheng, Z. Optimizing Multiwell Aquifer Storage and Recovery Systems for Energy Use and Recovery Efficiency. Groundwater 2021, 59, 629–643. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, P.A. Deformation-Induced Changes in Hydraulic Head During Ground-Water Withdrawal. Groundwater 1996, 34, 1082–1089. [Google Scholar] [CrossRef]
- DOE (U.S. Department of Energy). The Water-Energy Nexus: Challenges and Opportunities; DOE: Washington, DC, USA, 2014; p. 238.
- Pyne, R.D.G. Water Quality in Aquifer Storage and Recovery (ASR) Wells. 2003. Available online: http://asrforum.com/fatestudy/documents/asrpopa111503.pdf (accessed on 25 October 2022).
- Fatkhutdinov, A.; Stefan, C. Multi-Objective Optimization of Managed Aquifer Recharge. Groundwater 2018, 57, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Sowby, R.B.; Thompson, M.J. Energy Profiles of Nine Water Treatment Plants in the Salt Lake City Area of Utah and Implications for Planning, Design, and Operation. J. Environ. Eng. 2021, 147, 04021018. [Google Scholar] [CrossRef]
- Christensen, L.R.; Greene, W.H. Economies of Scale in U.S. Electric Power Generation. J. Politi Econ. 1976, 84, 655–676. [Google Scholar] [CrossRef]
- Gómez-Reino, J.L.; Lago-Peñas, S.; Martinez-Vazquez, J. Evidence on Economies of Scale in Local Public Service Provision: A Meta-Analysis. Int. Cent. Public Policy ICEEP Work. Papers 2021, 215, 16–21. [Google Scholar] [CrossRef]
- Kim, H.Y.; Clark, R.M. Economies of Scale and Scope in Water Supply. Reg. Sci. Urban Econ. 1988, 18, 479–502. [Google Scholar] [CrossRef]
- Shih, J.; Harrington, W.; Pizer, W.A.; Gillingham, K. Economies of scale in community water systems. J. AWWA 2006, 98, 100–108. [Google Scholar] [CrossRef]
- Cetrulo, T.B.; Marques, R.C.; Malheiros, T.F. An analytical review of the efficiency of water and sanitation utilities in developing countries. Water Res. 2019, 161, 372–380. [Google Scholar] [CrossRef] [PubMed]
- WCWCD (Washington County Conservancy District). Reservoirs. WCWCD. Available online: https://www.wcwcd.org/infrastructure/reservoirs/ (accessed on 22 September 2023).
- Marston, T.M.; Nelson, N.C. Assessment of Managed Aquifer Recharge at Sand Hollow Reservoir, Washington County, Utah, Updated to Conditions through 2016: U.S. Geological Survey Open-File Report 2018-1140; United States Geological Survey: Reston, VA, USA, 2018. [CrossRef]
- Carlson, S.W.; Walburger, A. Energy Index Development for Benchmarking Water and Wastewater Utilities; AwwaRF: Denver, CO, USA, 2007. [Google Scholar]
- EIA (U.S. Energy Information Administration). Electricity Data Browser. Available online: https://www.eia.gov/electricity/data/browser/ (accessed on 1 September 2023).
