Topical Advisory Panel applications are now closed. Please contact the Editorial Office with any queries.
Journal Description
Foods
Foods
is an international, peer-reviewed, open access journal on food science published semimonthly online by MDPI. The Italian Society of Food Sciences (SISA) and Spanish Nutrition Foundation (FEN) are affiliated with Foods and their members receive discounts on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, FSTA, AGRIS, PubAg, and other databases.
- Journal Rank: JCR - Q1 (Food Science and Technology) / CiteScore - Q1 (Health Professions (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 14.9 days after submission; acceptance to publication is undertaken in 2.6 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
5.1 (2024);
5-Year Impact Factor:
5.6 (2024)
Latest Articles
Optimization of Enzymatic Protein Hydrolysate from Mung Bean (Vigna radiata L.), and Its Functional Properties
Foods 2025, 14(14), 2459; https://doi.org/10.3390/foods14142459 (registering DOI) - 13 Jul 2025
Abstract
Mung bean is a rich protein source, but its native form has limited solubility and functionality for food applications. As a promising agro-based crop, mung bean offers a sustainable alternative to traditional protein sources, especially in regions with limited access to resources. This
[...] Read more.
Mung bean is a rich protein source, but its native form has limited solubility and functionality for food applications. As a promising agro-based crop, mung bean offers a sustainable alternative to traditional protein sources, especially in regions with limited access to resources. This study optimized mung bean protein hydrolysate (MBPH) production using response surface methodology (RSM), investigating the effects of alcalase concentration (2–7%) and hydrolysis time (2–7 h) on its physicochemical and functional properties. The results showed that an alcalase concentration of 5.88% and a hydrolysis duration of 3.56 h were the optimal conditions, resulting in a degree of hydrolysis of approximately 33.09%. Under these conditions, MBPH contained 79.33 ± 0.62% protein and a molecular weight distribution of 45.57% and 47.29% at 1.1–10 kDa and <10 kDa, respectively. Additionally, MBPH exhibited strong antioxidant activity, improved foam capacity, and enhanced solubility, making it a valuable ingredient for sustainable food production and promoting equitable access to nutritious functional ingredients.
Full article
(This article belongs to the Section Food Security and Sustainability)
►
Show Figures
Open AccessArticle
Origin Traceability of Chinese Mitten Crab (Eriocheir sinensis) Using Multi-Stable Isotopes and Explainable Machine Learning
by
Danhe Wang, Chunxia Yao, Yangyang Lu, Di Huang, Yameng Li, Xugan Wu, Weiguo Song and Qinxiong Rao
Foods 2025, 14(14), 2458; https://doi.org/10.3390/foods14142458 (registering DOI) - 13 Jul 2025
Abstract
The Chinese mitten crab (Eriocheir sinensis) industry is currently facing the challenges of origin fraud, as well as a lack of precision and interpretability of existing traceability methods. Here, we propose a high-precision origin traceability method based on a combination of
[...] Read more.
The Chinese mitten crab (Eriocheir sinensis) industry is currently facing the challenges of origin fraud, as well as a lack of precision and interpretability of existing traceability methods. Here, we propose a high-precision origin traceability method based on a combination of stable isotope analysis and interpretable machine learning. We sampled Chinese mitten crabs from six origins representing diverse aquatic environments and farming practices, and analyzed their δ13C, δ15N, δ2H, and δ18O stable isotope compositions in different sexes and tissues (hepatopancreas, muscle, and gonad). By comparing the classification performance of Random Forest, XGBoost, and Logistic Regression models, we found that the Random Forest model outperformed the others, achieving high accuracy (91.3%) in distinguishing samples from different origins. Interpretation of the optimal Random Forest model, using SHAP (SHapley Additive exPlanations) analysis, identified δ2H in male muscle, δ15N in female hepatopancreas, and δ13C in female hepatopancreas as the most influential features for discriminating geographic origin. This analysis highlighted the crucial role of environmental factors, such as water source, diet, and trophic level, in origin discrimination and demonstrated that isotopic characteristics of different tissues provide unique discriminatory information. This study offers a novel paradigm for stable isotope traceability based on explainable machine learning, significantly enhancing the identification capability and reliability of Chinese mitten crab origin traceability, and holds significant implications for food safety assurance.
Full article
(This article belongs to the Section Food Analytical Methods)
►▼
Show Figures

