Journal Description
Future Pharmacology
Future Pharmacology
is an international, peer-reviewed, open access journal on pharmacology, drug discovery, and therapeutics published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within ESCI (Web of Science), EBSCO, and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 25 days after submission; acceptance to publication is undertaken in 4.6 days (median values for papers published in this journal in the first half of 2024).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
- Future Pharmacology is a companion journal of Pharmaceutics.
Latest Articles
HPV Proteins as Therapeutic Targets for Phytopharmaceuticals Related to Redox State in HPV-Related Cancers
Future Pharmacol. 2024, 4(4), 716-730; https://doi.org/10.3390/futurepharmacol4040038 - 4 Oct 2024
Abstract
►
Show Figures
The high-risk Human Papillomavirus (HR-HPV) is the causal agent of different human cancers such as cervical, vulvar, and oropharynx cancer. This is because persistent HR-HPV infection alters several cellular processes involved in cell proliferation, apoptosis, immune evasion, genomic instability, and cellular transformation. The
[...] Read more.
The high-risk Human Papillomavirus (HR-HPV) is the causal agent of different human cancers such as cervical, vulvar, and oropharynx cancer. This is because persistent HR-HPV infection alters several cellular processes involved in cell proliferation, apoptosis, immune evasion, genomic instability, and cellular transformation. The above is mainly due to the expression of early expression proteins of HR-HPV, which interact and alter these processes. HR-HPV proteins have even been shown to regulate redox state and mitochondrial metabolism, which has been suggested as a risk factor for cancer development. Redox state refers to a balance between reactive oxygen species (ROS) and antioxidants. Although ROS regulates cell signaling, high levels of ROS generate oxidative stress (OS). OS promotes damage to DNA, proteins, carbohydrates, and lipids, which causes mutation accumulation and genome instability associated with cancer development. Thus, OS has been associated with the establishment and development of different types of cancer and has recently been proposed as a cofactor in HR-HPV-associated cancers. However, OS also induces cell death, which can be used as a target for different molecules, such as phytochemicals. Furthermore, phytochemicals target HPV oncoproteins E6 and E7, causing their degradation. Because phytochemicals could induce OS and target HPV oncoproteins, we hypothesize that these compounds induce cell death in HPV-associated cancers. Since the redox state is crucial in developing, establishing, and clearing HR-HPV-associated cancer, this review focuses on evidence for using phytochemicals as therapeutic agents that target HPV proteins and the redox state to induce the elimination of HPV-related cancers.
Full article
Open AccessReview
Medicinal Herbal Extracts: Therapeutic Potential in Acute Lung Injury
by
Jae-Won Lee, Hee Jae Lee, Seok Han Yun, Juhyun Lee, Hyueyun Kim, Ha Yeong Kang, Kyung-Seop Ahn and Wanjoo Chun
Future Pharmacol. 2024, 4(4), 700-715; https://doi.org/10.3390/futurepharmacol4040037 - 3 Oct 2024
Abstract
►▼
Show Figures
Acute lung injury (ALI) is induced by pneumonia, sepsis and other conditions. The disease characteristics include severe lung inflammation, in which various cells, such as epithelial cells, macrophages, and neutrophils, play a pivotal role. Corticosteroids and antibiotics are used to treat ALI; however,
[...] Read more.
Acute lung injury (ALI) is induced by pneumonia, sepsis and other conditions. The disease characteristics include severe lung inflammation, in which various cells, such as epithelial cells, macrophages, and neutrophils, play a pivotal role. Corticosteroids and antibiotics are used to treat ALI; however, they may have side effects. Cumulative data confirm that traditional herbal medicines exert therapeutic effects against endotoxin-induced inflammatory responses in both in vitro and in vivo ALI studies. This review briefly describes the anti-ALI effects of medicinal herbal extracts (MHEs) and their molecular mechanisms, especially focusing on Toll-like receptor 4/nuclear factor kappa B cell pathways, with a brief summary of in vitro and in vivo ALI experimental models. Thus, the present review highlights the excellent potential of MHEs for ALI therapy and prevention and may also be useful for the establishment of in vitro and in vivo ALI models.
Full article
Figure 1
Open AccessArticle
Subacute Toxicity and Pharmacokinetic Evaluation of the Synthetic Cannabinoid 4F-MDMB-BUTINACA in Rats: A Forensic and Toxicological Perspective
by
Elkhatim Hassan Abdelgadir, Jihad Al-Qudsi, Elham S. Abu-Nukhaa and Dimah A. Alsidrani
Future Pharmacol. 2024, 4(4), 676-699; https://doi.org/10.3390/futurepharmacol4040036 - 1 Oct 2024
Abstract
Background: 4-MDMB-BUTINACA, a next-generation synthetic cannabinoid, presents significant public health and forensic challenges due to its evolving nature and potential toxicity. Methods: This study evaluates the subacute toxic effects and pharmacokinetics of 4−Fluoro MDMB−BUTINACA (4F-MDMB-BUTINACA) in adult male albino rats, administered orally for
[...] Read more.
