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Abstract: Rechargeable power sources are an essential element of large-scale energy systems based
on renewable energy sources. One of the major challenges in rechargeable battery research is the
development of electrode materials with good performance and low cost. Carbon-based materials
have a wide range of properties, high electrical conductivity, and overall stability during cycling,
making them suitable materials for batteries, including stationary and large-scale systems. This
review summarizes the latest progress on materials based on elemental carbon for modern recharge-
able electrochemical power sources, such as commonly used lead–acid and lithium-ion batteries.
Use of carbon in promising technologies (lithium–sulfur, sodium-ion batteries, and supercapaci-
tors) is also described. Carbon is a key element leading to more efficient energy storage in these
power sources. The applications, modifications, possible bio-sources, and basic properties of carbon
materials, as well as recent developments, are described in detail. Carbon materials presented in
the review include nanomaterials (e.g., nanotubes, graphene) and composite materials with metals
and their compounds.

Keywords: energy storage; carbon; nanomaterials; lead–acid batteries; lithium-ion batteries; lithium–
sulfur batteries; sodium-ion batteries; supercapacitors

1. Introduction

The development of technology, exponentially accelerating in modern times, is closely
related to rising energy needs. Moreover, the human population is constantly rising,
reaching 7.8 billion in 2020 according to the UN [1]. The changes in population are
leading to a further increase in energy demands. This growing demand is not without
influence on the natural environment. Recent increases in pollution and CO2 emissions
are causing a gradual, global shift toward more sustainable energy sources than currently
widespread fossil fuels. For example, the European Union aims to be climate-neutral by
2050, as presented in the European Commission’s European Green Deal [2]. This transition
to renewable energy sources requires efficient energy storage. Energy production by
renewable sources is characterized by a variable output and inconsistent behavior. As a
result of these properties, there is a growing demand for fast and cheap energy storage,
which can be used to capture the excess energy generated during the periods of high
production. This stored energy can then be released when required by a drop in production
or a rise in energy usage.

In recent times, there has been great interest in developing materials that will allow ef-
fective and economically viable energy storage. This goal can be realized by improvements
in currently known power sources, as well as by introducing completely new solutions.
One of the materials that is often used during development of such technologies is carbon.
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It is used in various energy storage technologies, including primary and secondary bat-
teries, fuel cells, flow batteries, and capacitors [3–8]. Carbon is a very versatile element,
capable of forming various types of bonds and compounds, leading to its very rich organic
chemistry. At the same time, even in its elemental form, it can create many different
allotropic forms with interesting physical and chemical characteristics. Moreover, recent
advances in nanotechnology have opened new avenues of carbon usage [9–11]. Carbon
nanomaterials have very unique properties, further broadening the possibilities of carbon
application in energy storage. The versatility of carbon allows it to find use in a wide range
of electrochemical power sources.

The present review describes the uses of carbon in its elemental form in modern
rechargeable batteries. The focus of the paper is placed on lithium-ion and lead–acid
batteries, as the currently most popular battery types on the market [12]. At the same
time, some of the promising technologies that can replace them in the future are discussed,
namely, lithium–sulfur and sodium-ion batteries, as well as supercapacitors. Recent devel-
opments and characteristics of the carbon materials used in the mentioned power sources
are presented.

The described subjects are of a great interest to the scientific community. According to
Scopus [13], there have been almost 23,000 papers regarding the topics “lithium-ion” and
“carbon”. There have also been many papers in the areas of other battery types; for a search
combination of “carbon” and “sodium-ion”, there were over 18,000 studies, while there
were almost 18,000 for a search combination involving “lead–acid” and similar number for
a search combination involving “supercapacitor”. The joint topics of “lithium–sulfur” and
“carbon” have led to over 5000 works. Additionally, in the years 2017–2020, the number of
published papers grew annually for each of these subjects.

Selected power sources have different characteristics, such as specific energy, specific
power, cycle life, and cost. These variations result in diverse applications found for these
sources. A summary comparing the properties of the power sources described in this
review is presented in Table 1.

Table 1. Comparison of different rechargeable electrochemical power sources [14–24].

Rechargeable Electrochemical Power Source

Lead–Acid Batteries Lithium-Ion Batteries Lithium–Sulfur
Batteries

Sodium-Ion
Batteries Supercapacitors

Specific energy
(Wh/kg) 35–50 80–180 150–350 75–150 0.05–10

Specific power
(W/kg) 150–400 200–1000 100–300 up to 1500 2000–10,000

Cycle life

Moderate (up to
1000 cycles, 2000
cycles for special

designs)

High (up to 3000
cycles)

Low (up to a few
hundred cycles)

Moderate (up to
1000 cycles)

Very high (over
10,000 cycles)

Self-discharge
rate

Low (2–8% per
month)

Low (2–10% per
month)

Moderate (over
15% per month)

Low (small % per
month)

High (over 10% per
day)

Approximated
cost per unit

energy
(USD/kWh)

80–200 170–350

~200
(estimated to be

lower than
lithium-ion
batteries)

Estimated as
lower than
lithium-ion

batteries

Over 10,000

Typical
applications

SLI batteries; energy
storage systems

(power walls, UPS
systems); vehicular
applications (micro-

and mild-hybrid
electric vehicles)

Portable electronics;
vehicular applications

(hybrid-electric,
electric, and

plug-in-hybrid electric
vehicles); energy
storage systems

Potentially
electric vehicles;

portable
electronics

Potentially
electric vehicles;

power tools;
small energy

storage systems
(home storage)

Portable electronics;
voltage stabilizers;

potentially vehicular
applications

(start–stop and
micro-hybrid electric

vehicles)
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2. Lead–Acid Batteries

Lead–acid batteries are used in automotive, traction, and backup applications and
are among the biggest parts of the rechargeable battery market, comparable to lithium-ion
batteries. The value of produced lead–acid and lithium batteries has almost been equal
in recent years; however, taking into account the total energy, lead–acid batteries account
for over 70% of the market [12]. Despite the progress in the construction of newer battery
types, lead–acid batteries are still a technology that is very cost-effective, proven, reliable,
and easily recyclable [3,25]. Carbon is one of the materials commonly used in lead–acid
batteries. There are three main parts of these batteries that can be improved by the usage
of elemental carbon: the active mass, the current collectors, and the negative plate as
a whole [26–28].

