Impact of Individual Process Parameters on Extraction of Polysaccharides from Saccharina latissima
Abstract
1. Introduction
- Characterize the composition of S. latissima biomass to establish a baseline for extraction.
- Evaluate the effectiveness of conventional extraction methods, including extractions with diluted acid (HCl), diluted alkali (NaOH), and hot water, for polysaccharide yield and composition.
- Assess the efficacy of two advanced extraction techniques, pressurized liquid extraction (PLE) and moderate electric field (MEF) extraction, for polysaccharide recovery from pre-treated seaweed biomass.
- Compare yields, compositions, selectivity, and purity across all methods.
- Isolate and analyze the crude extracts of fucoidan, laminarin, and alginate to evaluate component profiles, selectivity, and extraction efficiency.
2. Results
2.1. Characterization of Untreated and Pre-Treated S. Latissima Biomass
2.2. Extraction of Polysaccharides from S. latissima by Various Conventional Methods
2.2.1. Three Consecutive Extractions Using Diluted Acid Solution
2.2.2. Three Consecutive Extractions Using Diluted Alkali Solution
2.2.3. Hot Water Extraction (Thermal Extraction)
2.3. Extraction of Polysaccharides from S. latissima by Two Advanced Techniques
2.3.1. Pressurized Liquid Extraction (PLE)
2.3.2. Moderate Electric Field (MEF) Extraction on Solid Residues After Three Consecutive Extractions by Diluted Acid
2.4. Isolation and Characterization of Crude Extracts
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Pre-Treatment of S. latissima
4.2.2. Extraction of Polysaccharides from Pre-Treated S. latissima by Various Conventional Methods
Three Consecutive Extractions Using Diluted Acid Solution
Three Consecutive Extractions Using Diluted Alkali Solution
Hot Water Extraction (Thermal Extraction)
4.2.3. Extraction of Polysaccharides from S. Latissima by Two Advance Techniques
Pressurized Liquid Extraction (PLE) on Untreated Biomass
Moderate Electric Field (MEF) Extraction on Solid Residues After Sequential Diluted Acid Extraction
| Sample | X1 (V/cm) | X2 (Hz) | X3 (min) | X4 (Seaweed:Water) |
|---|---|---|---|---|
| 1 | 30 | 1200 | 2 | 1:10 |
| 2 | 50 | 100 | 2 | 1:20 |
| 3 | 70 | 1200 | 5 | 1:20 |
| 4 | 30 | 100 | 5 | 1:10 |
| 5 | 50 | 1200 | 10 | 1:20 |
| 6 | 70 | 100 | 10 | 1:10 |
| 7 | 30 | 100 | 15 | 1:20 |
| 8 | 50 | 1200 | 15 | 1:10 |
| 9 | 70 | 100 | 10 | 1:10 |
| 10 | 50 | 1200 | 10 | 1:20 |
| 11 | 30 | 100 | 5 | 1:10 |
4.2.4. Isolation of Extracted Polysaccharides
4.3. Analytical Procedures
4.3.1. Ash Content
4.3.2. Total Carbohydrates Composition Determination
4.3.3. Determination of Sulphate Content in Fucoidan
4.3.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sacramento, M.M.A.; Borges, J.; Correia, F.J.S.; Calado, R.; Rodrigues, J.M.M.; Patrício, S.G.; Mano, J.F. Green approaches for extraction, chemical modification and processing of marine polysaccharides for biomedical applications. Front. Bioeng. Biotechnol. 2022, 10, 1041102. [Google Scholar] [CrossRef]
- Sharma, A.; Dubey, S.; Singh, K.; Mittal, R.; Quille, P.; Rajauria, G. Innovative Processing and Industrial Applications of Seaweed. Phycology 2025, 5, 10. [Google Scholar] [CrossRef]
- Janke, L. Mapping the global mass flow of seaweed: Cultivation to industry application. J. Ind. Ecol. 2024, 28, 1256–1269. [Google Scholar] [CrossRef]