Background: 4-MDMB-BUTINACA, a next-generation synthetic cannabinoid, presents significant public health and forensic challenges due to its evolving nature and potential toxicity. Methods: This study evaluates the subacute toxic effects and pharmacokinetics of 4−Fluoro MDMB−BUTINACA (4F-MDMB-BUTINACA) in adult male albino rats, administered orally for seven days at doses of 1 mg/kg, 5 mg/kg, and 15 mg/kg. The hematological, biochemical, and histopathological parameters were assessed and compared to controls. Results: The pharmacokinetics were determined using GC–MS/MS with a positive chemical ionization and granisetron as an internal standard. A histological analysis revealed inflammatory cell aggregation, congestion, hemorrhage, edema, and fibrosis in various tissues, with renal examinations showing tubule degradation, glomerular atrophy, Bowman’s space expansion, edema, and hemorrhage. The liver exhibited cellular infiltration, while cardiac muscle fibers showed myocardial fiber degradation and inflammatory cell aggregation. Biochemical assays indicated significant alterations (p < 0.05) in the serum levels of AST, ALT, ALP, GGT, total protein, albumin, triglycerides, urea, MCHC, MCV, RDW, platelets, neutrophils, eosinophils, and basophils compared to the controls. Conclusions: The validated bioanalytical method revealed rapid absorption of 4F-MDMB-BUTINACA, with a plasma half-life of 2.371 h, a volume of distribution of 2272.85 L, and a plasma clearance rate of 664.241 L/h. In conclusion, 4F-MDMB-BUTINACA is a highly toxic synthetic cannabinoid, particularly affecting the liver, kidneys, and heart.
Full article
Open AccessReview
Understanding the Impact of Oxidative Stress on Ovarian Cancer: Advances in Diagnosis and Treatment
by
Yeva Meshkovska, Artem Abramov, Shaheen Mahira and Sowjanya Thatikonda
Future Pharmacol. 2024, 4(3), 651-675; https://doi.org/10.3390/futurepharmacol4030035 - 12 Sep 2024
Abstract
►▼
Show Figures
Ovarian cancer (OC) ranks as the fifth most common cancer among women in the United States and globally, posing a significant health threat. Reactive oxygen species (ROS) have emerged as critical factors in the pathophysiology of this malignancy. ROS, characterized by their instability
[...] Read more.
Ovarian cancer (OC) ranks as the fifth most common cancer among women in the United States and globally, posing a significant health threat. Reactive oxygen species (ROS) have emerged as critical factors in the pathophysiology of this malignancy. ROS, characterized by their instability due to an unpaired electron, are involved in essential cellular functions and play a crucial role in the immune response under normal physiological conditions. However, an imbalance in ROS homeostasis, leading to excessive ROS production, results in oxidative stress (OS), which can cause indiscriminate damage to cellular structures and contribute to the pathogenesis of specific diseases, including OC. OC is primarily classified based on the originating cell type into epithelial, stromal, and germinal tumors, with epithelial tumors being the most prevalent. Despite advancements in medical technology, early detection of OC remains challenging, often leading to delayed treatment initiation. Current therapeutic approaches include surgical excision of tumor tissue, radiotherapy, and chemotherapy. While these treatments are effective in early-stage OC, high mortality rates and frequent relapse underscore the urgent need for novel diagnostic and therapeutic strategies. This review aims to elucidate the role of ROS in OC, emphasizing the potential for developing innovative diagnostic tools and treatments that target ROS-mediated pathways. Given the critical impact of early detection and effective treatment, advancing our understanding of ROS in the context of OC could significantly enhance patient outcomes.
Full article
Graphical abstract
Open AccessSystematic Review
Usefulness of Natural Phenolic Compounds in the Fight against Esophageal Cancer: A Systematic Review
by
Gabriel Tchuente Kamsu and Eugene Jamot Ndebia
Future Pharmacol. 2024, 4(3), 626-650; https://doi.org/10.3390/futurepharmacol4030034 - 10 Sep 2024
Abstract
►▼
Show Figures
Esophageal cancer (EC) is a very common form of cancer in developing countries, and its exponential progression is a cause for concern. Available treatments face the phenomenon of multi-drug resistance, as well as multiple disabling side effects. The number of deaths is expected
[...] Read more.
Esophageal cancer (EC) is a very common form of cancer in developing countries, and its exponential progression is a cause for concern. Available treatments face the phenomenon of multi-drug resistance, as well as multiple disabling side effects. The number of deaths is expected to double by 2030 if nothing is done. Due to their high representativeness in plants, phenolic compounds are a potential alternative for halting the spread of this disease, which bereaves many thousands of families every year. This study aims to identify phenolic compounds with activity against esophageal cancer, assess their toxicological profiles, and explore future perspectives. To achieve this, the literature search was meticulously carried out in the Google Scholar, Scopus, Web of Sciences, and Pub-Med/Medline databases, in accordance with the PRISMA 2020 guidelines. The results show that proanthocyanidin and curcumin represent promising therapeutic options, given their significant in vitro and in vivo activity, and their safety in human subjects in clinical trials. Moscatilin, Genistein, and pristimerin have anticancer activities (≤10 µM) very close to those of doxorubicin and 5-FU, although their safety has not yet been fully established. The compounds identified in vivo exhibit highly significant activities compared with the results obtained in vitro, and are sometimes more effective than the molecules conventionally used to treat EC. Generally, with the exceptions of plumbagin, lapachol, and β-lapachone, all other molecules are relatively non-toxic to normal human cells and represent a therapeutic avenue to be explored by pharmaceutical companies in the fight against esophageal cancer. However, more detailed toxicological studies of certain molecules remain a priority.