Figure 1
Open AccessArticle
Synergistic Enhancement of Paramylon Production in Edible Microalga Euglena gracilis via Ethanol-Guaiacol Co-Regulation
by
Xinyi Yan, Hao Xu, Zhengfei Yang, Yongqi Yin, Weiming Fang, Minato Wakisaka and Jiangyu Zhu
Foods 2025, 14(14), 2457; https://doi.org/10.3390/foods14142457 (registering DOI) - 12 Jul 2025
Abstract
Biomass-derived growth stimulants are widely recognized as green and economical solutions that can significantly enhance microalgae culture efficiency and optimize the biomanufacturing process of target products. In this paper, we investigated the effect of ethanol synergized with guaiacol (GA) on biomass and β-1,3
[...] Read more.
Biomass-derived growth stimulants are widely recognized as green and economical solutions that can significantly enhance microalgae culture efficiency and optimize the biomanufacturing process of target products. In this paper, we investigated the effect of ethanol synergized with guaiacol (GA) on biomass and β-1,3 glucan accumulation in edible microalgae, namely Euglena gracilis. The ethanol-induced mixotrophic mode significantly increased biomass and paramylon production by 12.68 and 6.43 times, respectively, compared to the autotrophic control group. GA further exerted toxic excitatory effects (hormesis) on top of ethanol mixotrophic nutrition. At the optimal concentration of 10 mg·L−1 GA, chlorophyll a, carotenoids, and paramylon production increased by 8.96%, 11.75%, and 16.67%, respectively, compared to the ethanol-treated group. However, at higher concentrations, the biomass and paramylon yield decreased significantly. This study not only establishes an effective combinatorial strategy for enhancing paramylon biosynthesis but also provides novel insights into the hormesis mechanism of phenolic compounds in microalgae cultivation. The developed approach demonstrates promising potential for sustainable production of high-value algal metabolites while reducing cultivation costs, which could significantly advance the commercialization of microalgae-based biorefineries in food and pharmaceutical industries.
Full article
(This article belongs to the Special Issue Microalgae-Based Ingredients and Food Products: Biotechnological Production and Application)
Open AccessArticle
Enzymolysis-Driven Development of a Gut-Targeted Aronia melanocarpa Meal Replacement Powder with Glycemic Control and Microbial Homeostasis Benefits
by
Yongxing Li, Zhihui Hu, Haiyu Ji, Shuang Yang, Ruihan Guo, Jinfang Zhang, Hongjun He, Bo Xu and Mei Li
Foods 2025, 14(14), 2456; https://doi.org/10.3390/foods14142456 (registering DOI) - 12 Jul 2025
Abstract
In this study, the effects of enzymolysis on physicochemical properties, digestive characteristics, and flora regulation of the meal replacement powder (MRP) were investigated on the basis of the previously obtained compound MRP. The results showed that the color, water absorption index, and water
[...] Read more.
In this study, the effects of enzymolysis on physicochemical properties, digestive characteristics, and flora regulation of the meal replacement powder (MRP) were investigated on the basis of the previously obtained compound MRP. The results showed that the color, water absorption index, and water solubility index of the MRP were obviously improved after enzymatic hydrolysis. The swelling power (1.43 ± 0.11 g/g, 25 °C) and water-holding capacity (4.66 ± 0.09 g/g) of the MRP (CE_1) were decreased, while the oil holding capacity (2.14 ± 0.13 g/g) was increased. In the microcosmic aspect, the samples treated by enzymolysis had different degree of degradation, the particle size decreased (D50 = 57.71 μm), and the specific surface area (679.2 cm2/g) increased. The MRP samples treated by enzymolysis had better antioxidant capacity and cholate adsorption capacity. All MRP samples belong to low glycemic index (GI) foods, and can improve gut microbiota (Megamonas, Bacteroides, Rocheella, Parasatre, Koalabacterium, and Prasus) and promote the production of short chain fatty acids such as acetic acid, propionic acid and butyric acid. Therefore, this study not only further expands the comprehensive utilization of Aronia melanocarpa, but also provides a reference for the diversification of low GI related products.
Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Multilayer Double Emulsion Encapsulation of Limosilactobacillus reuteri Using Pectin-Protein Systems
by
Kattya Rodríguez, Diego Catalán, Tatiana Beldarraín-Iznaga, Juan Esteban Reyes-Parra, Keyla Tortoló Cabañas, Marbelis Valdés Veliz and Ricardo Villalobos-Carvajal
Foods 2025, 14(14), 2455; https://doi.org/10.3390/foods14142455 (registering DOI) - 12 Jul 2025
Abstract
The development of bakeable foods supplemented with probiotics requires novel strategies to preserve the functionality of probiotic cells during thermal and gastrointestinal stress conditions. The objective of the present study was to evaluate the protective effect of multilayer double emulsions (W1/O/W
[...] Read more.
The development of bakeable foods supplemented with probiotics requires novel strategies to preserve the functionality of probiotic cells during thermal and gastrointestinal stress conditions. The objective of the present study was to evaluate the protective effect of multilayer double emulsions (W1/O/W2) stabilized with pectin-protein complexes on the viability of Limosilactobacillus reuteri (Lr) under thermal treatment (95 °C, 30 min), storage (4 °C, 28 d), and simulated gastrointestinal conditions. Emulsions were prepared with whey protein isolate (WPI) or sodium caseinate (Cas) as outer aqueous phase emulsifiers, followed by pectin coating and ionic gelation with calcium. All emulsions were stable and exhibited high encapsulation efficiency (>92%) with initial viable counts of 9 log CFU/mL. Double emulsions coated with ionically gelled pectin showed the highest protection against heat stress and gastrointestinal conditions due to the formation of a denser layer with lower permeability, regardless of the type of protein used as an emulsifier. At the end of storage, Lr viability exceeded 7 log CFU/mL in cross-linked pectin-coated microcapsules. These microcapsules maintained >6 log CFU/mL after thermal treatment, while viability remained >6.5 log CFU/mL during digestion and >5.0 log CFU/mL after consecutive heat treatment and simulated digestion. According to these results, the combination of double emulsion, multilayer formation and ionic crosslinking emerges as a promising microencapsulation technique. This approach offers enhanced protection for probiotics against extreme thermal and digestive conditions compared to previous studies that only use double emulsions. These findings support the potential application of this encapsulation method for the formulation of functional bakeable products.
Full article
(This article belongs to the Special Issue Bioactive Compounds and Biocatalysts: Application in the Food Industry in Non-Encapsulated or Micro/Nano-Encapsulated Form)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Non-Destructive Detection of Pomegranate Blackheart Disease via Near-Infrared Spectroscopy and Soft X-ray Imaging Systems
by
Rongke Nie, Xingyi Huang, Xiaoyu Tian, Shanshan Yu, Chunxia Dai, Xiaorui Zhang and Qin Fang
Foods 2025, 14(14), 2454; https://doi.org/10.3390/foods14142454 (registering DOI) - 12 Jul 2025
Abstract
Pomegranate blackheart disease, as an internal disease affecting the global pomegranate industry, is difficult to identify externally and urgently requires non-destructive detection methods for rapid diagnosis. This study established discriminative models for blackheart disease severity in pomegranates by using near-infrared (NIR) spectroscopy and
[...] Read more.
Pomegranate blackheart disease, as an internal disease affecting the global pomegranate industry, is difficult to identify externally and urgently requires non-destructive detection methods for rapid diagnosis. This study established discriminative models for blackheart disease severity in pomegranates by using near-infrared (NIR) spectroscopy and soft X-ray imaging techniques. The results showed that the optimal NIR-based discriminative model, constructed with a Random Forest (RF) algorithm based on spectra preprocessed by the second-derivative (D2) denoising and a Competitive Adaptive Reweighted Sampling (CARS) algorithm, achieved a prediction set accuracy of 86.00%; the optimal soft X-ray imaging-based discriminative model, built with an RF algorithm using textural features extracted from images preprocessed by median filtering and a Contrast-Limited Adaptive Histogram Equalization (CLAHE) algorithm combined with gray-level co-occurrence matrix (GLCM) and gray-gradient co-occurrence matrix (GGCM) algorithms, reached a prediction set accuracy of 93.10%. In terms of model performance, the model based on soft X-ray imaging exhibited superior performance. Both techniques possess distinct advantages and limitations yet enable non-destructive detection of pomegranate blackheart disease. Further technical optimizations in the future could provide enhanced support for the healthy development of the pomegranate industry.
Full article
(This article belongs to the Special Issue Advances in Thermal and Non-Thermal Processing: Focus on Food Quality Changes)
Open AccessArticle
Impact of Apple Pulp on Textural Characteristics, Microstructure, Volatile Profile, and Sensory Acceptance of Yogurts
by
Dimitra Dimitrellou, Thomas Moschakis and Panagiotis Kandylis
Foods 2025, 14(14), 2453; https://doi.org/10.3390/foods14142453 (registering DOI) - 12 Jul 2025
Abstract
Fresh apple pulp from the Granny Smith variety was used at different levels (5–15% w/w) for yogurt production. Color, texture, microstructure, aroma, and sensory analyses were used to evaluate the effect of the apple pulp on the main characteristics of
[...] Read more.
Fresh apple pulp from the Granny Smith variety was used at different levels (5–15% w/w) for yogurt production. Color, texture, microstructure, aroma, and sensory analyses were used to evaluate the effect of the apple pulp on the main characteristics of yogurt. Yogurts with apple pulp presented a lower brightness (L*) and an increased redness (a*) and yellowness (b*), which were significantly affected by the apple pulp concentration. The texture analysis revealed an improved consistency and reduced syneresis, leading to a creamier and more stable product. The aroma profile of yogurts was enriched, presenting higher ester contents. Confocal laser scanning microscopy showed that the incorporation of modest quantities of apple pulp resulted in the formation of initially denser networks, while at elevated levels, an enhanced microscopic phase separation occurred. A 5% apple pulp addition achieved a balance between enhancing flavor and texture retention while maintaining high overall acceptability, as was also confirmed by the sensory evaluation.
Full article
(This article belongs to the Special Issue Food Bioactives: Innovations, Mechanisms, and Future Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Fluoride Content in Infusions of Selected Teas Available on the Polish Market—An In Vitro Study
by
Agata Małyszek, Ireneusz Zawiślak, Michał Kulus, Adam Watras, Julia Kensy, Agnieszka Kotela, Marzena Styczyńska, Maciej Janeczek, Jacek Matys and Maciej Dobrzyński
Foods 2025, 14(14), 2452; https://doi.org/10.3390/foods14142452 (registering DOI) - 12 Jul 2025
Abstract
►▼
Show Figures
This study aimed to evaluate the fluoride content and other key physicochemical properties in commercially available black tea infusions, with a focus on tea form and geographic origin, in order to assess their contribution to total dietary fluoride intake. Methods: A total of
[...] Read more.
This study aimed to evaluate the fluoride content and other key physicochemical properties in commercially available black tea infusions, with a focus on tea form and geographic origin, in order to assess their contribution to total dietary fluoride intake. Methods: A total of 121 black tea samples were analyzed, including 66 loose-leaf, 42 bags, and 13 pyramid-bag teas. Infusions were prepared using standardized brewing protocols. Fluoride concentrations were determined with an ion-selective electrode, while the pH, buffer capacity, titratable acidity, calcium, and inorganic phosphorus were also measured. Statistical analysis included ANOVA, Tukey post hoc tests, and Pearson correlation analysis. Results: Fluoride content varied significantly by tea form and origin. Infusion of tea bags exhibited the highest fluoride, calcium, and acidity levels, while loose-leaf teas had the lowest. Teas from Africa contained approximately twice as much fluoride as those from Central or East Asia. Significant correlations between fluoride, calcium, and phosphorus were observed, particularly in tea-bag infusions, suggesting processing influences mineral release. Conclusions: Black tea, particularly in bag form and sourced from African regions, may significantly contribute to daily fluoride intake. Given the potential to exceed recommended fluoride thresholds, especially in individuals consuming multiple cups daily or living in fluoridated areas, these findings underscore the importance of consumer awareness and possible product labeling to guide safe consumption.
Full article