First, carbon can be used as an additive to both the negative and the positive ac-
tive mass (NAM and PAM, respectively). However, the use of carbon in NAM, as part
of a so-called “expander”, is much more common and is currently a very widespread
practice [25,28]. Such an addition to NAM during its preparation improves the electro-
chemical properties of the finished battery, including its cycle life, charge efficiency, and
specific energy [25,29]. This addition is especially important when the battery is working
at high-rate charge/discharge currents. For example, lead–acid batteries with carbon
additives show a marked improvement in the high-rate partial stage of charge (HRPSoC)
conditions, which are relevant for hybrid vehicle usage [28,30]. Figure 1 presents the
increase in the number of completed cycles for batteries with carbon additives in NAM
compared to a blank battery without such additives.
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Figure 1. Comparison of number of cycles completed in HRPSoC conditions for lead–acid batteries
with various carbon additives, conductive graphene (CG), and lead-doped porous carbon (LPC) with
different mass ratios. HRPSoC regime: charge at C/5 for 90 s (voltage limit of 2.35 V), rest for 10 s,
discharge at C/5 for 60 s, and rest for 10 s. Adapted from [31] with permission from Elsevier.

There have been a few proposed mechanisms of beneficial carbon influence as an
NAM additive, but three are most often recognized [27,28,32,33]. First, carbon can change
the structure of the active mass and form a conductive skeleton inside it. When NAM is
discharged, metallic lead is transformed into nonconductive lead(II) sulfate(VI). Addition
of carbon helps the active mass to retain some conductivity and provides a larger active
surface area, even when deeply discharged. The second mechanism is a mechanical
restriction of the growth of lead(II) sulfate(VI) crystals. The kinetics of dissolution of these
crystals during recharging depends on their size. Bigger crystals have lower surface area
compared to their volume; thus, their transformation into lead is slower. During a typical
charging process of the battery, some of the larger crystals are not reduced fast enough and
remain as lead(II) sulfate(VI). This process of plate sulfation leads to some of the active
mass not taking part in charge/discharge processes and gradual loss of capacity of the
battery. A carbon additive in NAM relieves this problem, as it becomes incorporated into
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the pores of the mass, which allows it to physically restrict the available space in them
and inhibit the growth of lead(II) sulfate(VI) crystals. This steric hindrance to sulfation
improves the cyclability of the battery. In the third mechanism, the carbon additive in
NAM can work as a capacitor, storing additional energy in its electric double layer. This
process is faster than the typical faradaic process in the active mass. The capacitive effect of
carbon additives leads to improved charge acceptance and power when using high-rate
currents [27,28,32,33].

Types of carbon material often used as an NAM additive include activated carbon,
carbon black, graphitic powder, graphene, or nanomaterials (e.g., nanotubes, graphene,
nanofibers) [32–36]. Nanotubes can be single- or multiwalled, and their surface can be
modified to further improve their properties [36,37]. Some of the important properties of
carbon materials used as additives are surface area, conductivity, affinity to lead, porosity,
hydrogen evolution overpotential, and surface chemistry. Typically used carbon additives
have specific surface area and capacitance greater by orders of magnitude than the NAM.
When working as a capacitor, an addition of 2 wt.% carbon with a specific capacitance of
around 200 F/g can provide around 1–2% of the total capacity of the plate, which is enough
when charging/discharging for a short time at high-rate currents [29]. The conductivity
of the material depends, among other factors, on the presence of connected domains of
carbon atoms with a graphite structure. Amorphous carbons with small particle size, e.g.,
activated carbon, are in general characterized by worse conductivity [28]. Conductivity is
not an important parameter regarding the steric effect of additives on sulfation, but the
carbon material needs to be able to be properly mixed with the active mass.

The correct preparation of the active mass when mixing the paste and increased
hydrogen evolution are two important aspects that need to be considered when using
carbon additives. Carbon materials change the physical and chemical properties of the
active mass. In order to achieve a mass with appropriate characteristics for pasting plates,
some modifications in the pasting process or composition of the mix may be required.
Addition of carbon also leads to acceleration of the hydrogen evolution reaction, resulting
in losses of the electrolyte during charging of the batteries. These additives in general have
lower hydrogen evolution overpotentials than lead; moreover, they can contain impurities
and increase the active surface area, further facilitating the oxidation of hydronium ions.

One of the ways to alleviate the hydrogen evolution problem involves new types of
composite carbon materials doped with heteroatoms. Modification of the structure of the
carbon material by doping with metals with high hydrogen evolution overpotential allows
limiting the reaction rate of hydrogen evolution, while retaining the positive influence of
carbon [37–39]. Doping with nonmetals, e.g., nitrogen or phosphorus, can also provide
similar benefits by modifying the electron density on carbon atoms and the strength of
their bonds with hydrogen [40,41].

Carbon additives to NAM are a very important part of the lead–acid battery technology.
In the past, they solved the problems of premature capacity loss introduced when organic
separators were replaced by synthetic materials [25]. Today, their usage allows surpassing
the limitations appearing when lead–acid batteries work in an HRPSoC regime. This topic
is very important when taking into account the current energy transformation and spread
of electric and hybrid vehicles.

Carbon materials can also be used as an additive to PAM. However, this practice is not
so widespread, as they are less stable in the working conditions of PAM and can breakdown
during the first cycles of life of the battery. Their positive influence on cycle life is also less
pronounced than in the case of NAM or even not observable. On the other hand, there
is some research indicating an improvement in the behavior of PAM when some carbon
additives are used. An increase in cycle life and capacity when carbon fiber was added
was reported [23,42]. The additives can reduce PAM softening and shedding, as well as
improve conductivity and porosity [23,42,43]. There are fewer studies in this area than in
the case of NAM additives. Nonetheless, the research is still ongoing, and introducing new
types of carbon materials, including composites and nanomaterials, gives an opportunity
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to further improve PAM properties [34,44,45]. Additionally, carbon used as a paste additive
can be based on biological sources. Improvements in the characteristics of both PAM and
NAM were reported when using porous rice husk-based carbon as an additive [46,47].

