Journal Description
Foods
Foods
is an international, peer-reviewed, open access journal on food science published semimonthly online by MDPI. The Italian Society of Food Sciences (SISA) and Spanish Nutrition Foundation (FEN) are affiliated with Foods and their members receive discounts on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, FSTA, AGRIS, PubAg, and other databases.
- Journal Rank: JCR - Q1 (Food Science and Technology) / CiteScore - Q1 (Health Professions (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 14.5 days after submission; acceptance to publication is undertaken in 2.5 days (median values for papers published in this journal in the second half of 2024).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
4.7 (2023);
5-Year Impact Factor:
5.1 (2023)
Latest Articles
The Impact of Peeling on Highland Barley’s Digestive Properties: In Vitro and In Vivo Insights
Foods 2025, 14(10), 1686; https://doi.org/10.3390/foods14101686 (registering DOI) - 9 May 2025
Abstract
Highland barley is a low-glycemic-index grain, and its slow-digesting starch can help delay or prevent the onset and progression of type Ⅱ diabetes. Peeling processes can alter the composition of highland barley, potentially changing its digestive properties. This study explored how changes in
[...] Read more.
Highland barley is a low-glycemic-index grain, and its slow-digesting starch can help delay or prevent the onset and progression of type Ⅱ diabetes. Peeling processes can alter the composition of highland barley, potentially changing its digestive properties. This study explored how changes in nutritional components due to different peeling times (zero, one, two, and three times) affected the digestion and absorption of barley during the gastric and intestinal phases and the utilization of undigested substrates at the distal end of the digestive tract, as well as their impact on fasting blood glucose regulation. The findings indicated that highland barley with fewer peeling times, which retained its outer layer that is rich in dietary fiber, protein, and polyphenols, delayed starch digestion and exhibited better hypoglycemic effects. Compared to unpeeled highland barley, the starch digestion rates of highland barley with one, two, and three peeling times increased by 2.82%, 18.62%, and 26.43% (p < 0.05). Based on microstructure, at the same enzymatic digestion time, starch with fewer peeling times retained a more intact granule structure. In mice with dysregulated glucose and lipid metabolism induced by the HFD/STZ method, highland barley with fewer peeling times exhibited a stronger hypoglycemic effect (6.13 mmol/L and 6.07 mmol/L). Additionally, the highland barley dietary intervention improved the gut microbiota composition in these mice, restoring the Firmicutes/Bacteroidetes ratio balance and enriching various probiotics, such as Akkermansia and Lactobacillus. Furthermore, this effect was inversely proportional to the number of peeling times.
Full article
(This article belongs to the Special Issue Advances in Nutrition and Application of Protein and Starch Components in Cereals)
►
Show Figures
Open AccessArticle
Impact of Rearing Duration on Nutritional Composition, Flavor Characteristics, and Physical Properties of Asian Swamp Eel (Monopterus albus)
by
Yuning Zhang, Wentao Xu, Weiwei Lv, Quan Yuan, Hang Yang, Weiwei Huang and Wenzong Zhou
Foods 2025, 14(10), 1685; https://doi.org/10.3390/foods14101685 - 9 May 2025
Abstract
The Asian eel, a medicinal and edible species, lacks systematic research on age-related nutritional and flavor dynamics. To optimize breeding strategies and product differentiation, this study systematically investigated the nutritional composition, flavor profiles, and physical properties of Asian eel muscles across five distinct
[...] Read more.
The Asian eel, a medicinal and edible species, lacks systematic research on age-related nutritional and flavor dynamics. To optimize breeding strategies and product differentiation, this study systematically investigated the nutritional composition, flavor profiles, and physical properties of Asian eel muscles across five distinct growth stages (1, 3, 7, 11, and 22 years). Results showed that unsaturated fatty acids increased with age, while ω-3/ω-6 ratios peaked in 1-year-old eels. The levels of hydrolyzed essential amino acids were higher in the 3–11-year-old groups, contrasting with higher free amino acids in 1- and 22-year-old eels. Texture declined in hardness/chewiness but improved in resilience with age, linked to muscle fiber density and diameter. One–three-year-old eels exhibited compact muscle fibers and superior texture, while 7–22-year groups demonstrated functional lipid profiles (high docosahexaenoic acid and γ-aminobutyric acid, low cholesterol). These findings highlight age-specific quality traits: 1–3-year-old eels are suitable for fresh consumption, 3–11-year groups offer bioactive benefits, and 22-year-old eels serve as premium functional ingredients. The study provides a scientific basis for targeted breeding and market segmentation to enhance the value of eel aquaculture.
Full article
(This article belongs to the Section Food Nutrition)
Open AccessArticle
Identifying the Geographical Origin of Wolfberry Using Near-Infrared Spectroscopy and Stacking-Orthogonal Linear Discriminant Analysis
by
Shijie Song, Xiaohong Wu, Mingyu Li and Bin Wu
Foods 2025, 14(10), 1684; https://doi.org/10.3390/foods14101684 - 9 May 2025
Abstract
The geographical origin identification of wolfberry is key to ensuring its medicinal and edible quality. To accurately identify the geographical origin, the Stacking-Orthogonal Linear Discriminant Analysis (OLDA) algorithm was proposed by combining OLDA with the Stacking ensemble learning framework. In this study, Savitzky–Golay
[...] Read more.
The geographical origin identification of wolfberry is key to ensuring its medicinal and edible quality. To accurately identify the geographical origin, the Stacking-Orthogonal Linear Discriminant Analysis (OLDA) algorithm was proposed by combining OLDA with the Stacking ensemble learning framework. In this study, Savitzky–Golay (SG) + Multiplicative Scatter Correction (MSC) served as the optimal preprocessing method. Four classifiers—K-Nearest Neighbors (KNN), Decision Tree, Support Vector Machine (SVM), and Naive Bayes—were used to explore 12 stacked combinations on 400 samples from five regions in Gansu: Zhangye, Yumen, Wuwei, Baiyin, and Dunhuang. When Principal Component Analysis (PCA), PCA + Linear Discriminant Analysis (LDA), and OLDA were used for feature extraction, Stacking-OLDA achieved the highest average identification accuracy of 99%. The overall accuracy of stacked combinations was generally higher than that of single-classifier models. This study also assessed the role of different classifiers in different combinations, finding that Stacking-OLDA combined with KNN as the meta-classifier achieved the highest accuracy. Experimental results demonstrate that Stacking-OLDA has excellent classification performance, providing an effective approach for the accurate classification of wolfberry origins and offering an innovative solution for quality control in the food industry.
Full article
(This article belongs to the Section Food Quality and Safety)
►▼
Show Figures