Figure 1
Open AccessArticle
In Silico Proteomic Profiling and Bioactive Peptide Potential of Rapeseed Meal
by
Katarzyna Garbacz, Jacek Wawrzykowski, Michał Czelej and Adam Waśko
Foods 2025, 14(14), 2451; https://doi.org/10.3390/foods14142451 (registering DOI) - 12 Jul 2025
Abstract
Rapeseed meal, a byproduct of oil extraction, is increasingly recognised as a valuable source of plant protein and health-promoting peptides. This study aimed to identify key proteins in cold-pressed rapeseed meal and assess their potential to release bioactive peptides through in silico hydrolysis
[...] Read more.
Rapeseed meal, a byproduct of oil extraction, is increasingly recognised as a valuable source of plant protein and health-promoting peptides. This study aimed to identify key proteins in cold-pressed rapeseed meal and assess their potential to release bioactive peptides through in silico hydrolysis using plant-derived proteases, namely papain, bromelain, and ficin. Proteomic profiling via two-dimensional electrophoresis and MALDI-TOF/TOF mass spectrometry revealed cruciferin as the dominant protein, along with other metabolic and defence-related proteins. In silico digestion of these sequences using the BIOPEP database generated thousands of peptide fragments, of which over 50% were predicted to exhibit bioactivities, including ACE and DPP-IV inhibition, as well as antioxidant, neuroprotective, and anticancer effects. Among the evaluated enzymes, bromelain exhibited the highest efficacy, yielding the greatest quantity and diversity of bioactive peptides. Notably, peptides with antihypertensive and antidiabetic properties were consistently identified across all of the protein and enzyme variants. Although certain rare functions, such as anticancer and antibacterial activities, were observed only in specific hydrolysates, their presence underscores the broader functional potential of peptides derived from rapeseed. These findings highlight the potential of rapeseed meal as a sustainable source of functional ingredients while emphasising the necessity for experimental validation to confirm the predicted bioactivities.
Full article
(This article belongs to the Special Issue Food Proteins and Peptides: Bioactivity, Applications and Health Benefits)
►▼
Show Figures