Another part of a lead–acid battery, namely, current collectors, can also be improved
by using carbon materials. Typically, a collector is a grid cast from lead alloy. It can be
replaced by a much lighter reticulated carbon material, e.g., reticulated vitreous carbon
(RVC), as proposed by Czerwiński et al. [48–50]. When used in this role, glassy carbon
materials are resistant to corrosion while working in the negative plate [51]. On the other
hand, the positive plate of the lead–acid battery experiences conditions causing corrosion of
reticulated carbon collectors. To use the carbon collectors in this environment, they need to
be protected by a corrosion-resistant layer, for example, a galvanically deposited thin layer
of lead [49,52]. This protective layer improves both resistance to corrosion and mechanical
properties. Using the reticulated carbon collectors can lead to a decrease in weight, an
increase in specific energy and active mass utilization, better mechanical support for the
mass, and longer cycle life [26,53–56].

Different forms of carbon can be used as the reticulated current collector. First experi-
ments mainly concerned RVC [49,50,52]. Further studies investigated different materials,
such as pitch-based foams [57,58], graphite foams [56], graphite foils [59], graphite punched
sheets [60], polymer-graphite composites [61], honeycomb carbon structures [55,62,63],
carbon fiber felt [64], or conductive porous carbon [54]. In general, for the mentioned
materials, negative plates showed good results regarding capacity and cycle life. The
results for positive plates were more mixed. Better cycle life than in comparable standard
batteries could be achieved when the positive collectors were prepared using suitable
materials and optimal lead (or lead alloy) coatings [54]. Some of the solutions already
available on the market use reticulated carbon collectors, e.g., the Oasis battery produced
by Firefly Energy in USA. The use of new types of lighter, reticulated current collectors
is a promising solution which improves the main weakness of lead–acid batteries: their
low specific capacity. At the same time, this new technology can lead to improvements in
other areas, such as cycle life, temperature performance, or environmental impact. Figure 2
shows the differences between various types of standard and reticulated collectors.
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The capacitance of carbon materials not only plays an important role when the ma-
terial is used as an additive to the negative mass, but they can also be used to replace a
whole standard negative plate with a capacitor plate [65,66]. The capacitor plate uses the
capacitance of the carbon material to store charge instead of using typical faradaic reactions
in the active mass. Such a solution delivers more power and better charge acceptance but
lowers the capacity of the battery. The capacitor plate can be used instead of the standard
negative plate or in parallel with it. The former solution is used in Axion Power’s Pb-C
battery, whereas the latter is used in the Ultrabattery developed by the Australian Com-
monwealth Scientific and Industrial Research Organization. These hybrid batteries were
characterized by improved power, lifespan, and high-rate charge acceptance [3,66,67]. The
properties of the batteries with capacitor plates improve the prospects of using lead–acid
batteries in electric and hybrid vehicles.

The use of carbon allowed drastic improvements of current batteries and helped
them achieve their current, strong market position. At the same time, new technologies
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improving the construction of this type of battery are constantly being developed. The
main technologies incorporating carbon were described above: additives to the active
mass, reticulated current collectors, and capacitor electrodes. There are different forms of
carbons being used in these applications with more advanced materials, e.g., composites or
nanomaterials, leading to better tailored properties at an increased cost of manufacturing.
Using carbon materials allows the continued use of lead–acid batteries as a cheaper and
safer alternative to newer battery types. At the same time, lead–acid batteries can constantly
improve their electrochemical parameters and achieve good performance. Their main
drawback is currently their low specific energy compared to other battery types. Depending
on charge/discharge conditions, their cycle life can also be restricted. Current research on
the improvement of lead–acid batteries focuses in great part on increasing their capacity
and extending their HRPSoC cyclability, while maintaining their low cost and efficient
recycling. The total market value of lead–acid batteries is still growing, even in recent years,
especially in developing countries [12]. They have good prospects for the near future, as
they are an attractive option for the growing market of storage of energy produced from
renewable sources.

3. Lithium-Ion Batteries

Lithium-ion batteries are one of the most widely used secondary batteries with a
dynamically increasing market share. The worldwide market for lithium-ion batteries was
over 55 billion USD in 2017 [12]. In Li-ion batteries, the positive electrode material is an
intercalated lithium compound, e.g., LiCoO2, LiMn2O4, lithium nickel manganese cobalt
oxides (NMC, layered compositions with different Co:Ni:Mn ratios), or LiFePO4 [15,68,69].
Most commercial Li-ion batteries have carbon materials as a negative electrode. When a
battery is charged, the lithium ion from the positive electrode get inserted into the negative
electrode, while the opposite occurs during discharge. During discharge, the carbon
material electrode works as an anode. The basic parameters determining the choice of the
anode material are the lithium intercalation and de-intercalation reversibility, chemical,
thermal, and electrochemical environment, electrical conductivity, cyclic stability, and cost.
Due to its good electrical properties and long cycle life, graphite is the most commonly used
anode material [70,71]. The stoichiometry of lithium bonding (one Li+ can be intercalated
per six C atoms—the limiting composition is LiC6) limits the theoretical specific capacity of
graphite to around 370 mAh/g [70,72].

LixC6 ↔ C + xLi+ + xe−. (1)

Non-graphitic carbon materials are also used as the negative electrode material. These
materials are characterized by the appearance of amorphous areas together with more
crystalline ones. Non-graphitic carbons are broadly classified into soft carbons (graphi-
tizable carbons, where crystallites are stacked in the same direction) and hard carbons
(non-graphitizable carbons, where crystallites have disordered orientation) [68]. Schematics
of the structure of selected carbon materials are presented in Figure 3.
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The main advantages of soft carbons are long cycle life, coulombic efficiency over 90%,
and highly reversible specific capacity [70]. One of the first soft carbon materials applied in
lithium-ion batteries was coke, which offered a capacity around 180 mAh/g and stability
in the presence of propylene carbonate-based electrolytes. Currently, various carbon types
are used in negative electrodes e.g., graphitic spheres and natural graphite [15,70,73]. Ad-
ditionally, the improvement of cyclic stability of soft carbons can be achieved by modifying
the surface of the carbon material, e.g., by a silane coating [74]. However, the specific
capacity of these materials is similar to that of graphite. These properties result quite often
in the use of soft carbons in small, low-power devices (portable electronics) but not in
hybrid electric vehicles and electric vehicles.

