You are currently viewing a new version of our website. To view the old version click .
  • 17 daysTime to First Decision

Drugs and Drug Candidates

Drugs and Drug Candidates is an international, peer-reviewed, open access journal on drug discovery, development, and knowledge, published quarterly online by MDPI.

All Articles (162)

Synthesis, In Vitro Antitumor Activity, and In Silico ADMET Evaluation of β-Lapachone-Based Thiosemicarbazones

  • Elizabete Silva de Sousa,
  • Edilane Almeida da Silva and
  • Délis Galvão Guimarães
  • + 6 authors

Background/Objectives: β-Lapachone and triapine are compounds with recognized antitumor potential—the former is an ortho-naphthoquinone, and the latter a thiosemicarbazone inhibitor of ribonucleotide reductase. This study aimed to synthesize and evaluate new β-lapachone-based thiosemicarbazones (TSC1TSC6) as potential antineoplastic agents. Methods: Lapachol was isolated from Tabebuia sp. and used to obtain ortho-naphthoquinones (24), which served as precursors for thiosemicarbazones (TSC1TSC6). NMR and HRMS spectra were used to characterize the compounds. Their cytotoxic activity was evaluated in vitro against murine melanoma (B16–F10), colon carcinoma (CT26.WT), and breast cancer (4T1) cell lines, as well as normal fibroblasts (L929). Pharmacokinetic parameters were predicted in silico using ADMETLab 3.0. Results: β-Lapachone exhibited strong cytotoxicity toward tumor cells with moderate effects on normal cells, while thiosemicarbazones of β-lapachone, TSC1, and TSC3 demonstrated lower potency but greater selectivity. The β-lapachone-3-sulfonic acid showed high activity against melanoma and breast cancer cells and low toxicity toward normal cells, indicating tumor selectivity. In contrast, their thiosemicarbazones, TSC2, TSC4, and TSC6, showed weak or no antiproliferative activity. The 3-iodo-β-lapachone was cytotoxic to both tumor and normal cells, whereas its derivative TSC5 demonstrated moderate activity with reduced toxicity. β-Lapachone, β-lapachone-3-sulfonic acid, TSC1, and TSC3 exhibited favorable ADME profiles (QED ≈ 0.61–0.66), suggesting good oral bioavailability. Conclusions: The β-lapachone-3-sulfonic acid and the β-lapachone-based thiosemicarbazones TSC1 and TSC3 emerged as promising lead candidates, combining tumor selectivity, favorable pharmacokinetic properties, and structural innovation for the development of safer and more effective antineoplastic agents.

21 December 2025

Schematic representation of the structural design of β-lapachone-based thiosemicarbazones (TSC1–TSC6). A-The aromatic ring present in both β-lapachone and triapine and B-The ring system present in β-lapachone.
  • Correction
  • Open Access

In the publication [...]

22 December 2025

Background: Tuberculosis (TB) remains a critical global health concern, exacerbated by the emergence of multidrug-resistant and extensively drug-resistant strains of Mycobacterium tuberculosis. In the search for novel therapeutic agents, naphthoquinones have garnered interest due to their diverse mechanisms of action and potent antimycobacterial activity. In this study, we report the design, synthesis, and biological evaluation of a novel series of eleven naphthoquinone-based derivatives (compounds 2232), developed through a molecular hybridization strategy targeting shikimate kinase (Mtb-SK) an essential enzyme present exclusively in M. tuberculosis. Methods: The compounds were synthesized via a straightforward and efficient synthetic route, and preliminary screening identified five molecules with significant anti-TB activity. Notably, compound 26, 4-(4-ethoxyphenyl) amino) Naphthalene-1,2-dione, exhibited a minimum inhibitory concentration (MIC) of 21.33 µM, comparable to ethambutol and substantially more potent than pyrazinamide. Results: Molecular docking studies indicated that all active compounds interact favorably within the shikimate binding pocket of Mtb-SK, following the proposed mechanism of action. Additionally, ongoing cytotoxicity assays in HepG2 cells aim to assess the selectivity of these derivatives. Conclusions: These findings support the potential of this new class of naphthoquinones as promising scaffolds for the development of anti-TB agents, contributing to the growing body of research focused on new chemotherapeutic options against tuberculosis.

18 December 2025

Cytotoxic and Antiproliferative Effects of Chlorella vulgaris Lectin on Colon Cancer Cells

  • Vivianne Lays Ribeiro Cavalcanti,
  • Maria Carla Santana de Arruda and
  • Thalya Natasha da Silva Santos
  • + 5 authors

Background/Objectives: Colon cancer is the third most common type of cancer in the world, characterized by a high risk of metastasis, resistance to various drugs, and late diagnosis. In addition, the drugs used for treatment are associated with serious neurological damage, causing acute and chronic pain and compromising the patient’s quality of life. Meanwhile, lectins are proteins capable of exerting cytotoxic action on cells from various tumors in a selective manner, without exerting significant toxicity on healthy cells. Despite this, studies on the potential of lectins obtained from microalgae are still scarce in the literature. In this sense, the objective of this study was to evaluate the antitumor activity of lectin isolated from the microalgae Chlorella vulgaris (CvL) on colorectal cancer cells, HT-29. Methods: The purified lectin was tested for cytotoxicity using MTT colorimetric methods, in addition to clonogenicity, cell cycle, apoptosis, and necrosis tests, analyzed by flow cytometry. Results: The assays demonstrated that the lectin was able to induce cell death in the HT-29 tumor line by approximately 83.75% with an IC50 value of 21.5 µg/mL−1, reduced colony formation by more than 90%, was able to regulate the cell cycle by apoptosis, and did not present significant necrosis. These results show that microalgae lectins have the potential to be exploited in the control of neoplastic cells.

18 December 2025

News & Conferences

Issues

Open for Submission

Editor's Choice

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Drugs Drug Candidates - ISSN 2813-2998