Figure 1
Open AccessArticle
Elucidation of Nutritional Quality, Antinutrients, and Protein Digestibility of Dehulled and Malted Flours Produced from Three Varieties of Bambara Groundnut (Vigna subterranean)
by
Mpho Edward Mashau, Thakhani Takalani, Oluwaseun Peter Bamidele and Shonisani Eugenia Ramashia
Foods 2025, 14(14), 2450; https://doi.org/10.3390/foods14142450 (registering DOI) - 12 Jul 2025
Abstract
Bambara groundnut (Vigna subterranean) is an important legume grain in sub-Saharan Africa, including South Africa. Nevertheless, the peculiarity of being hard to cook and mill and the availability of antinutritional factors often limit Bambara groundnut (BGN) use in food applications. This
[...] Read more.
Bambara groundnut (Vigna subterranean) is an important legume grain in sub-Saharan Africa, including South Africa. Nevertheless, the peculiarity of being hard to cook and mill and the availability of antinutritional factors often limit Bambara groundnut (BGN) use in food applications. This study investigated the impact of dehulling and malting on the nutritional composition, antinutritional factors, and protein digestibility of flours obtained from three BGN varieties (red, cream, and brown). Dehulling and malting significantly enhanced the moisture and protein content of BGN flours (dry basis), with values varying from 6.01% (control brown variety) to 8.71% (malted cream and brown varieties), and from 18.63% (control red variety) to 21.87% (dehulled brown), respectively. Dehulling increased the fat content from 5.82% (control red variety) to 7.84% (dehulled cream), whereas malting decreased the fat content. Nevertheless, malting significantly increased (p < 0.05) the fiber content from 4.78% (control cream) to 8.28% (malted brown variety), while dehulling decreased the fiber content. Both processing methods decreased the ash and carbohydrate contents of the BGN flours. Dehulling and malting significantly enhanced the amino acids of BGN flours, except for tryptophan and asparagine. Dehulling and malting notably increased the phosphorus, magnesium, potassium, and sulfur contents of the BGN flours, while calcium and zinc were reduced. Malting significantly enhanced the iron content of BGN flour, whereas dehulling reduced it. Both processing methods significantly enhanced palmitic, arachidic, and y-Linolenic acids. Nonetheless, processing methods significantly reduced phytic acid and oxalate, and dehulling achieved the most significant reductions. Dehulling and malting significantly enhanced the protein digestibility of the BGN flours from 69.38 (control red variety) to 83.29 g/100 g (dehulled cream variety). Overall, dehulling and malting enhanced the nutritional quality and decreased the antinutritional factors of BGN flours.
Full article
(This article belongs to the Special Issue Advances in Food Processing Technologies: Enhancing Quality, Safety, and Sustainability)
►▼
Show Figures