The second group involves hard carbons. These materials offer higher capacity,
typically around 500–1000 mAh/g [15,70]. The relatively high capacity of hard carbons
compared to graphite can be explained by the fact that lithium in hard carbons addition-
ally occupies the nearest neighbor sites between pairs of graphene sheets [75]. Another
mechanism proposed is that lithium may also bind to the hydrogen-containing regions
of carbon [76,77]. Hard carbons show a random alignment of graphene sheets and slow
lithium diffusion inside the carbon structure. In turn, the disadvantages of hard carbons
are its low initial coulombic efficiency and high loss in initial capacity. In connection with
these problems, numerous works on hard carbons modification were carried out [78–83].
One of the proposed solutions is carbon surface modification by oxidation. It was observed
that a mild oxidation of carbon leads to pore production, which is a crucial process in
obtaining higher capacity [78]. Another solution is the application of a soft carbon layer on
hard carbon. This modification resulted in a high-power performance and good cycling
stability [79]. An improvement of the working parameters of negative electrodes based on
hard carbons can also be achieved by using high-porosity carbons. Hu et al. [80] obtained
and applied hard carbon spherules as a porous carbon material. A scanning electron
microscope (SEM) image illustrating the morphology of such a material is presented in
Figure 4. The proposed electrode showed an improvement of electrochemical performance
and a capacity of almost 390 mAh/g.
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Similar capacity (344 mAh/g) was shown by the material obtained by Rao et al. [81].
Hard carbon in this study was prepared by calcination of polypropylene cyanide. The
obtained material showed an initial coulombic efficiency over 87% and a superior cycle sta-
bility at different current rates compared to graphite. Li et al. [82] examined a microporous
hard carbon prepared from potato starch. The electrochemical tests revealed a good cyclic
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life and high reversible capacity (around 530 mAh/g). Similarly, nanoporous hard carbon
obtained from pyrolyzed sucrose exhibited a specific capacity close to 500 mAh/g (at 0.2 C
rate) and an equally good capacity, around 330 mAh/g at 5 C rate [83].

Hard carbons in general are characterized by a faster decrease in capacity compared
to soft carbons but higher specific capacity (above 500 mAh/g), especially in the case of
highly porous materials. At the same time, the price of hard carbons is only about 20%
higher than soft carbons. Nevertheless, due to their high energy and power density, they
are widely used in batteries in hybrid-electric and electric vehicles.

Recently, carbon nanomaterials (such as carbon nanotubes, nanofibers, and graphene)
have become very promising candidates for use as anodes in lithium-ion batteries. Com-
pared to other materials, carbons nanomaterials have a higher specific theoretical capacity,
e.g., 1116 mAh/g for single-walled nanotubes in LiC2 stoichiometry [84–86]. Nanoma-
terials also offer other advantages, such as stable cyclic behavior and increased lithium
ions diffusion rate. The use of carbon nanotube composites with other carbon materials
allowed for the improvement of many parameters, such as electrical conductivity, transport
properties, and thermal and mechanical stability. On the other hand, the basic disadvan-
tages of nanosized particles are high surface reactivity, low coulombic efficiency during
the first cycle, tendency to aggregation during cycling, and higher price [72,87]. Moreover,
in practice, it is difficult to achieve the theoretical capacity, and the properties of carbon
nanomaterials depend on the preparation methods and pretreatments (e.g., ball milling,
acid treatment) [85]. Various morphological modifications of the nanotubes are known,
which allow them to reach a capacity of approximately 1000 mAh/g [88,89]. Appropriate
modification of parameters such as the tube diameter, wall thickness, or porosity allows im-
proving the working parameters of such anode materials. Even the shape of the nanotubes
can be changed. Bamboo-shaped carbon nanotubes produced by using a cresol precursor
are characterized by an improved cycle stability and electric conductivity [88]. Quadrangu-
lar carbon nanotubes have a high specific capacity and good high-rate performance [89].
High reversible capacity was also found in the case of chemically nano-drilled multiwalled
carbon nanotubes [90]. The structures of such materials are presented in Figures 5 and 6.
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A considerable number of studies investigated composites of carbon nanomaterials
(nanotubes, nanofibers) with semi-metals, metals, and metal oxides such as Si, Ti, TiO,
MnO, Fe, Fe2O3, Fe3O4, Co, Ni, Cu, Ge, Nb2O7, Sn, SnSb, and SnO2 [91–99]. The use of
composite material allows for the improvement of many parameters. It has been found that
the use of a nickel and titanium contact in a free-standing single-walled carbon nanotube
electrode increased both the reversible lithium ion capacity and the rate capacity [92].
Another example is the Fe3O4–carbon nanotube composite presented by Wu et al. [95],
which exhibited a high reversible capacity, high rate capability and remarkable capacity
retention. Graphene is yet another material of interest for use as the anode material in
lithium-ion batteries with a specific capacity at the level of 780–1120 mAh/g, depending on
its structure [100–102]. Anode materials based on graphene sheets exhibit a high specific
capacity (around 1000 mAh/g) and long cycling capability, up to 3000 cycles [100,103,104].
Graphene composite materials are also known to be used as anodes. Good anode properties,
highly reversible capacity, and small loss from initial capacity were exhibited by graphene
composites with silicon [93], SnO [105], or Fe3O4 [106]. Figure 7 illustrates how the
introduction of nanomaterials and composite materials can lead to marked improvements
in characteristics of the anode.

In recent years, lithium titanate with a spinel structure (LTO) has been studied as
a potential anode material characterized by a good cycling stability [107,108]. Over the
last 10 years, there has been a continuous increase in the number of studies from about
50 publications per year in 2010 to almost 300 in 2020 [13]. Carbon materials are also used as
additives to LTO anodes. Carbon nanotubes and graphene used as additives provide good
contact between particles and conductivity at the interfaces [109–111]. Additional solutions
for improving electrochemical properties and capacity retention are carbon additives
with a large surface area such as carbon black, mesoporous carbon, and amorphous
carbon [112–114].
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Another new research area involves lithium-ion capacitors, a combination of a a
faradaic lithium-ion battery anode and a supercapacitor cathode, which offers rapid
charging–discharging capability and long cycle life. In this promising technology, carbon
materials can be used in both the positive and the negative electrode [115–117]. Lithium-ion
capacitors combine high energy density with high power density and excellent durability.
Due to this, an important potential application for lithium-ion capacitors is represented by
energy recovery systems in industrial machinery and transportation systems. Hybrid ion
capacitors can be successfully used in regenerative braking energy harvesting from trains,
heavy automobiles, and ultimately electric and hybrid-electric vehicles.