Figure 1
Open AccessFeature PaperReview
Advancements in the Extraction, Characterization, and Bioactive Potential of Laminaran: A Review
by
Kit-Leong Cheong, Amanullah Sabir, Min Wang, Saiyi Zhong and Karsoon Tan
Foods 2025, 14(10), 1683; https://doi.org/10.3390/foods14101683 - 9 May 2025
Abstract
Laminaran, a bioactive β-glucan derived from brown algae, has garnered significant attention due to its diverse pharmacological properties, including antioxidant, immunomodulatory, and mucosal protective effects. Despite promising research highlighting its potential applications in functional foods, nutraceuticals, and pharmaceuticals, the commercial utilization of laminaran
[...] Read more.
Laminaran, a bioactive β-glucan derived from brown algae, has garnered significant attention due to its diverse pharmacological properties, including antioxidant, immunomodulatory, and mucosal protective effects. Despite promising research highlighting its potential applications in functional foods, nutraceuticals, and pharmaceuticals, the commercial utilization of laminaran remains limited, primarily due to challenges in extraction efficiency, structural complexity, and a lack of standardized methodologies. This review critically examines recent advancements in the extraction, purification, structural characterization, and biological evaluation of laminaran. Both conventional and emerging extraction methods—including ultrasound-assisted extraction, microwave-assisted extraction, and enzymatic techniques—are evaluated for their efficiency, scalability, and sustainability. Analytical tools, such as high-performance liquid chromatography, nuclear magnetic resonance, and mass spectrometry, are discussed for their roles in elucidating key structural features, such as molecular weight, degree of polymerization, and glycosidic linkage patterns, which are closely tied to laminaran’s biological activity. Innovative extraction technologies have improved yield and purity, while structural insights have deepened the understanding of structure–function relationships. Interdisciplinary collaboration will be critical to advance laminaran from a marine-derived polysaccharide to a commercially viable bioactive compound for health, nutrition, and biomaterial applications.
Full article
(This article belongs to the Special Issue Natural Polysaccharides: Structure and Health Functions)
►▼
Show Figures

Figure 1
Open AccessArticle
Sustainable Extraction of Actinostemma lobatum Kernel Oil by 2-Methyltetrahydrofuran: A Comparative Study on Physicochemical Properties and Bioactive Compounds Against Petro-Sourced Solvents
by
Liyou Zheng, Hongyan Guo, Haozhi Song, Miao Yu, Mengxi Xie, Sameh A. Korma and Tao Zhang
Foods 2025, 14(10), 1682; https://doi.org/10.3390/foods14101682 - 9 May 2025
Abstract
This study aims to evaluate the effect of extraction solvent type on the physicochemical properties and bioactive compounds of Actinostemma lobatum Maxim. kernel oil for two successive harvest years. Oils were extracted using the bio-based solvent 2-methyltetrahydrofuran (2-MeTHF) and conventional petroleum-derived solvents (
[...] Read more.
This study aims to evaluate the effect of extraction solvent type on the physicochemical properties and bioactive compounds of Actinostemma lobatum Maxim. kernel oil for two successive harvest years. Oils were extracted using the bio-based solvent 2-methyltetrahydrofuran (2-MeTHF) and conventional petroleum-derived solvents (n-hexane and 2-methylpentane). Results indicated that 2-MeTHF achieved significantly higher oil yields (27.60% in 2021 and 29.77% in 2022) compared to n-hexane and 2-methylpentane. Unfortunately, 2-MeTHF-extracted oils exhibited greater susceptibility to oxidation, displaying elevated levels of primary and secondary oxidation products relative to other solvents. Meanwhile, 2-methylpentane-extracted oil showed a relatively high oxidative stability index. In addition, differential scanning calorimetry results also aligned with the oxidative status. Further variance analysis revealed that the harvest year exerted a more pronounced impact on fatty acid and triacylglycerol profiles than the solvent type. Additionally, tocopherols and tocotrienols were abundant, with β- and δ-tocopherols predominating. 2-MeTHF-extracted oils harvested in 2022 contained the highest total tocols (1118.83 mg/kg) among all samples. Also, phytosterols were detected, with β-sitosterol constituting the predominant compound. Furthermore, the 2-MeTHF-extracted oils contained higher β-carotene contents compared to other samples. These above findings concluded that 2-MeTHF is a good alternative to conventional solvents for extracting of A. lobatum kernel oil.
Full article
(This article belongs to the Special Issue Lipids and Lipophilic Bioactive Compounds: Advances in Food and Health)
►▼
Show Figures