Full article
Figure 1
Open AccessSystematic Review
Cannabinoids from C. sativa L.: Systematic Review on Potential Pharmacological Effects against Infectious Diseases Downstream and Multidrug-Resistant Pathogens
by
Adriana Ribeiro, Rahaf Alsayyed, Daniele Oliveira, Rui Loureiro and Helena Cabral-Marques
Future Pharmacol. 2024, 4(3), 590-625; https://doi.org/10.3390/futurepharmacol4030033 - 9 Sep 2024
Abstract
►▼
Show Figures
Cannabis sativa L. has garnered attention as a potential source for new antimicrobial agents, particularly due to the increased prevalence of microbial resistance to conventional antimicrobials and the emergence of multidrug-resistant pathogens. This review, conducted according to the PRISMA 2020 statement, systematically analyzed
[...] Read more.
Cannabis sativa L. has garnered attention as a potential source for new antimicrobial agents, particularly due to the increased prevalence of microbial resistance to conventional antimicrobials and the emergence of multidrug-resistant pathogens. This review, conducted according to the PRISMA 2020 statement, systematically analyzed the antimicrobial properties of C. sativa extracts and cannabinoids against various bacteria, fungi, viruses, and parasites. Data were collected from the scientific literature (102 papers) and clinical trials (5 studies) from 2014 to June 2024. Findings revealed that cannabinoids, especially CBD, demonstrate significant antimicrobial activity against Gram-positive bacteria like MRSA, Gram-negative bacteria such as Pseudomonas aeruginosa, various Candida species, SARS-CoV-2, and HIV. Additionally, CBD showed efficacy against parasitic infections like Echinococcus granulosus and Leishmania species. These results suggest that cannabinoids may represent a new class of antimicrobial agents with unique and diverse mechanisms of action, potentially effective in broad-spectrum therapies. This study highlights the urgent need for further research and standardized clinical trials to validate these findings and to develop cannabinoid-based treatments. The antimicrobial properties of C. sativa align with WHO priorities and support global health initiatives, offering promising avenues for addressing antimicrobial resistance and improving public health outcomes.
Full article
Figure 1
Open AccessReview
Pharmacogenetics and the Blood–Brain Barrier: A Whirlwind Tour of Potential Clinical Utility
by
David R. Skvarc, Trang T. T. Truong, Robert M. Lundin, Russell Barnes, Fiona A. Wilkes and Ajeet B. Singh
Future Pharmacol. 2024, 4(3), 574-589; https://doi.org/10.3390/futurepharmacol4030032 - 5 Sep 2024
Abstract
Genetic factors influence medication response (pharmacogenetics), affecting the pharmacodynamics and pharmacokinetics of many medicaments used in clinical care. The ability of medications to cross the blood–brain barrier (BBB) represents a critical putative factor in the effectiveness and tolerability of various medications relevant to
[...] Read more.
Genetic factors influence medication response (pharmacogenetics), affecting the pharmacodynamics and pharmacokinetics of many medicaments used in clinical care. The ability of medications to cross the blood–brain barrier (BBB) represents a critical putative factor in the effectiveness and tolerability of various medications relevant to central nervous system disorders (CNS), cancer, and broader medical conditions at a pharmacokinetic (dosing) level. Pharmacogenetics has the potential to personalise medicine to a greater extent than has been possible, with the potential to help reduce heuristic delays to effective tolerable pharmacotherapy. Here, we critically examine and summarise the evidence, particularly for ABCB1 polymorphisms associated with drug transportation and other clinical relevance. These transporters appear to have a role in BBB pharmacogenetics and may indicate new avenues of research that extend beyond the current paradigm of CYP450 polymorphisms. We identify some of the most promising variants for clinical translation while spotlighting the complexities of the involved systems and limitations of the current empirical literature.
Full article
(This article belongs to the Special Issue Feature Papers in Future Pharmacology 2024)
►▼
Show Figures
Figure 1
Open AccessArticle
Anticancer Activity of 4-Aryl-1,4-Dihydropyridines
by
Thaís A. S. Oliveira, Jackson B. A. Silva, Tábata R. Esperandim, Nathália O. Acésio, Denise C. Tavares and Antônio E. M. Crotti
Future Pharmacol. 2024, 4(3), 564-573; https://doi.org/10.3390/futurepharmacol4030031 - 27 Aug 2024
Abstract
We have synthesized 22 symmetric and asymmetric 4-aryl-1,4-dihydropyridines (1,4-DHPs) by a “green” microwave-assisted one-pot multicomponent Hantzsch reaction and evaluated their cytotoxicity to three human cancer cell lines regarding U-251MG (human glioblastoma), HeLa 229 (human cervical adenocarcinoma), and MCF-7 (human breast carcinoma). None of
[...] Read more.
We have synthesized 22 symmetric and asymmetric 4-aryl-1,4-dihydropyridines (1,4-DHPs) by a “green” microwave-assisted one-pot multicomponent Hantzsch reaction and evaluated their cytotoxicity to three human cancer cell lines regarding U-251MG (human glioblastoma), HeLa 229 (human cervical adenocarcinoma), and MCF-7 (human breast carcinoma). None of the 1,4-DHPs were cytotoxic to U-251MG cells. Most of the 1,4-DHPs did not affect HeLa 229 or MCF-7 cell viability. On the other hand, symmetric 1,4-DHPs 18 (diethyl 4-(4-benzyloxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate), 19 (diethyl 4-(4-bromophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate), and 20 (diethyl 4-(3-fluorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate) reduced the HeLa (IC50 = 3.6, 2.3, and 4.1 µM, respectively) and MCF-7 (IC50 = 5.2, 5.7, and 11.9 µM, respectively) cell viability. These 1,4-DHPs were more cytotoxic to the HeLa and MCF-7 cells than to the GM07492 (normal human fibroblast) cells, as evidenced by their selectivity indexes. Therefore,1,4-DHPs 18, 19, and 20 may serve as novel lead compounds to discover other 1,4-DHP derivatives with improved anticancer potency and selectivity.