The carbon materials used during the earlier phases of lithium-ion battery develop-
ment were mainly graphite and soft and hard carbons. With maturing of the technology
and the introduction of new available techniques and concepts, other carbon materials
were employed. In particular, the use of carbon nanomaterials is very promising. They can
lead to large improvements of the capacity and the cycle life of lithium-ion batteries. Their
successful and economically viable introduction into mass-produced battery models would
provide lithium-ion batteries with a very dominant position in the current market. Some of
the disadvantages of currently used lithium-ion batteries are their temperature limitations,
limited safety, and comparatively high cost. To address these problems, many potential
solutions are being researched, including technologies beyond the scope of this review,
e.g., solid-state electrolytes or new electrode compositions. The recent growth of portable
electronic devices and electric vehicles creates a very attractive market for lithium-ion
batteries with proper characteristics and provides strong incentives for developing further
improvements in these batteries.

4. Lithium–Sulfur Batteries

Lithium–sulfur batteries are a promising technology which can replace contemporary
lithium-ion batteries. The general concept of Li–S batteries is presented in Figure 8. They
are characterized by an impressive theoretical capacity, equal to 1672 mAh/g for the sulfur
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electrode and 3861 mAh/g for the lithium electrode [118–120]. Additionally, the cost
of their production is low, as the elements used in their construction, including sulfur,
are more abundant than transition metals or rare earth elements required for modern
lithium-ion batteries [121–124].
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On the other hand, current Li–S batteries have some drawbacks [119,120,125–127].
The sulfur electrode has relatively low utilization of the active material. Additionally,
sulfur has low electric conductance and poor high-rate current performance. The density of
Li2S is about 20% lower than that of sulfur (1.66 g/cm3 vs. 2.03 g/cm3, respectively [128]),
which leads to changes in the volume of the material during cycling of the sulfur electrode,
thereby decreasing the stability and cycle life. Another problem is the so-called shuttle
effect. High-order polysulfides are soluble in electrolytes typically used in Li–S batteries
and can migrate to the anode and discharge there, which leads to low efficiency and poor
cyclic stability. Lastly, because of use of metallic lithium in anodes, Li–S batteries are
susceptible to the creation of dendrites, which can increase the self-discharge the battery
and create potentially dangerous short-circuits.

There have been many new technologies in Li–S batteries introduced in recent years
to alleviate these problems (e.g., protecting the lithium metal anode surface or using non-
lithium anodes, changes in electrolyte composition, and modifications of the separator
to block the diffusion of lithium) [125,129]. One of the most popular modifications is the
application of carbon in the cathode. Sulfur can be embedded in carbon materials, and
appropriate adsorbents for trapping lithium polysulfides can be utilized. Sulfur can be inte-
grated into the carbon microstructure via physical or chemical methods [120,122,130]. The
former includes encapsulation and infiltration of sulfur into the carbon material, while the
latter involves the creation of bonds between C and S atoms, e.g., via surface functionaliza-
tion or chemical reaction deposition. Using the described methods to restrict sulfur species
to a carbon matrix, while allowing an effective diffusion of lithium, leads to improve-
ments in the electrochemical characteristics of cathode. Materials such as acetylene black,
graphene, carbon nanotubes, nanofibers, porous carbon, fullerenes, and hollow materials,
e.g., nanospheres, were utilized in this manner in various studies [119,120,131–134].

When using porous carbon in Li–S batteries, one of the important aspects is the size
of its pores. Nanopores have a high surface area and can block the electrolyte molecules
from entering and dissolving lithium polysulfides, improving their immobilization. On the
other hand, mesoporous materials allow for higher loading of sulfur into the material and
better mitigation of stress during expansion of sulfur material, while they are additionally
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characterized by a better electric conductivity and superior structure properties, and they
can be used to prepare electrodes with low thickness [121,129,135,136].

Another carbon material used for the immobilization of sulfur is graphene. It has very
good conductance and flexibility but has limited ability to alleviate the shuttle phenomenon.
However, this phenomenon can be more readily overcome by using graphene oxide or
partially oxygenated graphene [129,137,138].

Carbon nanomaterials, e.g., nanotubes, are also a very interesting materials when
used in cathodes, owing to their stability, excellent mechanical properties, and
conductivity [129,139–143]. Further improvements can be achieved by doping, e.g., N
doping leads to improved charge transport and electrolyte access. Creating hierarchical
structures also leads to improvements in the properties of the material when used as a
cathode in Li–S batteries, such as its porosity and electrolyte permeability [144]. Carbon
nanotubes can also be used to modify the separator, improve the sulfur utilization, and
inhibit the diffusion of lithium polysulfides [129,145]. Due to their unique structure, carbon
nanofibers are also a material that can be used in cathodes, allowing sulfur to be stored
inside them, as shown schematically in Figure 9. When modified by surface activation
or combined in composite materials, nanofibers were also successfully used as cathode
materials [129,146–149].
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There have been recent interesting developments regarding the source of the carbon
for the cathode materials in Li–S batteries. They can be obtained from biomaterials, further
decreasing the impact of this technology on the environment. For example, there have
been studies of nanofibers generated from bamboo material applied in Li–S batteries [150].
Porous carbon can be based on cinnamon [125], waterweed [151], or silk cocoons [127,152].

The various carbon materials described in this section have their own advantages
and disadvantages. Selection of the appropriate material will be largely dependent on the
exact application of the battery. Parameters such as the anticipated working conditions,
construction and scale of the battery, cost, and availability of synthesis methods need to
be considered.

There is also a whole family of composite carbon materials used in Li–S batteries.
Composites of graphene with various oxides have a much-improved ability to retain sulfur
species in their structure compared to graphene. Oxides such as Co3O4, SiO2, and TiO2
can be employed in such materials [153–155]. Porous carbon can also be used in compos-
ite materials instead of graphene, e.g., together with B2O3, Nb2O5 [156,157], or atomic
Co [158,159]. Carbon nanotubes can also be employed in this role. Using carbon nanotube
composites with, e.g., MgO, MnO2, SnO, TiO2, or Co-based nanoboxes improves the cy-
clability and sulfur retention inside such materials [119,160–162]. Composites of carbon
nanospheres with metal oxides (e.g., Fe3O4, MnO2, and TiO2) also display behavior simi-
lar to composites with carbon nanotubes, including improvements when using N-doped
nanospheres [163–165]. The composite materials often have improved properties compared
to their components; however, their preparation can be a complex and multistage process.
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An example of such a process, along with a schematic representation of the structure of
the obtained material, is shown in Figure 10. As indicated earlier, doping carbon with
heteroatoms such as nitrogen leads to improvements in polysulfide retention in carbon
materials. Such doping is a less expensive and more environmentally friendly option than
using metal oxides [22,166].
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Metal–organic frameworks (MOFs) are one of the topics of considerable interest at
present, and they can also be used as part of the composite material for an Li–S battery
cathode. Carbon can be introduced into composite MOF materials, and such solutions
usually outperform either component, as well as improve the cycle life and suppress
dendrite formation [22,167–169].