Figure 1
Open AccessArticle
Microbiological and Chemical Profiles of Kiwi Kefir-like Beverages Produced Using Different Agitation Speeds and Kefir Grain Weights
by
Delicia L. Bazán, Pablo G. Del-Río and Nelson Pérez-Guerra
Foods 2025, 14(10), 1681; https://doi.org/10.3390/foods14101681 - 9 May 2025
Abstract
This study aimed to identify kiwi kefir-like beverages with high levels of viable probiotic cells and low levels of calories, acids, and alcohol. To achieve this, microbiological and chemical characterizations were conducted on beverages inoculated with varying amounts of kefir grains (GW) and
[...] Read more.
This study aimed to identify kiwi kefir-like beverages with high levels of viable probiotic cells and low levels of calories, acids, and alcohol. To achieve this, microbiological and chemical characterizations were conducted on beverages inoculated with varying amounts of kefir grains (GW) and incubated at different agitation speeds (A), following a second-order orthogonal factorial design. For each experimental condition, three 24-h batch cultures were performed using three successive passages of kefir grains. Higher GW levels promoted greater nutrient consumption and metabolite production. However, an intermediate GW (1.80 g) resulted in the highest growth of lactic acid bacteria (LAB), acetic acid bacteria (AAB), yeasts, and free biomass in the fermented medium. Optimal agitation levels also enhanced nutrient consumption, free biomass, and metabolite pro-duction. AAB and yeast counts increased with higher agitation speeds, while LAB counts de-creased. Three beverages, produced during the second (A = 86 rpm, GW = 2.81 g) and third (A = 38 rpm, GW = 2.60 g; A = 86 rpm, GW = 1.80 g) kefir grain passages, exhibited LAB and yeast counts above 106; CFU/mL, along with low total sugar and ethanol concentrations. These beverages may be considered suitable as potentially probiotic, low-alcohol, and low-calorie functional drinks.
Full article
(This article belongs to the Special Issue Innovations in Fermented Foods and Beverages: Microbial Diversity, Functional Metabolites, and Health Implications)
►▼
Show Figures

Graphical abstract
Open AccessArticle
CV-YOLOv10-AR-M: Foreign Object Detection in Pu-Erh Tea Based on Five-Fold Cross-Validation
by
Wenxia Yuan, Chunhua Yang, Xinghua Wang, Qiaomei Wang, Lijiao Chen, Man Zou, Zongpei Fan, Miao Zhou and Baijuan Wang
Foods 2025, 14(10), 1680; https://doi.org/10.3390/foods14101680 - 9 May 2025
Abstract
To address the problem of detecting foreign bodies in Pu-erh tea, this study proposes an intelligent detection method based on an improved YOLOv10 network. By introducing the MPDIoU loss function, the YOLOv10 network is optimized to effectively enhance the positioning accuracy of the
[...] Read more.
To address the problem of detecting foreign bodies in Pu-erh tea, this study proposes an intelligent detection method based on an improved YOLOv10 network. By introducing the MPDIoU loss function, the YOLOv10 network is optimized to effectively enhance the positioning accuracy of the model in complex background and improve detection of small target foreign objects. Using AssemFormer to optimize the structure, the network’s ability to perceive small target foreign objects and its ability to process global information are improved. By introducing the Rectangular Self-Calibrated Module, the prediction accuracy of the bounding box is effectively optimized, further improving the classification and target-positioning abilities of the model in complex scenes. The results showed that the Box, Cls, and Dfl loss functions of the CV-YOLOv10-AR-M network in the One-to-Many Head task were, respectively, 14.60%, 19.74%, and 20.15% lower than those of the YOLOv10 network. In the One-to-One Head task, they decreased by 10.42%, 29.11%, and 20.15%, respectively. Compared with the original YOLOv10 network, the accuracy, recall rate, and mAP of the CV-YOLOv10-AR-M network were increased by 5.35%, 11.72% and 8.32%, respectively. The CV-YOLOv10-AR-M network effectively improves the model’s attention to small sizes, complex backgrounds, and detailed information, providing effective technical support for intelligent quality control in the agricultural field.
Full article
(This article belongs to the Special Issue State-of-the-Art Review of Tea: Processing Technology, Quality Control and Health Benefits)
►▼
Show Figures

Figure 1
Open AccessArticle
Purification and Characterization of Endogenous α-Amylase from Glutinous Rice Flour
by
Huang Zhang, Fengjiao Zhang, Fengfeng Wu, Lichun Guo and Xueming Xu
Foods 2025, 14(10), 1679; https://doi.org/10.3390/foods14101679 - 9 May 2025
Abstract
Endogenous α-amylase activity is crucial for determining the end-use value of glutinous rice flour (GRF), and controlling it is a key goal in the milling process. Although the structure and properties of starch and protein in GRF have been extensively studied, there is
[...] Read more.
Endogenous α-amylase activity is crucial for determining the end-use value of glutinous rice flour (GRF), and controlling it is a key goal in the milling process. Although the structure and properties of starch and protein in GRF have been extensively studied, there is little information on endogenous α-amylase in GRF. In this study, endogenous α-amylase isolated from GRF was purified and characterized. It was found to have a molecular weight of about 32 kDa, with the highest specific activity at 60 °C and a pH of 6.0. The enzyme is stable below 50 °C and in the pH range of 4.0–7.0. Its activity is Ca2⁺-independent but inhibited by Cu2⁺, Zn2⁺, Mg2⁺, Mn2⁺, and Ba2⁺. Its activity is also reduced by β-mercaptoethanol. The enzyme hydrolyzes amylopectin most efficiently. Circular dichroism spectroscopy showed that the enzyme contains 7.9% α-helix, 35.4% β-folding, 21.1% β-turning, and 35.9% random coils, with a Tm value of 63.68 °C. These results suggest that temperature control may be the best strategy for reducing amylase activity in dry-milled GRF, providing a new approach for the development of GRF dry-milling techniques.
Full article
(This article belongs to the Special Issue Advanced Technology of Starch Retrogradation, Modification, and Its Impact on Digestion)
►▼
Show Figures