- Moreira, A.S.P.; Gaspar, D.; Ferreira, S.S.; Correia, A.; Vilanova, M.; Perrineau, M.-M.; Kerrison, P.D.; Gachon, C.M.M.; Domingues, M.R.; Coimbra, M.A.; et al. Water-Soluble Saccharina latissima Polysaccharides and Relation of Their Structural Characteristics with In Vitro Immunostimulatory and Hypocholesterolemic Activities. Mar. Drugs 2023, 21, 183. [Google Scholar] [CrossRef]
- Sæther, M.; Diehl, N.; Monteiro, C.; Li, H.; Niedzwiedz, S.; Burgunter-Delamare, B.; Scheschonk, L.; Bischof, K.; Forbord, S. The sugar kelp Saccharina latissima II: Recent advances in farming and applications. J. Appl. Phycol. 2024, 36, 1953–1985. [Google Scholar] [CrossRef]
- Kreissig, K.J.; Hansen, L.T.; Jensen, P.E.; Wegeberg, S.; Geertz-Hansen, O.; Sloth, J.J. Characterisation and chemometric evaluation of 17 elements in ten seaweed species from Greenland. PLoS ONE 2021, 16, e0243672. [Google Scholar] [CrossRef]
- Birgersson, P.S.; Oftebro, M.; Strand, W.I.; Aarstad, O.A.; Sætrom, G.I.; Sletta, H.; Arlov, Ø.; Aachmann, F.L. Sequential extraction and fractionation of four polysaccharides from cultivated brown algae Saccharina latissima and Alaria esculenta. Algal Res. 2023, 69, 102928. [Google Scholar] [CrossRef]
- Hahn, T.; Lang, S.; Ulber, R.; Muffler, K. Novel procedures for the extraction of fucoidan from brown algae. Process Biochem. 2012, 47, 1691–1698. [Google Scholar] [CrossRef]
- Devillé, C.; Damas, J.; Forget, P.; Dandrifosse, G.; Peulen, O. Laminarin in the dietary fibre concept. J. Sci. Food Agric. 2004, 84, 1030–1038. [Google Scholar] [CrossRef]
- Bojorges, H.; López-Rubio, A.; Martínez-Abad, A.; Fabra, M.J. Overview of alginate extraction processes: Impact on alginate molecular structure and techno-functional properties. Trends Food Sci. Technol. 2023, 140, 104142. [Google Scholar] [CrossRef]
- da Silva, J.; dos Santos, L.C.; Ibañez, E.; Ferreira, S.R.S. Green Extraction Methods Applied to the Brown Macroalga Saccharina latissima: Assessing Yield, Total Phenolics, Phlorotannins and Antioxidant Capacity. Foods 2025, 14, 1017. [Google Scholar] [CrossRef] [PubMed]
- Sund, R.; Holdt, S.L.; Bang-Berthelsen, C.H.; Stévant, P.; Sloth, J.J.; Skipnes, D. Pulsed electric field processing as an alternative to warm water treatment for the reduction of potentially toxic elements in Saccharina latissima. J. Appl. Phycol. 2025, 1–13. [Google Scholar] [CrossRef]
- Blikra, M.J.; Skipnes, D.; Skåra, T. On the use of pulsed electric field technology as a pretreatment to reduce the content of potentially toxic elements in dried Saccharina latissima. LWT 2022, 169, 114033. [Google Scholar] [CrossRef]
- Sardari, R.R.R.; Prothmann, J.; Gregersen, O.; Turner, C.; Nordberg Karlsson, E. Identification of Phlorotannins in the Brown Algae, Saccharina latissima and Ascophyllum nodosum by Ultra-High-Performance Liquid Chromatography Coupled to High-Resolution Tandem Mass Spectrometry. Molecules 2020, 26, 43. [Google Scholar] [CrossRef]
- Ale, M.T.; Mikkelsen, J.D.; Meyer, A.S. Important Determinants for Fucoidan Bioactivity: A Critical Review of Structure-Function Relations and Extraction Methods for Fucose-Containing Sulfated Polysaccharides from Brown Seaweeds. Mar. Drugs 2011, 9, 2106–2130. [Google Scholar] [CrossRef] [PubMed]
