Preparation Optimization and Antioxidant Properties of the β-Glucan and Ferulic Acid/Quercetin Complex from Highland Barley (Hordeum vulgare var. nudum)
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Pretreatment
2.3. Equilibrium Dialysis Assay
2.4. FTIR Spectroscopy
2.5. Scanning Electron Microscope
2.6. Antioxidant Activity
2.7. Optimization of the Preparation Process of GB and GQ
2.8. Statistics and Analysis of Data
3. Results
3.1. Characterization of GF and GQ
3.2. Effect of Different One-Way Factors on the Preparation of GF and GQ
3.3. Response Surface Optimization
3.4. Effect of Factor Interactions on GF and GQ and Optimal Process Validation
3.5. Antioxidant Activity In Vitro
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, R.; Grinstaff, M. Chemical synthesis of polysaccharide and polysaccharide mimetics. Prog. Polym. Sci. 2017, 74, 78–116. [Google Scholar] [CrossRef]
- Qu, M.; Chen, Q.; Sun, B.; LV, M.; Liu, L.; Zhu, X. Advances in studies on the functional properties of phenol and their interactions with proteins and polysaccharide. Sci. Technol. Food Ind. 2021, 42, 405–413. [Google Scholar]
- Yu, Y.; Shen, M.Y.; Song, Q.; Xie, J. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review. Carbohydr. Polym. 2018, 183, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Sureda, A.; Belwal, T.; Çetinkaya, S.; Süntar, I.; Tejada, S.; Devkota, H.P.; Ullah, H.; Aschner, M. Phenol in the treatment of autoimmune diseases. Autoimmun. Rev. 2019, 18, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Renard, C.; Rolland-Sabat’e, A.; Bourvellec, C. Exploring interactions between pectins and procyanidins: Structure-function relationships. Food Hydrocoll. 2021, 113, 106498. [Google Scholar] [CrossRef]
- Phan, A.; D’Arcy, B.; Gidley, M. Polyphenol-cellulose interactions: Effects of pH, temperature and salt. Int. J. Food Sci. Technol. 2016, 51, 203–211. [Google Scholar] [CrossRef]
- Liu, X.; Bourvellec, C.; Renard, C. Interactions between cell wall polysaccharides and polyphenols: Effect of molecular internal structure. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3574–3617. [Google Scholar] [CrossRef]
- Xue, H.; Du, X.; Fang, S.; Gao, H.; Xie, K.; Wang, Y.; Tan, J. The interaction of phenol-polysaccharide and their applications: A review. Int. J. Biol. Macromol. 2024, 278, 134594. [Google Scholar] [CrossRef]
- Guo, Q.; Xiao, X.; Lu, L.; Ai, L.; Xu, M.; Liu, Y.; Goff, H.D. Phenol-polysaccharide complex: Preparation, characterization, and potential utilization in food and health. Annu. Rev. Food Sci. Technol. 2022, 13, 59–87. [Google Scholar] [CrossRef]
- Xia, H.; Yan, X.; Lu, L.; Cao, Y.; Peng, L.; Zou, L.; Ren, Y.; Zhao, G. Progress on nutritional function and high-value utilization of hulless barley. Sci. Technol. Food Ind. 2022, 43, 403–413. [Google Scholar]
- Yang, Y.; Jiang, M.; Zhan, R.; Xia, H.; Cao, Y.; Wan, Y.; Ren, Y.; Peng, L. Development and optimization of a rapid detection model for characteristic nutrient content in highland barley. Sci. Technol. Food Ind. 2024, 45, 228–238. [Google Scholar]
- Yu, Q.Y.; Wu, T.; Luo, Y.; Li, C.; Bai, S.; Shen, Q.; Xue, Y. Research progress on functional components and biological activities of highland barley. Sci. Technol. Food Ind. 2021, 42, 357–362. [Google Scholar]
- Deng, J.; Xia, C.; Yang, K.; Liu, T.; Chen, J.; Xie, S.; Xiang, Z.; Yang, X.; Zhu, B.; Yu, M. Quantitative analysis and antioxidant activity of polyphenolic compounds in whole grain, rice, and bran of Hulless Barley. Sci. Technol. Food Ind. 2024, 45, 246–253. [Google Scholar]
- Yao, Y.; Li, Z.; Qin, B.; Ju, X.; Wang, L. Evaluation of the intracellular lipid-lowering effect of phenol extract from highland barley in HepG2 cells. Food Sci. Hum. Wellness 2024, 13, 454–461. [Google Scholar] [CrossRef]
- Wu, Z.; Li, H.; Ming, J.; Zhao, G. Optimization of adsorption of tea phenol into oat β-glucan using response surface methodology. J. Agric. Food Chem. 2011, 59, 378–385. [Google Scholar] [CrossRef]