Figure 1
Open AccessArticle
The Preparation and Characterization of Antioxidant Films Based on Hazelnut Shell-Based Vegetable Carbon Black/Chitosan/Gelatin and the Application on Soybean Oils
by
Mengyuan Niu, Jiaxin Wang, Zhaoying Xun, Mengzhuo Liu, He Li, Weiyi Wang, Yuchen Wang, Chao Guo, Hanyu Li, Ning Xu, Huajiang Zhang and Ning Xia
Foods 2025, 14(10), 1678; https://doi.org/10.3390/foods14101678 - 9 May 2025
Abstract
In this study, hazelnut shell-based vegetable carbon black (HCB) was synthesized from renewable agricultural waste and incorporated into chitosan (CS) and gelatin (GEL) matrices to fabricate active packaging films. The structure of HCB was characterized, and the structure, physicochemical properties, antibacterial activity, ultraviolet
[...] Read more.
In this study, hazelnut shell-based vegetable carbon black (HCB) was synthesized from renewable agricultural waste and incorporated into chitosan (CS) and gelatin (GEL) matrices to fabricate active packaging films. The structure of HCB was characterized, and the structure, physicochemical properties, antibacterial activity, ultraviolet resistance, and functional performance of CS-GEL-HCB films with varying HCB contents (0, 1, 5, and 9 wt% based on GEL) were systematically investigated. The FT-IR results revealed that intermolecular hydrogen bonds were formed between HCB and CS and GEL. The results showed that the tensile strength of CS-GEL film (15.83 ± 0.40~32.06 ± 0.61 MPa), as well as its water vapor and oxygen barrier properties (0.55 ± 0.03~0.15 ± 0.02 g/d·m2), and UV-visible light barrier properties were significantly improved (p < 0.05) after the addition of HCB, while the water permeability, moisture content, and water solubility of CS-GEL film were effectively reduced (24.84 ± 0.45~20.10 ± 0.45%). More importantly, the CS-GEL-HCB film exhibited enhanced ultraviolet barrier properties, which helped delay the oxidation and deterioration of the oil sample during the accelerated light oxidation test. These results suggest that the CS-GEL-HCB film could serve as an effective food packaging material to improve the oxidation stability of soybean oil in the food industry, showing great potential in maintaining food quality and extending shelf life.
Full article
(This article belongs to the Section Plant Foods)
►▼
Show Figures

Figure 1
Open AccessArticle
The Effects of Sourdough Fermentation on the Biochemical Properties, Aroma Profile and Leavening Capacity of Carob Flour
by
Gemma Sanmartín, Jose A. Prieto, Miguel Morard, Francisco Estruch, Josep Blasco-García and Francisca Randez-Gil
Foods 2025, 14(10), 1677; https://doi.org/10.3390/foods14101677 - 9 May 2025
Abstract
Roasted carob flour is a sustainable ingredient rich in dietary fiber, polyphenols, and pinitol, offering potential for both food and pharmaceutical applications. However, its high sugar content and the presence of undesirable compounds such as furans present challenges for its use in bread
[...] Read more.
Roasted carob flour is a sustainable ingredient rich in dietary fiber, polyphenols, and pinitol, offering potential for both food and pharmaceutical applications. However, its high sugar content and the presence of undesirable compounds such as furans present challenges for its use in bread making. This study evaluated the effects of prolonged sourdough fermentation on roasted carob flour, with a focus on microbial dynamics and its functional and technological properties. Carob and carob–wheat sourdoughs were prepared using a mixed starter culture comprising three lactic acid bacteria (Lactiplantibacillus plantarum, Fructilactobacillus sanfranciscensis, and Lactobacillus helveticus) and three yeast species (Saccharomyces cerevisiae, Kazachstania humilis, and Torulaspora delbrueckii). The sourdoughs underwent six consecutive refreshment cycles and were analyzed to determine their pH, microbial and biochemical composition, gassing power, and volatile organic compounds (VOCs). The carob–wheat sourdough exhibited faster acidification and higher lactic acid bacteria (LAB) activity, resulting in a 90–98% reduction in the sugar content, compared to 60% in the carob sourdough. Microbial sequencing revealed that L. plantarum was the dominant species in all samples, while K. humilis and S. cerevisiae were enriched in carob and carob–wheat sourdough, respectively. Both types of sourdough demonstrated effective leavening in bread dough without the addition of commercial yeast. Fermentation also modified the VOC profiles, increasing esters and alcohols while reducing acids, aldehydes, ketones, and furans. While the antioxidant activity showed a slight decline, the pinitol content remained unchanged. These findings suggest that extended sourdough fermentation, supported by multiple refreshments, enhances the baking suitability of roasted carob flour and supports its application as a functional, sustainable ingredient.
Full article
(This article belongs to the Special Issue Valorization of Compounds from Natural Sources: Obtaining, Characterizing and Applicability in Food Processing)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Identification of Characteristic Flavor Compounds and Quality Evaluation of Butyriboletus roseoflavus from Different Regions in Yunnan
by
Ling Song, Qiming Zhao, Xuebin Shao, Xiangqian Lv, Juan Lu, Ruiping Luo, Yurong Liu, Xing Zhou, Qiang Li and Mingying Gui
Foods 2025, 14(10), 1676; https://doi.org/10.3390/foods14101676 - 9 May 2025
Abstract
Butyriboletus roseoflavus is a rare wild edible mushroom. Yet, the relationship between its chemical composition and quality, as well as the influence of geographic origin on its flavor profile, remains unclear. In this study, ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) and headspace solid-phase
[...] Read more.
Butyriboletus roseoflavus is a rare wild edible mushroom. Yet, the relationship between its chemical composition and quality, as well as the influence of geographic origin on its flavor profile, remains unclear. In this study, ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS) and headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME-GC-MS) were used to investigate flavor differences and influencing factors among samples from different regions. Seventeen key volatile compounds (OAV > 1) were identified, with α-pinene, styrene, octanal, 1,3,5-trithiane, and 2,4-undecadienal being the primary aroma contributors. Six characteristic taste-active compounds (TAV > 1) were detected, among which Glu, Ala, and His played dominant roles. Differential metabolites were mainly enriched in nucleotides and their derivatives, suggesting their importance in environmental adaptation and quality formation. Correlation analysis revealed that the abundance of key metabolites was closely related to geographic origin: temperature, humidity, light intensity, and CO2 concentration mainly influenced aroma variation, while taste differences were associated with soil electrical conductivity and microclimatic changes mediated by altitude. These findings provide a comprehensive understanding of the flavor characteristics of B. roseoflavus and offer a theoretical basis for its future processing and utilization.
Full article
(This article belongs to the Section Food Quality and Safety)
►▼
Show Figures