Currently, the majority of focus in Li–S battery research lies on cathodes; however,
there have also been some studies regarding anodes, including the use of carbon materials
in them [22,129]. Typical metallic anodes made of lithium are prone to dendrite creation,
leading to short-circuits and self-discharge of the Li–S battery. To mitigate this problem
different carbon materials can be used. Carbon materials can facilitate the generation of
a stable, protective layer in the solid electrolyte interface [143]. The addition of graphitic
carbons results in a construction more similar to lithium-ion batteries, where lithium is
intercalated in the anode. On the other hand, in contrast to lithium-ion batteries, many
exfoliation-preventing solvents cannot be used in Li–S batteries due to their reactivity with
sulfur species generated in these batteries [170]. In addition to graphitic carbons, hard
carbons, graphene, and composite materials with lithium have been studied as materials
used in the construction of anodes [118,120,171]. Carbon materials used in these anodes
generally improve the safety and stability of the battery, but they can lead to a decrease in
capacity and slower reaction kinetics.

Li–S battery technology is very closely related to carbon materials and has good
prospects for the near future, considering its potential for very high capacities and energy
densities. The use of carbon materials has allowed greatly mitigating the initial difficulties
with the limited stability, shuttling effect, and high self-discharge. Implementation of
improved Li–S batteries in electric vehicles could greatly extend their effective range.
However, there currently remain problems in the mentioned areas that need to be solved
before commercialization, although new generations of carbon materials used as electrode
materials offer promising solutions. In particular, the use of nanomaterials and composites
can result in materials with very good properties, increasing the loading of sulfur and its
effective trapping. Application of these materials can lead to successful implementation
of Li–S technology. On the other hand, these batteries are very complex, and changes in
one parameter can influence the behavior of the whole system; thus, research on electrode
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materials has to progress in parallel to work on other battery elements, such as binders,
electrolytes, or separators.

5. Sodium-Ion Batteries

Sodium-ion batteries are also regarded as a potential alternative to lithium-ion bat-
teries. The principle of operation of sodium-ion batteries is the same as that of Li-ion
batteries, with the difference being the charge carrier, i.e., sodium ions (Na+). The principle
of sodium-ion battery operation is shown in Figure 11.
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Because of the higher ionic radius for sodium (0.102 nm) than lithium (0.076 nm),
larger interstitial sites for Na-ion intercalation are required [172–174]. Minimal amounts of
sodium ions may be intercalated into graphite—one of the most popular anode materials in
lithium-ion batteries. Due to this, various other carbonate materials such as hard carbons,
graphene, and graphene-based composites have been considered as the anode material
for sodium-ion batteries [175,176]. The main advantages of these carbon materials are
conductivity, corrosion resistance, high surface area, and low cost. At the same time, the
morphology of carbon materials has a great influence on their properties.

One of the solutions used in sodium-ion batteries is the application of hard carbons.
There have been many studies of the use of hard carbons from organic materials and wastes
such as sugar [177], banana peels [178], okara [179], waste tire [180], peanut skin [181],
grass [182], cellulose [183,184], rise husk [185], coffee [186], wood [187], and lignite [188].
This group of materials is characterized by a good cyclic stability and specific capacity at
the level of 200–400 mAh/g. There have also been studies on the application of soft carbon
as the anode material. Luo et al. [189] demonstrated that soft carbon can be a competitor to
hard carbon if the preparation conditions are optimal. It has been shown that this material
has a high cyclic resistance due to highly reversible lattice expansion. Hard carbons are
very promising candidates for anode materials with high capacities, but they have highly
irreversible capacities. This high irreversibility was reported to depend on particle size,
porosity measurements, applied additives, and electrolytes. Due to the large size of the
Na ions, anode materials based on soft carbons showed lower specific capacities. Only
when the preparation conditions are carefully chosen can soft carbon become a high-rate
anode material.

Another proposed solution involves porous carbon nanomaterials. Nanocellular
carbon foams exhibit a good capacity retention (around 150 mAh/g after 1600 cycles at
0.1 A/g) due to their large surface area and the surface functional groups available for
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sodium-ion insertion [190]. An equally high performance was shown by porous carbon
nanofibers (high cyclic durability and capacity around 140 mAh/g after 1000 cycles at
0.5 A/g) [191] or three-dimensional amorphous carbon (rate capability 66 mAh/g at
9.6 A/g) [192]. An improvement of working parameters was also obtained by doping
the porous carbon materials with heteroatoms such as nitrogen and oxygen [193–196].
Zhang et al. [196] presented a nitrogen-doped three-dimensional porous carbon anode
material which exhibited a specific capacity around 270 mAh/g, excellent cyclic stability,
and capacity retention (approximately 91% after 5000 cycles at 1 A/g).

Reduced graphene oxide (RGO) is another promising material for use in sodium-ion
batteries due to its superior sodium-ion storage properties. It was shown that RGO with
an interlayer spacing of 0.37 nm could deliver a capacity of 174 mAh/g (at 0.04 A/g) [197].
Moreover, expanding the interlayer spacing to 0.43 nm increased the capacity to 280 mAh/g
at a current of 0.02 A/g [198]. RGO properties are strongly dependent on the structure and
method of preparation. In mass production, RGO is prepared from graphite. The first step
is the chemical exfoliation of graphite to graphene oxide, and then the oxide is reduced
with chemical agents, such as sodium borohydride [199], potassium carbonate [200], tin
chloride [201], or iron metal powder [202]. The metal–reduced graphene obtained by
Kumar et al. [203] showed good properties as a negative electrode material in sodium-ion
batteries. The tested anode exhibited a specific capacity of approximately 270 mAh/g,
good cyclic stability, and a superior rate capability. Figure 12 illustrates the poor capacity
of graphite as an anode material in Na-ion batteries and the marked improvements that
can be achieved by applying other carbon materials.
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Figure 12. Electrochemical performances of graphite (PG), graphene oxide (GO), and expanded
graphite (EG) anodes in sodium-ion batteries: (a) charge/discharge curves for the second cycles; (b)
short-term cycling stability. Reprinted with permission from the Springer Nature Customer Service
Center GmbH [198].