- Marques, R.C.; De Witte, K. Is big better? On scale and scope economies in the Portuguese water sector. Econ. Model. 2011, 28, 1009–1016. [Google Scholar] [CrossRef]
- Turley, G.; McDonagh, J.; McNena, S.; Grzedzinski, A. Optimum Territorial Reforms in Local Government: An Empirical Analysis of Scale Economies in Ireland. Econ. Soc. Rev. 2018, 49, 463–488. [Google Scholar]
- Prieto, Á.M.; Zofío, J.L.; Álvarez, I. Cost economies, urban patterns and population density: The case of public infrastructure for basic utilities. Pap. Reg. Sci. 2015, 94, 795–816. [Google Scholar] [CrossRef]
- Strazzabosco, A.; Conrad, S.; Lant, P.; Kenway, S. Expert Opinion on Influential Factors Driving Renewable Energy Adoption in the Water Industry. Renew. Energy 2020, 162, 754–765. [Google Scholar] [CrossRef]
- Chini, C.M.; Stillwell, A.S. Where Are All the Data? The Case for a Comprehensive Water and Wastewater Utility Database. J. Water Resour. Plan. Manag. 2017, 143, 01816005. [Google Scholar] [CrossRef]
- Sowby, R.B.; Burian, S.J.; Chini, C.M.; Stillwell, A.S. Data Challenges and Solutions in Energy-for-Water: Experience From Two Recent Studies. J. AWWA 2019, 111, 28–33. [Google Scholar] [CrossRef]
- Alqahtani, A.; Sale, T. Optimizing Aquifer Storage and Recovery Wellfield Operations to Minimize Energy Consumption. J. Water Resour. Plan. Manag. 2020, 146, 04020069. [Google Scholar] [CrossRef]
- Miller, K.; Milman, A.; Burson, M.; Tracy, J.; Kiparsky, M. Groundwater Recharge for Drought and Endangered Species Protection: The H2Oaks Aquifer to Aquifer Transfer for Storage and Recovery, San Antonio, Texas. Case Stud. Environ. 2021, 5, 1118198. [Google Scholar] [CrossRef]
- Alam, S.; Gebremichael, M.; Ban, Z.; Scanlon, B.R.; Senay, G.; Lettenmaier, D.P. Post-Drought Groundwater Storage Recovery in California’s Central Valley. Water Resour. Res. 2021, 57, e2021WR030352. [Google Scholar] [CrossRef]
- Wendt, E.D.; van Loon, A.F.; Scanlon, B.R.; Hannah, D.M. Managed aquifer recharge as a drought mitigation strategy in heavily-stressed aquifers. Environ. Res. Lett. 2021, 16, 014046. [Google Scholar] [CrossRef]
- Yang, Q.; Scanlon, B.R. How Much Water Can Be Captured from Flood Flows to Store in Depleted Aquifers for Mitigating Floods and Droughts? A Case Study from Texas. Environ. Res. Lett. 2019, 14, 054011. [Google Scholar] [CrossRef]
- Alqahtani, A.; Sale, T.; Ronayne, M.J.; Hemenway, C. Demonstration of Sustainable Development of Groundwater through Aquifer Storage and Recovery (ASR). Water Resour. Manag. 2021, 35, 429–445. [Google Scholar] [CrossRef]
- Gibson, M.T.; Campana, M.E.; Nazy, D. Estimating Aquifer Storage and Recovery (ASR) Regional and Local Suitability: A Case Study in Washington State, USA. Hydrology 2018, 5, 7. [Google Scholar] [CrossRef]
- Smith, W.B.; Miller, G.R.; Sheng, Z. Assessing Aquifer Storage and Recovery Feasibility in the Gulf Coastal Plains of Texas. J. Hydrol. Reg. Stud. 2017, 14, 92–108. [Google Scholar] [CrossRef]
Year | USD/kWh |
---|---|
2017 | 0.061 |
2018 | 0.059 |
2019 | 0.060 |
2020 | 0.059 |
2021 | 0.062 |
2022 | 0.069 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rapp, A.H.; Sowby, R.B.; Williams, G. Economy of Scale of Energy Intensity in Aquifer Storage and Recovery (ASR). Water 2024, 16, 503. https://doi.org/10.3390/w16030503
Rapp AH, Sowby RB, Williams G. Economy of Scale of Energy Intensity in Aquifer Storage and Recovery (ASR). Water. 2024; 16(3):503. https://doi.org/10.3390/w16030503
Chicago/Turabian StyleRapp, Alyson H., Robert B. Sowby, and Gustavious Williams. 2024. "Economy of Scale of Energy Intensity in Aquifer Storage and Recovery (ASR)" Water 16, no. 3: 503. https://doi.org/10.3390/w16030503
APA StyleRapp, A. H., Sowby, R. B., & Williams, G. (2024). Economy of Scale of Energy Intensity in Aquifer Storage and Recovery (ASR). Water, 16(3), 503. https://doi.org/10.3390/w16030503