- Black, W.A.P.; Dewar, E.T.; Woodward, F.N. Manufacture of algal chemicals. IV—Laboratory-scale isolation of fucoidin from brown marine algae. J. Sci. Food Agric. 1952, 3, 122–129. [Google Scholar] [CrossRef]
- Sterner, M.; Gröndahl, F. Extraction of laminarin from Saccharina latissima seaweed using cross-flow filtration. J. Appl. Phycol. 2021, 33, 1825–1844. [Google Scholar] [CrossRef]
- Fawzy, M.A.; Gomaa, M. Optimization of citric acid treatment for the sequential extraction of fucoidan and alginate from Sargassum latifolium and their potential antioxidant and Fe(III) chelation properties. J. Appl. Phycol. 2021, 33, 2523–2535. [Google Scholar] [CrossRef]
- Gunarathne, R.; Zhang, C.; Zhou, J.; Xin, X.; Lu, J. Low molecular weight fucoidan: Production methods and their therapeutic applications. Int. J. Biol. Macromol. 2025, 318 Pt 4, 145309. [Google Scholar] [CrossRef]
- Lim, S.J.; Wan Aida, W.M. Chapter 3—Extraction of Sulfated Polysaccharides (Fucoidan) From Brown Seaweed. In Seaweed Polysaccharides; Venkatesan, J., Anil, S., Kim, S.-K., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 27–46. [Google Scholar]
- Ye, S.; Xie, C.; Agar, O.T.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Alginates from Brown Seaweeds as a Promising Natural Source: A Review of Its Properties and Health Benefits. Food Rev. Int. 2024, 40, 2682–2710. [Google Scholar] [CrossRef]
- Braccini, I.; Pérez, S. Molecular Basis of Ca2+-Induced Gelation in Alginates and Pectins: The Egg-Box Model Revisited. Biomacromolecules 2001, 2, 1089–1096. [Google Scholar] [CrossRef]
- Martins, R.; Barbosa, A.; Advinha, B.; Sales, H.; Pontes, R.; Nunes, J. Green Extraction Techniques of Bioactive Compounds: A State-of-the-Art Review. Processes 2023, 11, 2255. [Google Scholar] [CrossRef]
- Perez-Vazquez, A.; Carpena, M.; Barciela, P.; Cassani, L.; Simal-Gandara, J.; Prieto, M.A. Pressurized Liquid Extraction for the Recovery of Bioactive Compounds from Seaweeds for Food Industry Application: A Review. Antioxidants 2023, 12, 612. [Google Scholar] [CrossRef]
- Ferreira-Santos, P.; Genisheva, Z.; Pereira, R.N.; Teixeira, J.A.; Rocha, C.M.R. Moderate Electric Fields as a Potential Tool for Sustainable Recovery of Phenolic Compounds from Pinus pinaster Bark. ACS Sustain. Chem. Eng. 2019, 7, 8816–8826. [Google Scholar] [CrossRef]
- Pereira, S.G.; Pereira, R.N.; Rocha, C.M.R.; Teixeira, J.A. Electric fields as a promising technology for the recovery of valuable bio compounds from algae: Novel and sustainable approaches. Bioresour. Technol. Rep. 2023, 22, 101420. [Google Scholar] [CrossRef]
- Einarsdóttir, R.; Þórarinsdóttir, K.A.; Aðalbjörnsson, B.V.; Guðmundsson, M.; Marteinsdóttir, G.; Kristbergsson, K. Extraction of bioactive compounds from Alaria esculenta with pulsed electric field. J. Appl. Phycol. 2022, 34, 597–608. [Google Scholar] [CrossRef]
- Van Wychen, S.; Laurens, L.M. Determination of Total Solids and Ash in Algal Biomass; Technical Report NREL/TP-5100-60956; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2013. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure (LAP); Technical Report No. NREL/TP-510-42618; National Renewable Energy Laboratory: Golden, CO, USA, 2012. [Google Scholar]
- Soleimani, M.; Yamini, Y.; Mohazab Rad, F. A Simple and High Resolution Ion-Pair HPLC Method for Separation and Simultaneous Determination of Nitrate and Thiocyanate in Different Water Samples. J. Chromatogr. Sci. 2012, 50, 826–830. [Google Scholar] [CrossRef] [PubMed]