Figure 1
Open AccessArticle
Enhanced Antimicrobial Activity of Green-Synthesized Artemisia-ZnO Nanoparticles: A Comparative Study with Pure ZnO Nanoparticles and Plant Extract
by
Noor Akhras, Abuzer Çelekli and Hüseyin Bozkurt
Foods 2025, 14(14), 2449; https://doi.org/10.3390/foods14142449 - 11 Jul 2025
Abstract
The green synthesis of zinc oxide nanoparticles (ZnO NPs) using Artemisia absinthium L. extract has gained considerable attention due to its eco-friendly approach and potential applications in food science. This study investigates the synthesis and characterization of Artemisia-mediated ZnO NPs, focusing on
[...] Read more.
The green synthesis of zinc oxide nanoparticles (ZnO NPs) using Artemisia absinthium L. extract has gained considerable attention due to its eco-friendly approach and potential applications in food science. This study investigates the synthesis and characterization of Artemisia-mediated ZnO NPs, focusing on their physicochemical properties. The nanoparticles were characterized using ultraviolet–visible spectroscopy (UV–Vis), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectroscopy (EDX). Successful synthesis was achieved through a co-precipitation method, resulting in an average particle size of 36.6 nm. The presence of polyphenols and flavonoids in A. absinthium L. extract acted as both a reducing agent and stabilizer for the nanoparticles. The physicochemical characterization revealed strong absorption peaks indicative of ZnO, confirming successful nanoparticle formation. In addition to the structural findings, this study presents novel insights by demonstrating that Artemisia-mediated ZnO NPs possess significantly enhanced antimicrobial activity compared to both pure ZnO NPs and the plant extract alone. The biosynthesized nanoparticles exhibited notably lower minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) values against Staphylococcus aureus, Escherichia coli, and Candida albicans, suggesting a strong synergistic effect between ZnO and the phytochemicals of A. absinthium L. Thus, the study confirms and quantifies the superior antibacterial potential of Artemisia-derived ZnO NPs, offering promising implications for food, biomedical and pharmaceutical applications.
Full article
(This article belongs to the Special Issue Food Safety Protection: Intelligent Detection and Green Control of Foodborne Bacterial Pathogens)
Open AccessArticle
Sustainable Extraction of Bioactive Phenolics from Rose Hips for Functional Food Applications: Evaluation of Green Solvents and Extraction Techniques
by
Hanna Kaczkowska, Marharyta Pestriakova, Jolanta Wółkiewicz, Aneta Krakowska-Sieprawska, Paweł Fijałkowski, Zbigniew Rafiński, Paweł Pomastowski, Justyna Walczak-Skierska and Katarzyna Rafińska
Foods 2025, 14(14), 2448; https://doi.org/10.3390/foods14142448 - 11 Jul 2025
Abstract
Growing interest in sustainable functional food ingredients has accelerated the search for green extraction methods for bioactive compounds. This study systematically evaluates the use of three emerging green solvents, namely γ-valerolactone (GVL), Cyrene™, and ethyl lactate (EL), as alternatives to conventional solvents for
[...] Read more.
Growing interest in sustainable functional food ingredients has accelerated the search for green extraction methods for bioactive compounds. This study systematically evaluates the use of three emerging green solvents, namely γ-valerolactone (GVL), Cyrene™, and ethyl lactate (EL), as alternatives to conventional solvents for extracting phenolic antioxidants from rose hip (Rosa canina L.) fruit. Using maceration, ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE), we compared extraction efficiency, total phenolic content, and antioxidant activity across various solvent systems and techniques. Our results demonstrate that MAE consistently provided the highest extraction yields and phenolic recovery, particularly when using ethanol or ethanol/green solvent mixtures. While pure green solvents showed lower extraction efficiency than ethanol, certain binary mixtures, especially GVL with ethanol, delivered promising results both in phenolic yield and antioxidant activity, without significant interference in standard assays. Additionally, while Cyrene™ consistently yielded low extraction efficiencies and low levels of phenolic compounds, its extracts were unique in exhibiting selectivity and stimulated fibroblast migration in vitro, suggesting additional functional benefits for health applications. Overall, our findings support the practical use of selected green solvents in sustainable extraction protocols for food, nutraceutical, and cosmetic industries.
Full article
(This article belongs to the Special Issue Analysis of Food Compounds: Identification, Quantification and Monitoring)
►▼
Show Figures

Figure 1
Open AccessReview
Physicochemical and Functional Properties of Soluble and Insoluble Dietary Fibers in Whole Grains and Their Health Benefits
by
Pathumi Ariyarathna, Patryk Mizera, Jarosław Walkowiak and Krzysztof Dziedzic
Foods 2025, 14(14), 2447; https://doi.org/10.3390/foods14142447 - 11 Jul 2025
Abstract
The growing global prevalence of non-communicable diseases (NCDs) is drawing an increasing amount of attention to the health-promoting potential of whole-grain dietary fibers. Whole grains are rich sources of both soluble dietary fiber (SDF) and insoluble dietary fiber (IDF), contributing distinct physicochemical properties
[...] Read more.
The growing global prevalence of non-communicable diseases (NCDs) is drawing an increasing amount of attention to the health-promoting potential of whole-grain dietary fibers. Whole grains are rich sources of both soluble dietary fiber (SDF) and insoluble dietary fiber (IDF), contributing distinct physicochemical properties and playing vital roles in promoting human health. This review provides a comprehensive analysis of the dietary fiber compositions of various whole grains, including wheat, oats, barley, rye, corn, sorghum, and rice, highlighting their structural characteristics, physiochemical properties, and associated health benefits. The physicochemical properties of dietary fibers, such as solubility, water- and oil-holding capacity, viscosity, swelling ability, and bile-acid-binding capacity, contribute significantly to their technological applications and potential health benefits, particularly in the prevention of NCDs. Although there is growing evidence supporting their health benefits, global whole-grain intake remains below recommended levels. Therefore, promoting whole-grain intake and developing fiber-rich functional foods are essential for enhancing public health and preventing chronic diseases. Future research should focus on enhancing the bioavailability and functionality of whole-grain dietary fibers, optimizing the methods by which they are extracted, and exploring their potential applications in the food and pharmaceutical industries.
Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
►▼
Show Figures

