marinedrugs-logo

Journal Browser

Journal Browser

Marine-Derived Compounds to Counteract Oxidative Stress and Inflammation in the Skin

A special issue of Marine Drugs (ISSN 1660-3397).

Deadline for manuscript submissions: 28 February 2026 | Viewed by 1661

Special Issue Editor


E-Mail Website
Guest Editor
Department of Analytical Chemistry, Medical University of Bialystok, Białystok, Poland
Interests: natural compounds; redox metabolism; oxidative stress; inflammation; skin protection; UV radiation; proteomics

Special Issue Information

Dear Colleagues,

Human skin, the physical barrier between the body and the external environment, is particularly susceptible to external stressors, including physical (e.g., solar ultraviolet radiation), chemical (e.g., pollutants, detergents, and allergens), and biological factors (e.g., bacteria, fungi, and viruses). It also plays a key role in maintaining the body’s homeostasis through its involvement in cellular metabolism.

Exposure to these factors can result in redox imbalance and pro-inflammatory responses in skin cells. Oxidative damage to macromolecules (DNA, proteins, and lipids) modulates key signaling pathways that regulate inflammation, cell survival, and differentiation, potentially leading to disrupted cellular metabolism. This can contribute to the development or progression of inflammatory skin diseases such as atopic dermatitis and psoriasis, as well as skin cancers, including melanoma—the deadliest form.

Natural products and their structural analogues show strong therapeutic potential in mitigating skin oxidative stress and inflammation. The marine environment offers a rich source of such bioactive compounds. This Special Issue welcomes articles on marine-derived compounds that target redox imbalance and inflammation in the skin.

Dr. Sinemyiz Atalay Ekiner
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Marine Drugs is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • marine-derived compounds
  • oxidative stress
  • inflammation
  • redox metabolism
  • skin oxidative stress
  • skin inflammation
  • cutaneous inflammatory disease
  • skin cancer

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 2680 KB  
Article
The Effect of Lipid Extract of Nannochloropsis oceanica Marine Microalgae on Glutathione and Thioredoxin-Dependent Antioxidant Systems in UVB-Irradiated Keratinocytes
by Agnieszka Gęgotek, Maria Rosario Domingues, Pedro Domingues and Elżbieta Skrzydlewska
Mar. Drugs 2025, 23(12), 454; https://doi.org/10.3390/md23120454 - 26 Nov 2025
Viewed by 440
Abstract
UVB radiation present in sunlight is the main pro-oxidative and pro-inflammatory factor that reaches human skin cells, including keratinocytes. Therefore, protective compounds eliminating the negative impact of UVB radiation are constantly being sought. This study aimed to estimate the effect of the lipid [...] Read more.
UVB radiation present in sunlight is the main pro-oxidative and pro-inflammatory factor that reaches human skin cells, including keratinocytes. Therefore, protective compounds eliminating the negative impact of UVB radiation are constantly being sought. This study aimed to estimate the effect of the lipid extract of microalgae Nannochloropsis oceanica (N.o.) on UVB-irradiated keratinocytes. A proteomic approach was used to estimate the proteomic profile of in vitro-treated keratinocytes. The results indicated 270 proteins had significantly altered expression in UVB-irradiated keratinocytes, while the treatment of cells with N.o. extract partially restored the levels of these proteins. Moreover, changes in protein structure resulting from the binding of glutathione (GSH) and thioredoxin (Trx) were also observed. Most of the GSH-modified proteins were involved in GSH or prostaglandin metabolism, while Trx-modified proteins were molecules related to Trx metabolism, as well as antioxidant and anti-inflammatory signaling. The treatment of cells with N.o. extract contributed to reversing the changes in the level of modification in individual proteins. It can be suggested that the lipid components of the microalgae N.o. extract protect keratinocytes against changes in metabolism induced by UVB radiation, modulating the antioxidant and pro-inflammatory responses of cells at the GSH and Trx-based signaling levels. Full article
Show Figures

Graphical abstract

25 pages, 9948 KB  
Article
A Marine-Derived Sterol, Ergosterol, Mitigates UVB-Induced Skin Photodamage via Dual Inhibition of NF-κB and MAPK Signaling
by Junming Zhang, Jiangming Zhong, Yi Li, Qi Zhou, Zhiyun Du, Li Lin, Peng Shu, Ling Jiang and Wei Zhou
Mar. Drugs 2025, 23(11), 445; https://doi.org/10.3390/md23110445 - 19 Nov 2025
Viewed by 908
Abstract
Background: Ultraviolet B (UVB) radiation induces oxidative stress, inflammation, and collagen degradation in skin, leading to photodamage. Ergosterol (ERG)—a sterol widely distributed in fungi and algae, including numerous marine species—possesses antioxidant and anti-inflammatory activities, but its photoprotective mechanisms remain unclear. Methods: Using integrated [...] Read more.
Background: Ultraviolet B (UVB) radiation induces oxidative stress, inflammation, and collagen degradation in skin, leading to photodamage. Ergosterol (ERG)—a sterol widely distributed in fungi and algae, including numerous marine species—possesses antioxidant and anti-inflammatory activities, but its photoprotective mechanisms remain unclear. Methods: Using integrated in vitro (UVB-irradiated human keratinocytes) and in vivo (topical ERG in a murine UVB model) approaches, combined with transcriptomic and network pharmacology analyses, we evaluated ERG’s effects on oxidative stress, inflammation, and extracellular matrix integrity. Results: ERG treatment preserved keratinocyte viability, reduced reactive oxygen species, and suppressed pro-inflammatory mediators after UVB exposure. In mice, topical ERG significantly attenuated epidermal hyperplasia, maintained tight-junction integrity, and inhibited collagen matrix degradation. Mechanistically, ERG exerted dual inhibition of the nuclear factor kappa B (NF-κB) pathway, which mediates inflammation, and the mitogen-activated protein kinase (MAPK) pathway, which regulates collagen degradation. Conclusions: These findings identify ERG as a marine-derived sterol with potent photoprotective activity that simultaneously targets oxidative stress, inflammation, and extracellular matrix damage, highlighting its promise as a natural compound for dermatological applications and aligning with ongoing efforts to explore marine-derived agents against skin oxidative stress and inflammation. Full article
Show Figures

Figure 1

Back to TopTop