Figure 1
Open AccessArticle
Beneficial Effects of Lactobacillus delbrueckii subsp. lactis N102 and Lactobacillus sakei H1-5 Added as Starter Strains on the Metabolome, Safety and Quality of Dry-Fermented Sausages
by
Yushan Jiao, Min Cai, Wensheng Tang, Zhengkai Wang and Yingli Liu
Foods 2025, 14(10), 1675; https://doi.org/10.3390/foods14101675 - 9 May 2025
Abstract
This study investigated the beneficial effects of individual and co-inoculation with Lactobacillus delbrueckii subsp. lactis N102 and Lactobacillus sakei H1-5 on improving safety parameters, sensory characteristics, and non-volatile metabolite profiles in dry-fermented sausages. Comprehensive analyses were conducted throughout the 20-day maturation period (0,
[...] Read more.
This study investigated the beneficial effects of individual and co-inoculation with Lactobacillus delbrueckii subsp. lactis N102 and Lactobacillus sakei H1-5 on improving safety parameters, sensory characteristics, and non-volatile metabolite profiles in dry-fermented sausages. Comprehensive analyses were conducted throughout the 20-day maturation period (0, 6, 13, 16, and 20 days), including physicochemical monitoring (moisture content, malondialdehyde (MDA) levels, biogenic amine concentrations, and sodium nitrite residues); sensory evaluation (color parameters and textural properties); and 1H NMR-based metabolomic profiling. Key findings revealed strain-specific advantages: the N102 inoculation significantly delayed lipid oxidation, achieving the lowest final MDA concentration (4.5 mg/kg) among all groups. Meanwhile, H1-5 supplementation notably improved color attributes (a*/b* ratio = 1.34). The co-inoculation strategy demonstrated synergistic effects through (1) accelerated acidification (pH 5.3 by day 6); (2) enhanced textural properties (significantly increased hardness and elasticity vs. control); (3) optimized water distribution (free water reduced to 0.56% with 64.73% immobilized water); and (4) a significant reduction in sodium nitrite residues (70% decrease) and complete elimination of phenylethylamine (total biogenic amines: 702.94 mg/kg). 1H NMR metabolomics identified 30 non-volatile metabolites, and the co-inoculation significantly increased the amount of essential amino acids (leucine, isoleucine), flavor-related compounds (glutamic acid, succinic acid), and bioactive substances (gooseberry, creatine). These metabolites enhanced antioxidant capacity, freshness, and nutritional value. Our findings demonstrate that strategic co-cultivation of food-grade lactobacilli can synergistically enhance both the techno-functional properties and biochemical composition of fermented meat products, providing a viable approach for quality optimization in industrial applications.
Full article
(This article belongs to the Special Issue Food Fermentation Strains: Physiology, Metabolic Characteristics and Application)
►▼
Show Figures

Figure 1
Open AccessArticle
Utilizing Dimensions of Trust to Communicate with Consumers About the Science Behind Food
by
Alexa J. Lamm, Kevan W. Lamm, Allison R. Byrd, Nicholas Gabler, Catherine E. Sanders and Michael S. Retallick
Foods 2025, 14(10), 1674; https://doi.org/10.3390/foods14101674 - 9 May 2025
Abstract
Communicating the science behind food production to consumers is increasingly complex due to the proliferation of food innovations, information overload, and the presence of misinformation. Trust plays a pivotal role in consumer perceptions of food safety and acceptance of new food technologies. This
[...] Read more.
Communicating the science behind food production to consumers is increasingly complex due to the proliferation of food innovations, information overload, and the presence of misinformation. Trust plays a pivotal role in consumer perceptions of food safety and acceptance of new food technologies. This study explores consumers’ trust in food by segmenting audiences based on cognitive trust in science, affective trust in new foods, and dispositional trust in sources of food information. Using a survey of 1011 United States consumer respondents, cluster analysis identified five distinct trust segments: Lack Trust, Trusting, On the Fence, Trust New Food Not Science or Sources, and Trust Science not New Food. Results revealed significant demographic differences among the five segments, with age, education, political ideology, and dietary preferences influencing trust levels. Findings contribute to audience segmentation theory by demonstrating the coexistence of multiple trust dimensions and their impact on food-related decision-making. Practically, this study provides a framework for science communicators and policymakers to tailor messaging strategies that align with consumer trust profiles, ultimately fostering informed decision-making in the food system.
Full article
(This article belongs to the Section Sensory and Consumer Sciences)
►▼
Show Figures