Figure 1
Open AccessArticle
Biocontrol of Cheese Spoilage Moulds Using Native Yeasts
by
Catalina M. Cabañas, Alejandro Hernández León, Santiago Ruiz-Moyano, Almudena V. Merchán, José Manuel Martínez Torres and Alberto Martín
Foods 2025, 14(14), 2446; https://doi.org/10.3390/foods14142446 (registering DOI) - 11 Jul 2025
Abstract
Biocontrol is one of the most promising alternatives to chemical preservatives for food preservation. This study investigated the biocontrol potential of yeasts isolated from raw milk cheese against spoilage moulds. Eighty-four native yeast strains were screened for antagonistic activity against Penicillium commune,
[...] Read more.
Biocontrol is one of the most promising alternatives to chemical preservatives for food preservation. This study investigated the biocontrol potential of yeasts isolated from raw milk cheese against spoilage moulds. Eighty-four native yeast strains were screened for antagonistic activity against Penicillium commune, Fusarium verticillioides, and Mucor plumbeus/racemosus via confrontation using a milk-based culture medium. Fifteen strains from the species Pichia jadinii, Kluyveromyces lactis, Kluyveromyces marxianus, and Geotrichum candidum exhibited significant antagonistic activity (inhibition zone > 2 mm) against M. plumbeus/racemosus and F. verticillioides. The modelling of the impact of ripening conditions revealed that temperature was the primary factor influencing yeast antagonism. In addition, notable variability at both species and strain levels was found. The antagonist activity was associated with different mechanisms depending on the species and strains. K. lactis stood out for its proteolytic activity and competition for iron and manganese. Additionally, two strains of this species (KL890 and KL904) were found to produce volatile organic compounds with antifungal properties (phenylethyl alcohol and 1-butanol-3-methyl propionate). G. candidum GC663 exhibited strong competition for space, as well as the ability to parasitise hyphae linked to its pectinase and β-glucanase activity. The latter enzymatic activity was detected in all P. jadinii strains, with P. jadinii PJ433 standing out due to its proteolytic activity. In a cheese matrix, the efficacy of eight yeast strains against three target moulds was assessed, highlighting the potential of G. candidum GC663 and P. jadinii PJ433 as biocontrol agents, exhibiting high and moderate efficacy, respectively, in controlling the growth of F. verticillioides and M. plumbeus/racemosus. Nonetheless, further research is necessary to elucidate their full spectrum of antifungal mechanisms and to validate their performance under industrial-scale conditions, including their impact on cheese quality.
Full article
(This article belongs to the Section Food Microbiology)
►▼
Show Figures

Figure 1
Open AccessReview
The Road to Re-Use of Spice By-Products: Exploring Their Bioactive Compounds and Significance in Active Packaging
by
Di Zhang, Efakor Beloved Ahlivia, Benjamin Bonsu Bruce, Xiaobo Zou, Maurizio Battino, Dragiša Savić, Jaroslav Katona and Lingqin Shen
Foods 2025, 14(14), 2445; https://doi.org/10.3390/foods14142445 - 11 Jul 2025
Abstract
Spice by-products, often discarded as waste, represent an untapped resource for sustainable packaging solutions due to their unique, multifunctional, and bioactive profiles. Unlike typical plant residues, these materials retain diverse phytochemicals—including phenolics, polysaccharides, and other compounds, such as essential oils and vitamins—that exhibit
[...] Read more.
Spice by-products, often discarded as waste, represent an untapped resource for sustainable packaging solutions due to their unique, multifunctional, and bioactive profiles. Unlike typical plant residues, these materials retain diverse phytochemicals—including phenolics, polysaccharides, and other compounds, such as essential oils and vitamins—that exhibit controlled release antimicrobial and antioxidant effects with environmental responsiveness to pH, humidity, and temperature changes. Their distinctive advantage is in preserving volatile bioactives, demonstrating enzyme-inhibiting properties, and maintaining thermal stability during processing. This review encompasses a comprehensive characterization of phytochemicals, an assessment of the re-utilization pathway from waste to active materials, and an investigation of processing methods for transforming by-products into films, coatings, and nanoemulsions through green extraction and packaging film development technologies. It also involves the evaluation of their mechanical strength, barrier performance, controlled release mechanism behavior, and effectiveness of food preservation. Key findings demonstrate that ginger and onion residues significantly enhance antioxidant and antimicrobial properties due to high phenolic acid and sulfur-containing compound concentrations, while cinnamon and garlic waste effectively improve mechanical strength and barrier attributes owing to their dense fiber matrix and bioactive aldehyde content. However, re-using these residues faces challenges, including the long-term storage stability of certain bioactive compounds, mechanical durability during scale-up, natural variability that affects standardization, and cost competitiveness with conventional packaging. Innovative solutions, including encapsulation, nano-reinforcement strategies, intelligent polymeric systems, and agro-biorefinery approaches, show promise for overcoming these barriers. By utilizing these spice by-products, the packaging industry can advance toward a circular bio-economy, depending less on traditional plastics and promoting environmental sustainability in light of growing global population and urbanization trends.
Full article
(This article belongs to the Special Issue Valorization of Compounds from Natural Sources: Obtaining, Characterizing and Applicability in Food Processing)
►▼
Show Figures

Figure 1
Open AccessArticle
Screening of High-Yield 2-Phenylethanol Producing Strain from Wild-Type Saccharomyces cerevisiae and Optimization of Fermentation Parameters
by
Chenshuo Zhang, Tingwen Fan, Zhichun Wang, Jiamu Yu, Xiaoming Guo, Wei Jiang, Lili Miao and Huaiyi Yang
Foods 2025, 14(14), 2444; https://doi.org/10.3390/foods14142444 - 11 Jul 2025
Abstract
2-Phenylethanol (2-PE), an aromatic alcohol with a rose-like fragrance, is widely used in the food, pharmaceutical, and high-end cosmetic industries. In this study, a high-yield 2-PE-producing strain was isolated and identified as Saccharomyces cerevisiae based on morphological characterization and taxonomic identification. Fermentation medium
[...] Read more.
2-Phenylethanol (2-PE), an aromatic alcohol with a rose-like fragrance, is widely used in the food, pharmaceutical, and high-end cosmetic industries. In this study, a high-yield 2-PE-producing strain was isolated and identified as Saccharomyces cerevisiae based on morphological characterization and taxonomic identification. Fermentation medium components (carbon and nitrogen sources) were optimized through single-factor experiments in shaking flasks, and fermentation medium with 40 g/L glucose, 5 g/L malt extract, 1.75 g/L corn steep liquor, 2.5 g/L yeast extract, 5 g/L malt extract, 1.75 g/L corn steep liquor was considered suitable for 2-PE production. RT-qPCR results indicated that corn steep liquor activates expression of genes related to the shikimate pathway and Ehrlich pathway (pha2, aro4, aro8, and aro9), thereby promoting the synthesis of 2-PE through these pathways. Excess yeast extract inhibited the expression of aro8 and aro9, while enhancing the expression of tdh3 and adh2, thus promoting the de novo synthesis of 2-PE. Furthermore, fermentation in a 5 L bioreactor was applied to investigate the effects of feeding strategies, inoculum proportion, and pH on 2-PE production. With a pH of 5.5 and10% inoculum proportion, the supplementation of the substrate L-Phe led to a 2-PE production of 4.81 g/L after 24 h of fermentation. Finally, in situ product recovery (ISPR) techniques was applied to alleviate 2-PE cytotoxicity, achieving a production of 6.41 g/L. This process offers a promising strategy for producing 2-PE efficiently and naturally, paving the way for further industrial applications in food, pharmaceutical, and cosmetic sectors.
Full article
(This article belongs to the Special Issue Microbial Metabolism Contributes to Enhancing Food Quality and Health Benefits)
►▼
Show Figures