Full article
(This article belongs to the Special Issue Feature Papers in Future Pharmacology 2024)
►▼
Show Figures
Figure 1
Open AccessReview
Beyond One-Size-Fits-All: Personalized Medicine and Future Directions in Sex-Based Psychopharmacological Treatment
by
Marianna Mazza, Francesco Maria Lisci, Caterina Brisi, Gianandrea Traversi, Eleonora Gaetani, Roberto Pola and Giuseppe Marano
Future Pharmacol. 2024, 4(3), 541-563; https://doi.org/10.3390/futurepharmacol4030030 - 20 Aug 2024
Abstract
Sex-related differences in psychopharmacology present unique challenges in both clinical and research settings. Recognition of sex differences in psychopharmacological treatment has increased in recent years, but a significant research gap regarding variations between men and women still exists. Biological factors, including hormonal fluctuations,
[...] Read more.
Sex-related differences in psychopharmacology present unique challenges in both clinical and research settings. Recognition of sex differences in psychopharmacological treatment has increased in recent years, but a significant research gap regarding variations between men and women still exists. Biological factors, including hormonal fluctuations, genetic factors, and brain structure differences, contribute significantly to differential drug responses. Moreover, social determinants can influence the differential burden of psychiatric disorders between the sexes and may impact treatment plans. Incorporating sex as a key variable in personalized treatment programs and plans holds the potential to optimize efficacy and minimize adverse effects in psychopharmacology. Sex-related challenges in psychopharmacology necessitate a nuanced approach to treatment. Further research is needed to fully understand these differences and to develop guidelines for personalized medication management. By addressing these challenges, clinicians can improve treatment outcomes and enhance the quality of life of patients with psychiatric disorders.
Full article
Open AccessReview
Insights for Future Pharmacology: Exploring Phytochemicals as Potential Inhibitors Targeting SARS-CoV-2 Papain-like Protease
by
Jawaria Jabeen, Nabeel Ahmed, Zunaira Shahzad, Maida Shahid and Taseer Ahmad
Future Pharmacol. 2024, 4(3), 510-540; https://doi.org/10.3390/futurepharmacol4030029 - 17 Aug 2024
Abstract
(1) Background: The SARS-CoV-2 papain-like protease (PLpro) remains an underexplored antiviral target so far. The reduced efficacy of approved treatments against novel variants highlights the importance of developing new agents. This review aims to provide a comprehensive understanding of phytochemicals as inhibitors of
[...] Read more.
(1) Background: The SARS-CoV-2 papain-like protease (PLpro) remains an underexplored antiviral target so far. The reduced efficacy of approved treatments against novel variants highlights the importance of developing new agents. This review aims to provide a comprehensive understanding of phytochemicals as inhibitors of PLpro, identify gaps, and propose novel insights for future reference. (2) Methods: A thorough literature search was conducted using Google Scholar, ScienceDirect, and PubMed. Out of 150 articles reviewed, 57 met inclusion criteria, focusing on SARS-CoV-2 PLpro inhibitors, excluding studies on other coronaviruses or solely herbal extracts. Data were presented class-wise, and phytochemicals were grouped into virtual, weak, modest, and potential inhibitors. (3) Results: Approximately 100 phytochemicals are reported in the literature as PLpro inhibitors. We classified them as virtual inhibitors (70), weak inhibitors (13), modest inhibitors (11), and potential inhibitors (6). Flavonoids, terpenoids, and their glycosides predominated. Notably, six phytochemicals, including schaftoside, tanshinones, hypericin, and methyl 3,4-dihydroxybenzoate, emerged as potent PLpro inhibitors with favorable selectivity indices and disease-mitigation potential; (4) Conclusions: PLpro stands as a promising therapeutic target against SARS-CoV-2. The phytochemicals reported in the literature possess valuable drug potential; however, certain experimental and clinical gaps need to be filled to meet the therapeutic needs.
Full article
(This article belongs to the Special Issue Feature Papers in Future Pharmacology 2024)
►▼
Show Figures
Figure 1
Open AccessArticle
Preclinical Pharmacology of the Low-Impact Ampakine CX717
by
Daniel P. Radin, Sheng Zhong, Rok Cerne, Jodi L. Smith, Jeffrey M. Witkin and Arnold Lippa
Future Pharmacol. 2024, 4(3), 494-509; https://doi.org/10.3390/futurepharmacol4030028 - 16 Aug 2024
Abstract
►▼
Show Figures
Ampakines are a class of orally available positive allosteric modulators of the AMPA-glutamate receptor (AMPAR) and have therapeutic implications for neurological/neuropsychiatric disorders in which AMPAR signaling is compromised. Low-impact ampakines are a distinct subclass of drugs that only modestly offset receptor desensitization and
[...] Read more.