Figure 1
Open AccessArticle
Formation of Polycyclic Aromatic Hydrocarbons on Grilled Pork Neck Loins as Affected by Different Marinades and Grill Types
by
Marta Ciecierska, Urszula Komorowska, Marcin Bryła and Marek Roszko
Foods 2025, 14(10), 1673; https://doi.org/10.3390/foods14101673 - 9 May 2025
Abstract
Processing methods affect the quality and, most importantly, safety of meat. The effects of various marinades, a kind of green processing technology commonly used in Poland, on PAH contamination in pork neck loins, the most frequently grilled pork meat, were investigated, including universal,
[...] Read more.
Processing methods affect the quality and, most importantly, safety of meat. The effects of various marinades, a kind of green processing technology commonly used in Poland, on PAH contamination in pork neck loins, the most frequently grilled pork meat, were investigated, including universal, pork, and honey mustard, as well as the most popular grilling tools. It is important to note that no such data have been published so far. Our previous study focused on poultry meat, another commonly grilled meat. PAH analysis was conducted using the QuEChERS–HPLC–FLD/DAD method and confirmed by the GC/MS method. Weight loss and changes in individual color parameters after grilling were also analyzed. Grilling on a charcoal grill without an aluminum tray caused statistically the greatest PAH contents. Some of these samples, according to Commission Regulation (EU) No. 915/2023 restrictions, should not be consumed by humans due to the high content of B[a]P (5.26–6.51 µg/kg). The lowest contamination levels overall were determined for the ceramic contact grill. Studies have also shown that the universal and pork marinades can reduce PAH contamination by about 24–29% for 4 heavy PAHs and by 31–32% for 15 PAHs, whereas the honey mustard marinade increases their accumulation in grilled products by 13% for 4 PAHs and 12% for 15 PAHs. Carefully choosing the grilling equipment, such as using electric grills instead of charcoal or using aluminum trays when grilling with charcoal and marinating the meat before grilling, is essential for food producers and consumers. These practices can significantly reduce the harmful health effects of PAHs, making them vital steps toward safer food preparation.
Full article
(This article belongs to the Special Issue Green Processing Technology of Meat and Meat Products: 3rd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Characterization of Okra Seed Protein/Rutin Covalent Complex and Its Application in Nanoemulsions
by
Chengyun He, Lu Bai, Yingxuan Zhou, Benguo Liu and Sheng Geng
Foods 2025, 14(10), 1672; https://doi.org/10.3390/foods14101672 - 9 May 2025
Abstract
A covalent complex of okra seed protein (OSP) and rutin was prepared using the alkali-induced method and characterized. Its application in nanoemulsions was also evaluated. Multi-spectral analysis confirmed the formation of the covalent complex, with OSP as the main body. With an increasing
[...] Read more.
A covalent complex of okra seed protein (OSP) and rutin was prepared using the alkali-induced method and characterized. Its application in nanoemulsions was also evaluated. Multi-spectral analysis confirmed the formation of the covalent complex, with OSP as the main body. With an increasing rutin dosage during the preparation process, the amount of rutin in the complex progressively ascended, and the α-helix structure and surface hydrophobicity of the complex gradually declined. The complex exhibited remarkable ABTS radical scavenging capacity and reducing power, which were proportional to the total phenolic content. The OSP/rutin complex could be utilized for the fabrication of O/W nanoemulsions, which remained stable in terms of droplet size and appearance after 28 days of storage at both 4 °C and 25 °C. Furthermore, lipid oxidation in the nanoemulsion stabilized by the OSP/rutin covalent complex could be effectively inhibited, and the emulsion could enhance the UV irradiation resistance of lutein loaded in the oil phase. Our results can provide a reference for the development of protein–polyphenol covalent complexes.
Full article
(This article belongs to the Special Issue Utilization of Plant Protein for Functional Food Ingredients and Biobased Products)
►▼
Show Figures

Figure 1
Open AccessArticle
Research on Storage Grain Temperature Prediction Method Based on FTA-CNN-SE-LSTM with Dual-Domain Data Augmentation and Deep Learning
by
Hailong Peng, Yuhua Zhu and Zhihui Li
Foods 2025, 14(10), 1671; https://doi.org/10.3390/foods14101671 - 9 May 2025
Abstract
Temperature plays a crucial role in the grain storage process and food security. Due to limitations in grain storage data acquisition in real-world scenarios, this paper proposes a data augmentation method for grain storage data that operates in both the time and frequency
[...] Read more.
Temperature plays a crucial role in the grain storage process and food security. Due to limitations in grain storage data acquisition in real-world scenarios, this paper proposes a data augmentation method for grain storage data that operates in both the time and frequency domains, as well as an enhanced grain storage temperature prediction model. To address the issue of small sample sizes in grain storage temperature data, Gaussian noise is added to the grain storage temperature data in the time domain to highlight the subtle variations in the original data. The fast Fourier transform (FFT) is employed in the frequency domain to highlight periodicity and trends in the grain storage temperature data. The prediction model uses a long short-term memory (LSTM) network, enhanced with convolution layers for feature extraction and a Squeeze-and-Excitation Networks (SENet) module to suppress unimportant features and highlight important ones. Experimental results show that the FTA-CNN-SE-LSTM compares with the original LSTM network, and the MAE and RMSE are reduced by 74.77% and 74.02%, respectively. It solves the problem of data limitation in the actual grain storage process, greatly improves the accuracy of grain storage temperature prediction, and can accurately prevent problems caused by abnormal grain pile temperature.
Full article
(This article belongs to the Section Food Analytical Methods)
►▼
Show Figures