Figure 1
Open AccessReview
Sourdough Microbiota for Improving Bread Preservation and Safety: Main Directions and New Strategies
by
Yelena Oleinikova, Alma Amangeldi, Aizada Zhaksylyk, Margarita Saubenova and Amankeldy Sadanov
Foods 2025, 14(14), 2443; https://doi.org/10.3390/foods14142443 - 11 Jul 2025
Abstract
Bread is consumed daily throughout the world as an important source of nutrients. However, bakery products are highly susceptible to spoilage, especially fungal, which is a source of bread losses and a threat to food security and consumer health. The use of sourdough
[...] Read more.
Bread is consumed daily throughout the world as an important source of nutrients. However, bakery products are highly susceptible to spoilage, especially fungal, which is a source of bread losses and a threat to food security and consumer health. The use of sourdough is the best alternative to chemical preservatives, while providing a number of advantages to baked bread. This review highlights the main areas in the field of bread protection and covers the principal representatives of sourdough microbiota and their contribution to protecting bread from spoilage. The review is mainly based on publications in the field of research over the last five years, identifying new directions and strategies for bread protection related to the use of sourdoughs. A list of the main compounds produced by lactic acid bacteria of the sourdough, which contribute to the protection of bread from fungal spoilage, is presented. The contribution of other microorganisms to the antifungal effect is also considered. Finally, some prospects for the development of research in the field of sourdoughs are determined.
Full article
(This article belongs to the Special Issue Improving Food Quality and Safety: An Exploration of Natural Antimicrobials)
►▼
Show Figures

Figure 1
Open AccessReview
Clean-Label Strategies for the Replacement of Nitrite, Ascorbate, and Phosphate in Meat Products: A Review
by
Minhyeong Kim, Su Min Bae, Yeongmi Yoo, Jibin Park and Jong Youn Jeong
Foods 2025, 14(14), 2442; https://doi.org/10.3390/foods14142442 - 11 Jul 2025
Abstract
The clean-label movement has markedly increased consumer demand for meat products free from synthetic additives, such as sodium nitrite, ascorbate, and phosphate. This review summarizes strategies to replace these additives with natural alternatives while preserving the functional and quality properties of traditionally cured
[...] Read more.
The clean-label movement has markedly increased consumer demand for meat products free from synthetic additives, such as sodium nitrite, ascorbate, and phosphate. This review summarizes strategies to replace these additives with natural alternatives while preserving the functional and quality properties of traditionally cured meats. Nitrite replacement commonly employs nitrate-rich vegetables, alongside nitrate-reducing starter cultures or pre-converted nitrite powders for adequate nitric oxide production and meat pigment stabilization. Ascorbate substitutes include vitamin C-rich materials and polyphenol-based antioxidants from green tea and rosemary, supporting nitrite reduction and contributing to meat pigment and oxidative stability. To compensate for phosphate functions, natural substitutes such as hydrocolloids, dietary fibers, protein isolates, and calcium powders from eggshells or oyster shells have shown partial success in restoring water-holding capacity, pH buffering, and textural integrity. In addition, non-thermal processing technologies, such as high-pressure processing, ultrasound, and cold plasma are explored as complementary strategies to enhance the efficacy of natural ingredients and support industrial scalability. However, challenges persist regarding ingredient variability, dose-dependent effects, and consistency in functional performance. Future research should focus on synergistic ingredient combinations, formulation standardization, and scalable application in industrial production to ensure the production of high-quality clean-label meat products.
Full article
(This article belongs to the Special Issue Trends to Green Processing and Preservation of Meats and Meat Products)
►▼
Show Figures