The use of carbon composites as a negative electrode material is an interesting solution
that combines the advantages of metal alloys and carbon materials [175,204]. Some alloy
material elements (Ge, Se, Sn, and Sb) deliver appropriate Na-inserting potential and
high theoretical specific capacities (over 600 mAh/g) [205–207]. At the same time, carbon
additives improve the electrical conductivity, as well as chemical and mechanical stability,
of the electrode material, and prevent agglomeration during cycling [175]. Recently, many
studies investigated anode materials based on Ti [208,209], Sn [210], Sb [211,212], and
P [89,213,214]. Carbon nanotube composites with Sn and/or Sb films featured excellent
conductivity, while the modification yielded a capacity of around 600–800 mAh/g and
good cyclic stability [210,212,215]. Another example involves TiO2 nanoparticles grown on
N-doped graphene, which exhibited a reversible capacity of approximately 400 mAh/g/
(at 50 mA/g) and 250 mAh/g after 100 cycles [216]. Phosphorus compositing is an effective
way to develop high-performance anodes for long cycle life by minimizing drawbacks
such as low electrical conductivity and large volume expansion during cycling. The
phosphorus–graphite–polyaniline composite anode material presented by Jin et al. [217]
showed excellent capacity retention of 520 mAh/g after 1000 cycles at a high current
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density of 4 A/g. Carbon composites allow improving ionic and electronic transfers, which
in turn facilitates better performance with high capacity and stable cycling properties.

Sodium-ion batteries are a promising alternative to lithium-ion batteries. The major
advantages of sodium-ion batteries are better sustainability and low cost (about 10–20%
less than that of lithium-ion batteries) while maintaining a comparable specific energy.
The natural abundance of Na and the possibility of using cathode materials based on
metals such as Fe, Mg, V, and Ti, without using Co, make the sodium-ion battery concept
economically competitive and environmentally friendly. This battery may find application
in short-range electric vehicles and large-scale energy storage systems. Nevertheless, the
technology of sodium-ion batteries still needs to be refined, especially in terms of higher-
specific-capacity electrode materials, as well as in other aspects such as the development of
electrolytes that will improve the performance at high charge–discharge rates over a wide
temperature range while exhibiting a long cycle life.

6. Supercapacitors

In contrast to standard capacitors based on dielectrics, supercapacitors store charge
using electric double-layer capacitance or pseudocapacitance, i.e., electrochemical Faradaic
reactions of adsorbed ions [218,219]. A comparison of charge storage mechanisms in
different electrochemical power sources is shown in Figure 13. The former mechanism
is used in capacitors based on carbon materials with high specific surface areas, whereas
the latter is used in metal–oxide supercapacitors, based on compounds such as RuO2 or
MnO2. Carbon in various forms finds use in both types of supercapacitors, as well as in
hybrid capacitors, using composite materials combining carbon and metal oxides [220,221].
Supercapacitors are characterized by a very high specific capacitance; they also display
good specific power, high-rate charge and discharge, and a long cycle life. On the other
hand, one of their main disadvantages is a relatively low energy density [218,220,222].
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Figure 13. Schematics showing the differences in charge storage in a battery, a capacitor,
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Center GmbH [223].

Modern electrochemical double-layer capacitors (EDLCs) often employ carbon ma-
terials with high specific surface area, such as activated carbon. Other important char-
acteristics of materials used in supercapacitors are the chemical and physical stability,
electrical conductivity of the material, and pore size. Greater porosity increases the surface
area, but a balance in pore sizes is required as only macro- and mesopores facilitate rapid
ion transfer [224–226].

There is a great interest in research on using different carbon materials in EDLCs,
including carbon nanomaterials, which are usually characterized by a very high specific
surface area, good mechanical strength, flexibility, and electrical conductivity [220,227,228].
On the other hand, nanomaterials have low volumetric capacity and can be difficult to
produce [223,229]. Some of the carbon nanomaterials investigated to date are aerogels,
nanotubes, graphene, and graphene oxide [229–234]. Advantages of carbon aerogels in-
clude the lack of the need for a bonding agent, as the aerogel can chemically bond to the
collector with high capacitance [220,231]. Graphene electrodes based on graphite oxide
have average capacitance, but high stability and high-rate current performance [220,235].
Carbon nanotubes used in supercapacitors have good physical properties, stability, and
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conductance [220,229]. There have also been studies on spherical, multiwalled onion-like
carbons, which showed good performance as supercapacitor materials [229,236]. Mi-
croscopic images of some carbon nanomaterials used in supercapacitors are presented
in Figure 14.
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Figure 14. Transmission electron microscope images of different carbon structures used as active
materials for double-layer capacitors: (a) disordered microporous carbon; (b) onion-like carbon; (c)
SEM image of carbon nanotubes on SiC; (d) carbon nanotubes. Adapted with permission from the
Springer Nature Customer Service Center GmbH [237].

Some composite carbon materials have also been considered for use in EDLC. Exam-
ples include carbon quantum dots (with dimensions less than 10 nm) that can be prepared
on matrices of a three-dimensional aerogel or activated carbon. They can also create
graphene– or carbon nanotube–quantum dot arrays [238–242]. An example of the structure
of a material based on carbon quantum dots is presented in Figure 15. Nanotubes and
activated carbon can also be used in composite materials to increase their capacitance. This
is a better solution than simply mixing these two materials, as it allows for a more uniform
embedding, thereby improving the mesoporosity [229]. Research on growing carbon nan-
otubes on top of carbon nanofibers resulted in a material with very good capacitance [243].
There have also been studies on modified graphene sheets. Chen et al. showed that reduced
graphene oxide can be composited with active carbon [244]. Graphene can also be arranged
in a hierarchic porous architecture, allowing for more efficient diffusion, as well as higher
conductivity and capacitance [208,245,246].
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Composite carbon materials can also include heteroatoms in their structure. Introduc-
ing these heteroatoms into the lattice changes not only the physical and chemical properties,
but also the crystalline and electronic structure. N doping of carbon can lead to many
improvements in material characteristics, such as capacitance and higher possible load
currents [227,229,247,248].