Figure 1
Open AccessArticle
Quantitative Analysis of 3-Monochloropropane-1,2-diol in Fried Oil Using Convolutional Neural Networks Optimizing with a Stepwise Hybrid Preprocessing Strategy Based on Fourier Transform Infrared Spectroscopy
by
Xi Wang, Siyi Wang, Shibing Zhang, Jiping Yin and Qi Zhao
Foods 2025, 14(10), 1670; https://doi.org/10.3390/foods14101670 - 9 May 2025
Abstract
As one kind of ‘probable human carcinogen’ (Group 2B) compound classified by the International Agency for Research on Cancer, 3-MCPD is mainly formed during the thermal processing of food. Tedious pretreatment techniques are needed for the existing analytical methods to quantify 3-MCPD. Hence,
[...] Read more.
As one kind of ‘probable human carcinogen’ (Group 2B) compound classified by the International Agency for Research on Cancer, 3-MCPD is mainly formed during the thermal processing of food. Tedious pretreatment techniques are needed for the existing analytical methods to quantify 3-MCPD. Hence, a nondestructive sensing technique that offers low noise interference and high quantitative precision must be developed to address this problem. Following this, Fourier transform infrared spectroscopy association with an convolutional neural network (CNN) model was employed in this investigation for the nondestructive quantitative measurement of 3-MCPD in oil samples. Before building the CNN model, NL-SGS-D2 was utilized to enhance the feature extraction capability of model by eliminating the background noise. Under the optimal hyperparameter settings, calibration model achieved a determination coefficient (R2C) of 0.9982 and root mean square error (RMSEC) of 0.0181 during validation, along with a 16% performance enhancement enabled by the stepwise hybrid preprocessing strategy. The LODs (0.36 μg/g) and LOQs (1.10 μg/g) of the proposed method met the requirements for 3-MCPD detection in oil samples by the Commission Regulation issued of EU. The method proposed by CNN model with hybrid preprocessing was superior to the traditional model, and contributed to the quality monitoring of edible oil processing industry.
Full article
(This article belongs to the Special Issue Application of Rapid Detection Technology of Lipids in Food)
►▼
Show Figures

Figure 1
Open AccessArticle
Exploratory Genomic Marker Analysis of Virulence Patterns in Listeria monocytogenes Human and Food Isolates
by
Valeria Russini, Maria Laura De Marchis, Cinzia Sampieri, Cinzia Onorati, Piero Zucchitta, Paola De Santis, Bianca Maria Varcasia, Laura De Santis, Alexandra Chiaverini, Antonietta Gattuso, Annarita Vestri, Laura Gasperetti, Roberto Condoleo, Luigi Palla and Teresa Bossù
Foods 2025, 14(10), 1669; https://doi.org/10.3390/foods14101669 - 9 May 2025
Abstract
Listeria monocytogenes causes listeriosis, a severe foodborne disease with high mortality. Contamination with it poses significant risks to food safety and public health. Notably, genetic characteristic differences exist between strains causing human infections and those found in routine food inspections. This study examined
[...] Read more.
Listeria monocytogenes causes listeriosis, a severe foodborne disease with high mortality. Contamination with it poses significant risks to food safety and public health. Notably, genetic characteristic differences exist between strains causing human infections and those found in routine food inspections. This study examined the genotypic factors influencing the pathogenicity of L. monocytogenes, focusing on virulence gene profiles and key integrity genes like inlA to explain these divergences. The dataset included 958 strains isolated from human, food, and environmental samples. Whole-genome sequencing identified virulence genes, and principal component analysis (PCA) examined 92 virulence genes and inlA integrity to uncover potentially pathogenic patterns. The results highlight differences in virulence characteristics between strains of different origins. The integrity of inlA and genes such as inlD, inlG, and inlL were pivotal to pathogenicity. Strains with premature stop codons (PMSCs) in inlA, associated with reduced virulence, accounted for a low percentage of human cases but over 30% of food isolates. Sequence types (STs) like ST121, ST580, and ST199 showed unique profiles, while ST9, dominant in food, occasionally caused human cases, posing risks to vulnerable individuals. This research highlights the complexity of the pathogenicity of L. monocytogenes and emphasizes the importance of genomic surveillance for effective risk assessment.
Full article
(This article belongs to the Special Issue Genomic Technologies for the Characterization, Typing, and Detection of Food-Borne Pathogens)
►▼
Show Figures

Figure 1
Open AccessArticle
Integrated Chemical and Biological Evaluation of Linden Honeydew Honey from Bosnia and Herzegovina: Composition and Cellular Effects
by
Ana Barbarić, Lara Saftić Martinović, Zvonimir Marijanović, Lea Juretić, Andreja Jurič, Danijela Petrović, Violeta Šoljić and Ivana Gobin
Foods 2025, 14(10), 1668; https://doi.org/10.3390/foods14101668 - 8 May 2025
Abstract
Honeydew honey (HH) is a distinctive type of honey known for its dark colour, high mineral and polyphenol content, and pronounced biological activity. This study continues previous research on beech and chestnut honeydew honeys by presenting a comprehensive analysis of linden honeydew honey
[...] Read more.
Honeydew honey (HH) is a distinctive type of honey known for its dark colour, high mineral and polyphenol content, and pronounced biological activity. This study continues previous research on beech and chestnut honeydew honeys by presenting a comprehensive analysis of linden honeydew honey (LHH) from Bosnia and Herzegovina—a variety that, until now, has not been characterised in detail. Physicochemical parameters confirmed its classification as HH, with high electrical conductivity (1.21 mS/cm) and low moisture (15.1%). GC-MS analysis revealed a unique volatile profile dominated by α-terpinolene (17.4%), distinguishing LHH from other HH types. The sample exhibited high total phenolic content (816.38 mg GAE/kg) and moderate antioxidant capacity (1.11 mmol TE/kg). Antimicrobial testing demonstrated strong activity against Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (MRSA), with lower efficacy against Gram-negative bacteria. No cytotoxic effects were observed in HaCaT keratinocytes at concentrations up to 60 mg/mL, and wound healing assays showed improved scratch closure reaching approximately 30% after 24 h and 41% after 48 h compared to the control. These results indicate that LHH possesses promising bioactive properties and potential for dermatological application. Further studies with broader sample sets are needed to explore variability and confirm the therapeutic relevance of LHH in comparison to other honeydew types.
Full article
(This article belongs to the Special Issue Honey and Bee Products: Characterization, Bioactivities and Authenticity)
►▼
Show Figures