Ampakines are a class of orally available positive allosteric modulators of the AMPA-glutamate receptor (AMPAR) and have therapeutic implications for neurological/neuropsychiatric disorders in which AMPAR signaling is compromised. Low-impact ampakines are a distinct subclass of drugs that only modestly offset receptor desensitization and do not alter agonist binding affinity and thus lack the neurotoxicity and epileptogenic effects associated with other AMPAR modulators. In these studies, we describe the pre-clinical pharmacology of ampakine 1-(benzofurazan-5-ylcarbonyl)morpholine (CX717). CX717 modestly offsets desensitization in hippocampal patches and augments synaptic transmission in vivo. CX717 also enhances long-term potentiation in rats, which is crucial for learning and memory. CX717 enhances performance in the eight-arm radial maze and abrogates amphetamine-induced locomotor activity while being devoid of cataleptic activity in rats. CX717 also ameliorates alfentanil-induced respiratory depression in rats and is not toxic to cultured rat neurons. CX717 is active at doses of 0.3–10 mg/kg and lacked serious adverse events in safety studies in mice up to 2000 mg/kg. CX717 was also previously shown to be safe in humans and effective in reversing opiate-induced respiratory depression and hyperactivity and inattentiveness in adults with ADHD. These findings support the continued clinical investigation of CX717 in the treatment of ADHD, dementia, and opiate-induced respiratory depression.
Full article
Figure 1
Open AccessReview
Substance Delivery across the Blood-Brain Barrier or the Blood-Retinal Barrier Using Organic Cation Transporter Novel Type 2 (OCTN2)
by
Toshihiko Tashima
Future Pharmacol. 2024, 4(3), 479-493; https://doi.org/10.3390/futurepharmacol4030027 - 4 Aug 2024
Abstract
►▼
Show Figures
The membrane impermeability of a drug poses a significant challenge in drug research and development, preventing effective drug delivery to the target site. Specifically, the blood-brain barrier (BBB) presents a formidable obstacle to the delivery of drugs targeting the central nervous system (CNS)
[...] Read more.
The membrane impermeability of a drug poses a significant challenge in drug research and development, preventing effective drug delivery to the target site. Specifically, the blood-brain barrier (BBB) presents a formidable obstacle to the delivery of drugs targeting the central nervous system (CNS) into the brain, whereas the blood-retinal barrier (BRB) presents a tremendous obstacle to the delivery of drugs targeting the ocular diseases into the eyes. The development of drugs for Alzheimer’s or Parkinson’s disease targeting the CNS and for diabetic retinopathy and age-related macular degeneration targeting the eyes remains an unmet medical need for patients. Transporters play a crucial physiological role in maintaining homeostasis in metabolic organs. Various types of solute carrier (SLC) transporters are expressed in the capillary endothelial cells of the BBB, facilitating the delivery of nutrients from the blood flow to the brain. Therefore, carrier-mediated transport across the BBB can be achieved using SLC transporters present in capillary endothelial cells. It is well-known that CNS drugs typically incorporate N-containing groups, indicating that cation transporters facilitate their transport into the brain. In fact, carrier-mediated transport across the BBB can be accomplished using glucose transporter type 1 (Glut1) as a glucose transporter, L-type amino acid transporter 1 (LAT1) as a large neutral amino acid transporter, and H+/cation antiporter as a cation transporter. Surprisingly, although organic cation transporter novel type 2 (OCTN2) is expressed in the capillary endothelial cells, there has been limited investigation into OCTN2-mediated substance delivery into the brain across the BBB. Furthermore, it is suggested that OCTN2 is expressed at the BRB. In this prospective review, I present the advantages and possibilities of substance delivery into the brain across the BBB or into the eyes across the BRB, mediated by OCTN2 via carrier-mediated transport or receptor-mediated transcytosis.
Full article
Figure 1
Open AccessReview
Deciphering the Complex Interplay of Long Noncoding RNAs and Aurora Kinases: Novel Insights into Breast Cancer Development and Therapeutic Strategies
by
Mona Kamal Saadeldin, Giuseppe Curigliano and Amal Kamal Abdel-Aziz
Future Pharmacol. 2024, 4(3), 466-478; https://doi.org/10.3390/futurepharmacol4030026 - 30 Jul 2024
Abstract
►▼
Show Figures
Breast cancer is the most common type of cancer globally and presents an escalating problem and a huge burden on societies. Several strategies are implemented in clinics to treat patients and prevent disease incidence. Efforts to understand the underlying causes of disease emergence
[...] Read more.
Breast cancer is the most common type of cancer globally and presents an escalating problem and a huge burden on societies. Several strategies are implemented in clinics to treat patients and prevent disease incidence. Efforts to understand the underlying causes of disease emergence are pivotal, and the latest examination of human transcriptomic studies showed the involvement of the noncoding RNA regulatory molecules in influencing both pathological and physiological conditions. Several molecular mechanisms are involved in the process and collaborate to develop tumor plasticity and drug resistance. In this review, we highlight for the first time the interplay between long noncoding RNAs and Aurora kinases in breast cancer and review the latest advances in the field in an attempt to pave the way for a better understanding of the course of the disease and to delineate the targets for treatment strategies in the clinic.
Full article
Figure 1
Open AccessArticle
Eugenol-Rich Essential Oils from Flower Buds and Leaves of Syzygium aromaticum Show Antifungal Activity against Candida and Cryptococcus Species
by
Evariste Josué Momo, François Nguimatsia, Laure Ateufouet Ngouango, Paul Keilah Lunga, Boniface Pone Kamdem and Pierre Michel Jazet Dongmo
Future Pharmacol. 2024, 4(3), 449-465; https://doi.org/10.3390/futurepharmacol4030025 - 27 Jul 2024
Abstract
►▼
Show Figures
Plants from the Myrtaceae family are known to contain considerable quantities of volatile compounds, ranging from oxygenated monoterpenes to hydrogenated sesquiterpenes, and others, which exhibit antimicrobial activity. One such plant includes Syzygium aromaticum, which has been extensively used to treat a number
[...] Read more.