Carbon materials can also find use in pseudocapacitance-based supercapacitors. This
type of capacitor has a higher capacitance than EDLCs; however, in contrast to carbon-
based supercapacitors, it has worse stability and high-rate performance. Addition of
appropriate carbon materials can, therefore, lead to improved characteristics of composite
pseudocapacitors by including electrical double-layer capacitance and providing a conduc-
tive backbone. For example, MnO2 supercapacitors with composite materials containing
carbon black, graphene, or carbon nanotubes showed a marked improvement in their
performance [249–251]. Carbon nanofibers were also used in a flexible, asymmetric capac-
itor with metal oxides (MnO2 and MoO3) [252]. Similar solutions exist for other metal
oxides used in pseudocapacitors, e.g., RuO2 or Co3O4 [221,253,254].

Currently, one of the new directions in supercapacitor development involves MOFs.
These frameworks provide a template allowing better control and stabilizing the struc-
ture of the active material, leading to improved energy density and stability during
the cycle life of the capacitor. MOF-based oxides can create a composite with carbon
materials, such as graphene, graphene oxide, or nanotubes, to further improve their
performance [220,229,255].

Carbon materials can also be applied as current collectors. Typically, in supercapaci-
tors, the current collectors have a form of a metallic foil or mesh, e.g. aluminum, nickel,
or stainless steel [236,245,256]. A carbon material with an appropriate structure used in
a collector can increase the contact area with the active material and improve corrosion
resistance [257,258]. Porous carbon films or nanobrushes can be grown directly on vari-
ous current collectors [236,255]. Alternatively, the whole collector can be replaced with
nanotubes, graphene paper, or with porous carbon nanofoam [236,259].

Carbon can also be used as a binder in the construction of the supercapacitor, thereby
increasing the available loading of the active material onto the current collectors. Typically,
polymer-based binders are used (e.g. PTFE, PBI), but a bitumen-based paint can also be
employed in this role [255].

Another interesting solution using carbon is represented by the electrode manufacture
process. Electrodes can be printed using a carbon-based paint in the inkjet printing [260,261].
The carbon material can be utilized there to serve as both the active material and the current
collector [262]. Supercapacitor electrodes can be printed using this technique with paint
based on carbon material solution in a suitable solvent. A direct drawing using a graphite
rod on cellulose paper can also be used to produce supercapacitor electrodes [263].

As shown above, carbon materials can be used in various elements of supercapacitors.
This leads to a very broad range of materials used, from carbon-based paints to nanotubes.
Regarding their use in the active material, composite materials and nanomaterials are
especially promising candidates for future use. One of the important aspects when choosing
the appropriate material is the balance between the capacity and cyclic stability, as an
increase in the former parameter usually leads to a decrease in the latter.

Different avenues for obtaining carbon materials have also been studied. One of
the more interesting sources of these materials is biological and organic waste. Using
these sources of carbon can lead to the production of various materials used in more
cost-effective and environmentally friendly energy storage [227]. In one study, Hoffman
et al. prepared chars designed for use in supercapacitors from potato waste [264]. Rice
husks can also be used as a substrate for the production of activated graphene-based
supercapacitors [265,266]. Li et al. prepared flexible and self-healing supercapacitors using
biochar based on soybean stover [267]. Supercapacitors were also prepared using porous
carbon based on loofah sponge [268] or cicada sloughs [269].
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In general, supercapacitors are characterized by a very high power and good cycle
life at the cost of limited specific energy. Using carbon materials can help them achieve
a better balance between capacity and power, broadening their application in areas such
as electronics or electric vehicles, especially when applied in parallel with other power
sources with a higher capacity but worse high-rate performance.

7. Conclusions

Carbon finds many uses in modern rechargeable batteries. Despite their very different
characteristics, carbon can be applied in the construction of each of the presented types.
Lead–acid battery properties can be greatly enhanced by using various forms of this
element in their construction, allowing them to remain competitive with the more recent
battery types. Carbon is one of the main reasons for the strong position of these batteries
on the current market, while it also opens new avenues for future use and improvements.
Currently, the focus of research on carbon modifications lies on the active mass, current
collectors, and capacitor electrodes. The lithium-ion battery is another very popular battery
type. In this case, the use of carbon was also one of the crucial elements that led to their
dominant position. New types of carbon, including nanomaterials, are currently being used
to further improve the properties of lithium batteries, with the bulk of this research focusing
on novel anode materials. These materials are also a very important aspect for developing
new types of rechargeable batteries. Both lithium–sulfur and sodium-ion batteries are very
promising technologies that can replace currently used battery types. Carbon is used in
Li–S batteries mostly in the cathodes, while it is used in sodium-ion batteries mainly in
the anodes. Recent research on these batteries using carbon-based materials has shown
great promise in overcoming their current drawbacks, which can lead to their mass usage
in the future. Another electrochemical power source with good prospects for becoming
widespread is represented by supercapacitors. Carbon can be used in them both as an
active material in the carbon electrode (EDLCs) and as a part of the composite material
in pseudocapacitors. Most studies on these materials have focused on improvements in
specific energy.

Nanomaterials and composites often display superior properties compared to simpler
materials, and they are a very important part of current developments in the reviewed
power sources. At the same time, during the introduction of new materials, a balanced
choice is often required. Improving one aspect of the battery performance can result in
a decrease in other areas. These developments demand careful optimization, and the
materials need to be chosen on the basis of the role of the power source. Aspects such
as the working conditions, economical cost, or influence on other elements of the battery
need to be considered in the selection of the best candidates for usage. Nevertheless, novel
materials are being constantly developed, and reports of improvements in parameters of
all power sources included in the review have been published.

Carbon is, therefore, a key element used in many materials in modern power sources,
leading to more efficient energy storage. As such, it is an important part of the upcoming
transformation of the global energy market into a more environmentally friendly structure,
based on renewable sources. In this light, one of the important aspects is the source of the
carbon materials, which can be derived from various biological sources, as shown in the
current review. According to the information presented in this review, it can be concluded
that carbon has allowed numerous improvements of battery properties in the past and will
probably be crucial to many breakthroughs in the future of energy storage, leading to more
efficient, cleaner, renewable energy.
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