Figure 1
Open AccessArticle
Development and Certification of a Reference Material for Aflatoxins and Zearalenone in Corn/Peanut Blended Vegetable Oil
by
Jiaojiao Xu, Baifen Huang, Xiaomin Xu, Yiping Ren and Zengxuan Cai
Foods 2025, 14(10), 1667; https://doi.org/10.3390/foods14101667 - 8 May 2025
Abstract
A certified reference material (CRM) for aflatoxins (AFTB1, AFTB2, AFTG1, AFTG2) and zearalenone (ZEN) in corn/peanut blended vegetable oil (GBW(E)100863) was developed to address the critical need for matrix-specific reference materials in mycotoxin analysis. The CRM was prepared by blending naturally contaminated corn
[...] Read more.
A certified reference material (CRM) for aflatoxins (AFTB1, AFTB2, AFTG1, AFTG2) and zearalenone (ZEN) in corn/peanut blended vegetable oil (GBW(E)100863) was developed to address the critical need for matrix-specific reference materials in mycotoxin analysis. The CRM was prepared by blending naturally contaminated corn and peanut oils, followed by homogenization, sterilization, and sub-packing. Homogeneity and stability studies were conducted using high-performance liquid chromatography isotope-dilution tandem mass spectrometry with a dilute-and-shoot pretreatment process. The CRM demonstrated excellent homogeneity and stability, with no significant degradation observed under either short-term (65 °C for 14 days) or long-term (25 °C for 12 months) storage conditions. An inter-laboratory comparison involving six authoritative laboratories confirmed the CRM’s accuracy and reliability, with recovery rates ranging from 90.3% to 97.3% and low relative standard deviations (RSDs) of 3.79% to 7.99%. The CRM provided a robust metrological tool for mycotoxin analysis in complex oil matrices. This study not only enriches the national reference materials library but also supports food safety initiatives by facilitating accurate and reliable mycotoxin detection in vegetable oils, thereby enhancing regulatory compliance and public health protection.
Full article
(This article belongs to the Special Issue Edible Oil: Processing, Safety and Sustainability)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Foods Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
CIMB, Foods, IJMS, Sci. Pharm., Antioxidants, Nutrients
Nutrients, Food Bioactives, and Functional Foods in Gastrointestinal and Metabolic Disorders
Topic Editors: Samuel Fernández-Tomé, Ortega Moreno LorenaDeadline: 31 May 2025
Topic in
Chemistry, Foods, IJMS, Molecules, Separations
Recent Trends and Advances in Food Authentication and Traceability
Topic Editors: Michael Kontominas, Anastasia BadekaDeadline: 30 June 2025
Topic in
Biomolecules, Energies, Foods, IJMS, Polymers
Microbes and Their Products for Sustainable Human Life
Topic Editors: Shashi Kant Bhatia, Ranjit GuravDeadline: 7 July 2025
Topic in
Biomolecules, Foods, Metabolites, Microorganisms, Pathogens, Bacteria
Bioinformatics, Machine Learning and Risk Assessment in Food Industry
Topic Editors: Bing Niu, Suren Rao Sooranna, Pufeng DuDeadline: 31 July 2025

Conferences
Special Issues
Special Issue in
Foods
The Preparation and Application of Bio-Based Food Packaging Materials
Guest Editors: Zhengguo Wu, Qiping ZhanDeadline: 9 May 2025
Special Issue in
Foods
Gluten-Free Food and Celiac Disease: 2nd EditionGuest Editors: Arrate Lasa, Itziar Churruca, Virginia Navarro, Jonatan MirandaDeadline: 10 May 2025
Special Issue in
Foods
Food Hygiene and Safety: Risk Evaluation and Control Strategies of Foodborne Pathogens and Chemical Hazards
Guest Editor: Conrado Javier Carrascosa IruzubietaDeadline: 10 May 2025
Special Issue in
Foods
Art and Science Behind Modified Starch: Treatment, Function and Application
Guest Editors: Fei Ren, Jinwei WangDeadline: 10 May 2025
Topical Collections
Topical Collection in
Foods
Edible Films and Coatings for Food Preservation
Collection Editor: Hiléia Karla Silva Souza
Topical Collection in
Foods
Physicochemical, Biochemical, and Microbiological Characteristics of Cheese
Collection Editors: Richardos Nikolaos Salek, Eva Lorencová, Zuzana Lazárková
Topical Collection in
Foods
Advances in Tea Chemistry
Collection Editors: Yongquan Xu, Ying Gao, Qingqing Cao
Topical Collection in
Foods
Healthier Meat and Meat Products
Collection Editors: Juana Fernández-López, Jose Angel Perez-Alvarez, Alfredo Jorge Costa Teixeira