Plants from the Myrtaceae family are known to contain considerable quantities of volatile compounds, ranging from oxygenated monoterpenes to hydrogenated sesquiterpenes, and others, which exhibit antimicrobial activity. One such plant includes Syzygium aromaticum, which has been extensively used to treat a number of disorders, including bacterial and fungal infections. Thus, the scientific validation of the essential oil (EO) of Syzygium aromaticum vis-à-vis Candida and Cryptococcus species is valuable. To this end, the present study sought to investigate the antifungal activity of EO from S. aromaticum (clove) leaves and flower buds against Candida and Cryptococcus species. The antioxidant activity of S. aromaticum’s essential oils was also elucidated. The EO was extracted from fresh leaves and floral buds of S. aromaticum using a Clevenger-type apparatus. The as-prepared essential oils were further evaluated for antifungal activity against Candida and Cryptococcus species using a microdilution method. The phytochemical analysis of the EOs was assessed by gas chromatography/mass spectrometry (GC-MS). Antioxidant activities of the EOs were evaluated using standard methods. As a result, the GC-MS analysis revealed the presence of volatile compounds, such as eugenol (87.08%), β-caryophyllene (6.40%) and acetyleugenol (4.45%) as the major constituents of EO from the flower buds, and eugenol (90.54%) and β-caryophyllene (8.42%) as the major components of the leaf’s EO. The eugenol-rich essential oils exhibited significant antifungal effects against Candida species (common MIC value: 200 ppm) and Cryptococcus neoformans (MIC value: 50 ppm), as well as antioxidant activity. Overall, essential oils of S. aromaticum demonstrated antioxidant and antifungal effects, thus validating the ethnopharmacological use of this plant in the treatment of fungal infections. However, antifungal mechanisms of action, in-depth toxicity and in vivo experiments, and pharmacokinetics are warranted to support the use of this plant in ethnomedicine.
Full article
Figure 1
Open AccessArticle
Lipid Composition-, Medium pH-, and Drug-Concentration-Dependent Membrane Interactions of Ibuprofen, Diclofenac, and Celecoxib: Hypothetical Association with Their Analgesic and Gastrointestinal Toxic Effects
by
Maki Mizogami and Hironori Tsuchiya
Future Pharmacol. 2024, 4(2), 437-448; https://doi.org/10.3390/futurepharmacol4020024 - 20 Jun 2024
Cited by 1
Abstract
►▼
Show Figures
Among nonsteroidal anti-inflammatory drugs, ibuprofen, diclofenac, and celecoxib have been frequently used in multimodal analgesia. Recent studies challenge the conventional theory that they exhibit activity and toxicity by acting on cyclooxygenase selectively. We compared their membrane interactions that may be associated with analgesic
[...] Read more.
Among nonsteroidal anti-inflammatory drugs, ibuprofen, diclofenac, and celecoxib have been frequently used in multimodal analgesia. Recent studies challenge the conventional theory that they exhibit activity and toxicity by acting on cyclooxygenase selectively. We compared their membrane interactions that may be associated with analgesic and gastrointestinal toxic effects. Biomimetic membranes suspended in buffers of different pH were prepared with 1-palmitoyl-2-oleoylphosphatidylcholine, sphingomyelin, and cholesterol to mimic neuronal membranes and with 1,2-dipalmitoylphosphatidylcholine to mimic gastrointestinal mucosae. The membrane interactivity was determined by measuring fluorescence polarization. At pH 7.4, the drugs interacted with neuro-mimetic membranes to decrease membrane fluidity at pharmacokinetically-relevant 0.5–100 μM. Celecoxib was most potent, followed by ibuprofen and diclofenac. At pH 4.0 and 2.5, however, the drugs increased the fluidity of 1,2-dipalmitoylphosphatidylcholine membranes at 0.1–1 mM, corresponding to gastroduodenal lumen concentrations after administration. Their membrane fluidization was greater at gastric pH 2.5 than at duodenal pH 4.0. Low-micromolar ibuprofen, diclofenac, and celecoxib structure specifically decrease neuronal membrane fluidity, which hypothetically could affect signal transmission of nociceptive sensory neurons. Under gastroduodenal acidic conditions, high-micromolar ibuprofen, diclofenac, and celecoxib induce fluidity increases of membranous phosphatidylcholines that are hypothetically associated with gastrointestinal toxic effects, which would enhance acid permeability of protective mucosal membranes.
Full article
Figure 1
Open AccessArticle
Repurposing Synthetic Acetaminophen Derivatives Containing a Benzothiazole Scaffold as an Alternative Therapy for Infectious Diarrhea Caused by Drug-Resistant Shigella Species
by
Boniface Pone Kamdem, Brice Rostan Pinlap, Bijou-Lafortune Noumboue Kouamou, Aubin Youbi Kamche, Boris Arnaud Kuate, Joseph Tsemeugne, Orleans Ngomo, Pierre Mkounga and Fabrice Fekam Boyom
Future Pharmacol. 2024, 4(2), 420-436; https://doi.org/10.3390/futurepharmacol4020023 - 20 Jun 2024
Abstract
Diarrhea remains one of the leading causes of mortality worldwide, especially among children. Accumulated evidence has shown that Shigella species are the most prevalent bacteria responsible for diarrhea in developing countries. Antimicrobial therapy is necessary for Shigella infections; however, the development of resistance
[...] Read more.