Figure 1
Open AccessArticle
Formation Mechanism of Lipid and Flavor of Lard Under the Intervention of Heating Temperature via UPLC-TOF-MS/MS with OPLS-DA and HS-GC-IMS Analysis
by
Erlin Zhai, Jing Zhang, Jiancai Zhu, Rujuan Zhou, Yunwei Niu and Zuobing Xiao
Foods 2025, 14(14), 2441; https://doi.org/10.3390/foods14142441 - 11 Jul 2025
Abstract
Lard imparts unique organoleptic properties that underpin its essential role in Chinese gastronomy; however, the specific lipid precursors contributing to its aroma remain unclear. This study explores the flavor formation mechanism of lard by comparing its texture and aroma at two preparation temperatures,
[...] Read more.
Lard imparts unique organoleptic properties that underpin its essential role in Chinese gastronomy; however, the specific lipid precursors contributing to its aroma remain unclear. This study explores the flavor formation mechanism of lard by comparing its texture and aroma at two preparation temperatures, 130 °C and 100 °C. We identified a total of 256 and 253 lipids at these temperatures, respectively, with triacylglycerols (TGs) and diacylglycerols (DGs) being the predominant lipid species. An HS-GC-IMS analysis detected 67 volatile compounds, predominantly aldehydes, acids, and alcohols. A subsequent Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) identified 49 discriminatory lipids and 20 differential volatiles. A correlation analysis showed a positive relationship between aldehydes and unsaturated triglycerides in lard, with TG (16:1-16:1-18:0), TG (17:2-18:1-18:1), TG (16:1-17:1-18:1), and TG (18:1-18:1-20:1) identified as characteristic markers at both temperatures. Furthermore, there was a positive correlation between ketones and alcohols and phospholipids and sphingolipids containing unsaturated fatty acid chains. TGs and glycerophospholipids (GPs), rich in polyunsaturated fatty acids, are likely key precursors driving the formation of distinct flavors during lard processing. This study elucidates the mechanistic interactions between lipids and volatile organic compounds, providing a framework for optimizing lard processing protocols and flavor modulation.
Full article
(This article belongs to the Section Food Analytical Methods)
►▼
Show Figures

Figure 1
Open AccessArticle
Elemental and Isotopic Fingerprints of Potatoes
by
Cezara Voica, Ioana Feher, Romulus Puscas, Andreea Maria Iordache and Gabriela Cristea
Foods 2025, 14(14), 2440; https://doi.org/10.3390/foods14142440 - 10 Jul 2025
Abstract
Nowadays, food traceability represents an important issue in the current context of trade agreements, which influence global food prices. Many consumers prefer to pay a higher price for a traditional cultivation regime of a certain food product that comes from a certain region,
[...] Read more.
Nowadays, food traceability represents an important issue in the current context of trade agreements, which influence global food prices. Many consumers prefer to pay a higher price for a traditional cultivation regime of a certain food product that comes from a certain region, appreciating the taste of the respective foodstuff. The potato is now the world’s fourth most important food crop in terms of human consumption, after wheat, maize, and rice. In this context, 100 potato samples from the Romanian market were collected. While 68 samples came from Romania, the rest of the 32 were from abroad (Hungary, France, Greece, Italy, Germany, Egypt, and Poland). The countries selected for potato sample analysis are among the main exporters of potatoes to the Romanian market. The samples were investigated by their multi-elemental and isotopic (2H, 18O and 13C) fingerprints, using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Isotope Ratio Mass Spectrometry (IRMS). Then, to distinguish the geographical origin, the experimental results were statistically processed using linear discriminant analysis (LDA). The best markers that emphasize Romanian potatoes were identified to be δ13Cbulk, δ2Hwater, and Sr.
Full article
(This article belongs to the Special Issue Stable Isotopes and Elemental Profiles as Guardians of Food and Beverage Integrity: Tracing Origins and Evaluating Quality)
►▼
Show Figures

Graphical abstract

Journal Menu
► ▼ Journal Menu-
- Foods Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Biomolecules, Foods, Metabolites, Microorganisms, Pathogens, Bacteria
Bioinformatics, Machine Learning and Risk Assessment in Food Industry
Topic Editors: Bing Niu, Suren Rao Sooranna, Pufeng DuDeadline: 31 July 2025
Topic in
Applied Microbiology, Microorganisms, Pharmaceuticals, Pharmaceutics, Foods
Probiotics: New Avenues
Topic Editors: Daniela Machado, José Carlos AndradeDeadline: 15 August 2025
Topic in
Dietetics, Foods, Nutrients
Dietary Carbohydrate Chemistry, Nutrition, and Utilization
Topic Editors: Bin Zhang, Lijun Sun, Zhuqing XieDeadline: 31 August 2025
Topic in
Agriculture, Economies, Foods, Land, Water, Nutrients
Food Security and Healthy Nutrition
Topic Editors: Xinru Han, Ehsan Elahi, Guo WeiDeadline: 31 October 2025

Conferences
24 July 2025
Foods Webinar | Innovative and Smart Encapsulation Strategies for High-Value Compounds in Food and Nutraceuticals, 24 July 2025

28–30 October 2025
[Foods 2025] Call for Abstracts—The 6th International Electronic Conference on Foods: Future Horizons in Foods and Sustainability

Special Issues
Special Issue in
Foods
Technological Strategies to Obtain Gluten-Free Foods with High Nutritional Value and Sensory Comparability to Gluten-Containing Products
Guest Editor: Elisabetta BraviDeadline: 14 July 2025
Special Issue in
Foods
Feeding and Processing Affect Meat Quality and Sensory Evaluation
Guest Editor: Sandra RodriguesDeadline: 15 July 2025
Special Issue in
Foods
Conventional and Emerging Technologies for Meat Processing
Guest Editors: Javier Telis-Romero, Marcio Augusto Ribeiro SanchesDeadline: 15 July 2025
Special Issue in
Foods
Nutrition, Safety and Storage of Seafoods
Guest Editors: Deyang Li, Zhe XuDeadline: 15 July 2025
Topical Collections
Topical Collection in
Foods
Phytonutrients in Food: From Traditional to Rational Usage
Collection Editor: Quanhong Li
Topical Collection in
Foods
Advances in Tea Chemistry
Collection Editors: Yongquan Xu, Ying Gao, Qingqing Cao
Topical Collection in
Foods
Milk and Dairy Products: Chemistry, Structure, Processing and Properties
Collection Editor: Débora Parra Baptista
Topical Collection in
Foods
Physicochemical, Biochemical, and Microbiological Characteristics of Cheese
Collection Editors: Richardos Nikolaos Salek, Eva Lorencová, Zuzana Lazárková