| Total Carbohydrate (%) | Ash (%) | Monosugars (%) | ||||||
|---|---|---|---|---|---|---|---|---|
| 27.4 ± 4.05 | 49.47 ± 9.37 | Mannitol | Fucose | Arabinose | Galactose | Glucose | Xylose | Mannose |
| 7.14 ± 0.45 | 2.08 ± 0.18 | 0.08 ± 0.004 | 1.06 ± 0.13 | 6.15 ± 0.63 | 0.34 ± 0.03 | 0.50 ± 0.03 | ||
| Uronic acids (%) | ||||||||
| Mannuronic acid | Guluronic acid | Glucuronic acid | ||||||
| 7.12 ± 1.97 | 1.94 ± 1.11 | 0.97 ± 0.05 | ||||||
| Total Carbohydrate (%) | Ash (%) | Monosugars (%) | ||||||
|---|---|---|---|---|---|---|---|---|
| 33.8 ± 2.75 | 19.35 ± 1.2 | Mannitol | Fucose | Arabinose | Galactose | Glucose | Xylose | Mannose |
| 0.39 ± 0.07 * | 2.43 ± 0.38 * | 0.11 ± 0.01 * | 1.60 ± 0.06 * | 10.47 ± 0.32 * | 0.39 ± 0.07 * | 2.43 ± 0.38 * | ||
| Uronic acids (%) | ||||||||
| Mannuronic acid | Guluronic acid | Glucuronic acid | ||||||
| 13.16 ± 2.37 * | 2.70 ± 1.10 | 1.95 ± 0.19 * | ||||||
| Experiment | Total Remaining Neutral Monosugars in Residue (%) | Total Remaining Uronic Acids in Residue (%) | Ash (%) |
|---|---|---|---|
| Control | 10.68 | 30.49 | 10.36 ± 0.22 |
| 1 | 13.01 | 39.05 | 11.11 |
| 2 | 12 | 34.57 | 10.86 |
| 3 | 12.47 | 39.44 | 10.55 |
| 4 and 11 | 13.14 ± 1.00 | 33.55 ± 1.56 | 10.12 ± 0.31 |
| 5 and 10 | 13.285 ± 0.76 | 33.46 ± 1.42 | 10.565 ± 0.07 |
| 6 and 9 | 11.865 ± 2.62 | 27.49 ± 4.70 | 17.475 ± 7.72 |
| 7 | 13.2 | 34.98 | 11.02 |
| 8 | 12.5 | 32.08 | 10.83 |
| Extraction Method | Composition (%) | |||
|---|---|---|---|---|
| Fucose | Glucose | Mannuronic Acid | Sulphate | |
| Extraction using 0.01 M HCl | 15.5 | 2 | 4.1 | 0.72 |
| Extraction using 0.01 M NaOH | 14.4 | 4.6 | 4.7 | 0.15 |
| Extraction using 0.1 M NaOH | 1.8 | 4.15 | 0.24 | 0.06 |
| Extraction using hot water (30 min) | 14.8 | 3.9 | 37.6 | 0.12 |
| Extraction using hot water (60 min) | 15 | 1.65 | 6.3 | 0.10 |
| Extraction Method | Composition (%) | |
|---|---|---|
| Fucose | Mannuronic Acid | |
| Extraction using 0.01 M HCl | 6.83 | 3.22 |
| Extraction using 0.01 M NaOH | 8.82 | 5.16 |
| Extraction using 0.1 M NaOH | 0.0 | 7.33 |
| Extraction using hot water (30 min) | 1.44 | 25.7 |
| Extraction using hot water (60 min) | 1.12 | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khajavi Ahmadi, E.; Al-Hamimi, S.; Jönsson, M.; Sardari, R.R.R. Impact of Individual Process Parameters on Extraction of Polysaccharides from Saccharina latissima. Mar. Drugs 2025, 23, 435. https://doi.org/10.3390/md23110435
Khajavi Ahmadi E, Al-Hamimi S, Jönsson M, Sardari RRR. Impact of Individual Process Parameters on Extraction of Polysaccharides from Saccharina latissima. Marine Drugs. 2025; 23(11):435. https://doi.org/10.3390/md23110435
Chicago/Turabian StyleKhajavi Ahmadi, Elmira, Said Al-Hamimi, Madeleine Jönsson, and Roya R. R. Sardari. 2025. "Impact of Individual Process Parameters on Extraction of Polysaccharides from Saccharina latissima" Marine Drugs 23, no. 11: 435. https://doi.org/10.3390/md23110435
APA StyleKhajavi Ahmadi, E., Al-Hamimi, S., Jönsson, M., & Sardari, R. R. R. (2025). Impact of Individual Process Parameters on Extraction of Polysaccharides from Saccharina latissima. Marine Drugs, 23(11), 435. https://doi.org/10.3390/md23110435