Diarrhea remains one of the leading causes of mortality worldwide, especially among children. Accumulated evidence has shown that Shigella species are the most prevalent bacteria responsible for diarrhea in developing countries. Antimicrobial therapy is necessary for Shigella infections; however, the development of resistance against current drugs justifies the pressing need to search for alternative medications. In this study, we have applied antibacterial phenotypic screening to identify potent anti-Shigella compounds across a broad chemical diversity, including selected acetaminophen derivatives containing a benzothiazole backbone, and their combination with certain antibiotics. As a result, two acetaminophen derivatives containing a benzothiazole backbone (4a and 4b) inhibited the growth of Shigella flexneri with a common MIC value of 12.5 µg/mL. These compounds were established through a time-kill kinetics study to be potentially bactericidal. Meanwhile, the 2-aminobenzothiazoles (1a and 1b) used for the synthesis of compounds 4 (a and b) were found to be poorly active (MIC: 100 µg/mL) against this pathogen. Combination studies of 4a and 4b with the least effective antibiotics (ceftriaxone and cotrimoxazole) demonstrated synergistic anti-Shigella activity with MIC values decreasing from 12.5 to 0.781 μg/ mL. The present study demonstrates that the azobenzothiazole dyes 4 (a and b) can be repurposed as potential anti-Shigella compounds, thus providing potential chemical pharmacophores for the discovery of drugs against infectious diarrhea caused by Shigella and other enteric pathogens, especially in developing countries.
Full article
(This article belongs to the Special Issue Feature Papers in Future Pharmacology 2024)
►▼
Show Figures
Figure 1
Open AccessReview
A Narrative Review of Pharmacotherapy of Glaucoma
by
Shalini Virani and Parveen Rewri
Future Pharmacol. 2024, 4(2), 395-419; https://doi.org/10.3390/futurepharmacol4020022 - 27 May 2024
Cited by 1
Abstract
Progressive loss of retinal ganglionic cells (RGC) causes degeneration of optic nerve axons, which leads to blindness in glaucoma. Elevated intraocular pressure (IOP) is the most important, treatable risk factor. Currently, the management of glaucoma is centred on reducing the IOP, and drugs
[...] Read more.
Progressive loss of retinal ganglionic cells (RGC) causes degeneration of optic nerve axons, which leads to blindness in glaucoma. Elevated intraocular pressure (IOP) is the most important, treatable risk factor. Currently, the management of glaucoma is centred on reducing the IOP, and drugs in the form of topical drops are the first line of management. Drugs reduce IOP either by suppressing aqueous humour secretion or improving the aqueous humour outflow. Newer drugs added during the past three decades to the armamentarium of glaucoma treatment have targeted the aqueous outflow. With an evolving understanding of the pathogenesis of glaucoma, the role of 24-h IOP control and other IOP-independent risk factors affecting ocular blood flow and RGC toxicity is also being actively studied in clinical and pre-clinical models of glaucoma. The role of available drugs in controlling IOP over 24 h is being evaluated. Improvement of ocular blood flow and neuroprotection are seen as potential drug targets for preventing the loss of RGC. In this article, we review the pharmacotherapy of glaucoma based on current therapeutic principles.
Full article
(This article belongs to the Special Issue Feature Papers in Future Pharmacology 2024)
►▼
Show Figures
Figure 1
Open AccessArticle
In Vitro and In Silico Biological Evaluation of the Essential Oil from Syzigium cumini Leaves as a Source of Novel Antifungal and Trichomonacidal Agents
by
José Thyálisson da Costa Silva, Fabio Caboclo Moreira, José Jailson Lima Bezerra, Naiza Saraiva Farias, Aparecida Vitória Silva Menêses, Andressa Guilhermino dos Santos, Mariana dos Santos Santana, Maria Elenilda Paulino da Silva, Victor Juno Alencar Fonseca, Adrielle Rodrigues Costa, Saulo Almeida Menezes, Rafael Pereira da Cruz, Maria Flaviana Bezerra Morais-Braga, Tiana Tasca, Cícera Datiane de Morais Oliveira-Tintino, Henrique Douglas Melo Coutinho and José Weverton Almeida-Bezerra
Future Pharmacol. 2024, 4(2), 380-394; https://doi.org/10.3390/futurepharmacol4020021 - 1 May 2024
Cited by 1
Abstract
►▼
Show Figures
As microbes develop resistance to various drugs, the treatment of infections becomes increasingly challenging, leading to prolonged illness, heightened severity of infections, elevated mortality rates, and increased healthcare costs. Essential oils are lipophilic and volatile mixtures of compounds that have gained attention in
[...] Read more.
As microbes develop resistance to various drugs, the treatment of infections becomes increasingly challenging, leading to prolonged illness, heightened severity of infections, elevated mortality rates, and increased healthcare costs. Essential oils are lipophilic and volatile mixtures of compounds that have gained attention in research for novel antimicrobial agents. Therefore, the present study evaluated the essential oil of Syzygium cumini leaves (EOSC) in order to prospect its antifungal and trichomonacidal activities. The essential oil from the leaves was extracted by steam distillation and analyzed by GC-MS. Antifungal activity was evaluated using the serial microdilution method. Additionally, the potential of the EOSC as an enhancer of fluconazole (FCZ) action was tested at subinhibitory concentrations. To assess anti-Trichomonas vaginalis activity, concentrations ranging from 15.6 to 500 μg/mL of EOSC were tested. Finally, the SwissADME platform was employed to analyze the physicochemical and pharmacokinetic characteristics of the major component of EOSC. The GC-MS analysis identified 94.24% of the components of EOSC, with α-pinene (51.11%) and nerol (8.25%) as major constituents. EOSC exhibited low antifungal activity against the evaluated Candida strains. However, the combination of EOSC and FCZ reduced the IC50 against Candida krusei from 45.29 to 0.30 μg/mL. EOSC also demonstrated significant activity against T. vaginalis (IC50 = 88.2 μg/mL). In silico prediction with α-pinene showed low toxic action and important physicochemical aspects for drug production. The essential oil of Syzygium cumini emerges as a promising candidate for the discovery of molecules with potential antifungal and anti-Trichomonas vaginalis applications.
Full article
Figure 1
Open AccessReview
Nanotechnology-Driven Therapeutic Innovations in Neurodegenerative Disorders: A Focus on Alzheimer’s and Parkinson’s Disease
by
Antea Krsek and Lara Baticic
Future Pharmacol. 2024, 4(2), 352-379; https://doi.org/10.3390/futurepharmacol4020020 - 30 Apr 2024
Cited by 2
Abstract
Neurodegenerative disorders entail a progressive loss of neurons in cerebral and peripheral tissues, coupled with the aggregation of proteins exhibiting altered physicochemical properties. Crucial to these conditions is the gradual degradation of the central nervous system, manifesting as impairments in mobility, aberrant behaviors,
[...] Read more.
Neurodegenerative disorders entail a progressive loss of neurons in cerebral and peripheral tissues, coupled with the aggregation of proteins exhibiting altered physicochemical properties. Crucial to these conditions is the gradual degradation of the central nervous system, manifesting as impairments in mobility, aberrant behaviors, and cognitive deficits. Mechanisms such as proteotoxic stress, neuroinflammation, oxidative stress, and programmed cell death contribute to the ongoing dysfunction and demise of neurons. Presently, neurodegenerative diseases lack definitive cures, and available therapies primarily offer palliative relief. The integration of nanotechnology into medical practices has significantly augmented both treatment efficacy and diagnostic capabilities. Nanoparticles, capable of traversing the blood–brain barrier, hold considerable potential for diagnosing and treating brain pathologies. By combining gene therapy with nanotechnology, the therapeutic effectiveness against neurodegenerative diseases can be substantially enhanced. Recent advancements in nano-biomaterial-based methodologies have fortified existing approaches to neural stem cell (NSC) differentiation therapies. NSC-targeting technologies offer a promising, potentially safe method for treating neurodegenerative diseases. This review endeavors to summarize current insights and perspectives on nanotechnology-driven therapeutic innovations in neurodegenerative disorders, with a particular emphasis on Alzheimer’s and Parkinson’s disease.
Full article
(This article belongs to the Special Issue Feature Papers in Future Pharmacology 2024)
►▼
Show Figures
Figure 1
Open AccessReview
Ocular Drug Delivery into the Eyes Using Drug-Releasing Soft Contact Lens
by
Toshihiko Tashima
Future Pharmacol. 2024, 4(2), 336-351; https://doi.org/10.3390/futurepharmacol4020019 - 29 Apr 2024
Cited by 3
Abstract
The impact of visual impairment, such as blindness, on quality of life is immeasurable. However, effective ocular drug delivery into the eyes has not yet been established, primarily due to the impermeability imposed by the blood–retinal barrier (BRB) based on the tight junctions
[...] Read more.
The impact of visual impairment, such as blindness, on quality of life is immeasurable. However, effective ocular drug delivery into the eyes has not yet been established, primarily due to the impermeability imposed by the blood–retinal barrier (BRB) based on the tight junctions and efflux transporters at the endothelium or the epithelium in oral or intravenous administration, as well as the dilution with tear fluid and excretion through the nasolacrimal duct in eye drop administration. Furthermore, intravitreous injections induce pain and fear in patients. Unmet medical needs persist in ocular diseases such as age-related macular degeneration and diabetic retinopathy. Therefore, innovative non-invasive administration methods should be developed. Drug-releasing soft contact lenses (DR-SCLs) affixed to the eye’s surface can continuously and locally deliver their loaded drugs to the eyes. The use of DR-SCLs is expected to greatly enhance the bioavailability and patient adherence to the drug regimen. It is known that several solute carrier (SLC) transporters are expressed in various parts of the eyes, including the cornea, the ciliary body, and the bulbar conjunctiva. Carrier-mediated transport through SLC transporters may occur in addition to passive diffusion. Moreover, nanoparticles can be loaded into DR-SCLs, offering various intelligent approaches based on modifications to induce receptor-mediated endocytosis/transcytosis or to control the loaded drug release within this delivery system. In this perspective review, I discuss the implementation and potential of DR-SCL-mediated ocular drug delivery, particularly focusing on low-molecular-weight compounds because of their fine distribution in living body, ease of handling, and ease of manufacturing.
Full article
(This article belongs to the Special Issue Unveiling New Insights and Treatment Options for Ocular Surface Diseases)
►▼
Show Figures
Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Conferences
Special Issues
Special Issue in
Future Pharmacology
Feature Papers in Future Pharmacology 2024
Guest Editor: Fabrizio SchifanoDeadline: 30 November 2024
Special Issue in
Future Pharmacology
Nanoparticles in Tissue Engineering
Guest Editors: Fernanda Guerra Lima Medeiros Borsagli, Giuseppe FlorestaDeadline: 31 December 2024
Special Issue in
Future Pharmacology
Dual Diagnosis: A Clinical Perspective Regarding Symptoms and Treatments
Guest Editor: Stefania ChiappiniDeadline: 28 February 2025