- Zhao, G.; Wu, Z.; Liu, J. β-Glucan and-Polyphenol Complex and Its Application. Patent CN 1010953506 A, 26 January 2011. [Google Scholar]
- Meng, F.; Li, Y.; Liu, D.; Zhong, G.; Guo, X.-Q. The characteristics of konjac glucomannan octenyl succinate (KGOS) prepared with different substitution rates. Carbohydr. Polym. 2018, 181, 1078–1085. [Google Scholar] [CrossRef]
- Li, Y.; Rao, J.; Meng, F.; Wang, Z.; Liu, D.; Yu, H. Combination of mutagenesis and adaptive evolution to engineer salt-tolerant and aroma-producing yeast for soy sauce fermentation. J. Sci. Food Agric. 2021, 101, 4288–4297. [Google Scholar] [CrossRef]
- Wang, J.; Yi, Q.; Tie, Q.; Peng, L.; Zhao, G. Effect on flavonoids and antioxidant activity of the bud of tartary buckwheat aftertreatment of different LED light sources. Food Sci. Technol. 2021, 44, 213–218. [Google Scholar]
- Ilyasov, I.; Beloborodov, V.; Selivanova, I. Three ABTS•+ radical cation-based approaches for the evaluation of antioxidant activity: Fast- and slow-reacting antioxidant behavior. Chem. Pap. 2018, 72, 1917–1925. [Google Scholar] [CrossRef]
- Tian, L.; Zhao, Y.; Guo, C.; Yang, X. A comparative study on the antioxidant activities of an acidic polysaccharide and various solvent extracts derived from herbal Houttuynia Cordata. Carbohydr. Polym. 2011, 83, 537–544. [Google Scholar] [CrossRef]
- Li, X.; Du, Y.; Zhang, C.; Tu, Z.; Wang, L. Modified highland barley regulates lipid metabolism, liver inflammation and gut microbiota in high-fat/cholesterol diet mice as revealed by LC-MS based metabonomics. Food Funct. 2022, 13, 9119–9142. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Xie, H.; Liu, L.; Jia, D.; Yao, K.; Chi, Y. Processing and prebiotics characteristics of β-glucan extract from highland barley. Appl. Sci. 2018, 8, 1481. [Google Scholar] [CrossRef]
- Yuan, C.; Hu, R.H.; He, L.; Hu, J.; Liu, H. Extraction and prebiotic potential of β-glucan from highland barley and its application in probiotic microcapsules. Food Hydrocoll. 2023, 139, 108520. [Google Scholar] [CrossRef]
- Wu, Z.; Ming, J.; Gao, R.; Wang, Y.; Liang, Q.; Yu, H.; Zhao, G. Characterization and antioxidant activity of the complex of tea phenol and oat β-glucan. J. Agric. Food Chem. 2011, 59, 10737–10746. [Google Scholar] [CrossRef]
- Shekin, J.J. Applications of ultrafiltration, reverse osmosis, nanofiltration, and microfiltration in dairy and food industry. Extensive Rev. 2021, 1, 39–48. [Google Scholar] [CrossRef]
- Bourvellec, C.; Renard, C. Interactions between polyphenols and macromolecules: Quantification methods and mechanisms. Crit. Rev. Food Sci. Nutr. 2012, 52, 213–248. [Google Scholar] [CrossRef]
- Morzel, M.; Canon, F.; Guyot, S. Interactions between salivary proteins and dietary polyphenols: Potential consequences on gastrointestinal digestive events. J. Agric. Food Chem. 2022, 70, 6317–6327. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, X.; Teng, A.; Li, Y.; Jiao, Y.; Zhao, K.; Wang, Y.; Li, R.; Yang, N.; Wang, W. Phenol and phenol-based biopolymer materials: Regulating iron absorption and availability from spontaneous to controllable. Crit. Rev. Food Sci. Nutr. 2023, 63, 12341–12359. [Google Scholar] [CrossRef]
- Diao, Y.; Yu, X.; Zhang, C.; Jing, Y. Quercetin-grafted chitosan prepared by free radical grafting: Characterization and evaluation of antioxidant and antibacterial properties. J. Food Sci. Technol. 2020, 57, 2259–2268. [Google Scholar] [CrossRef]
- Lin, Z.; Fischer, J.; Wicker, L. Intermolecular binding of blueberry pectin-rich fractions and anthocyanin. Food Chem. 2016, 194, 986–993. [Google Scholar] [CrossRef]
- Fernandes, A.; Brandao, E.; Raposo, F.; Maricato, É.; Oliveira, J.; Mateus, N.; Coimbra, M.A.; de Freitas, V. Impact of grape pectic polysaccharide on anthocyanins thermostability. Carbohydr. Polym. 2020, 239, 116240. [Google Scholar] [CrossRef]
- Peng, K.; Li, Y.; Sun, Y.; Xu, W.; Wang, H.; Zhang, R.; Yi, Y. Lotus root polysaccharide-phenol complexes: Interaction, structure, antioxidant, and anti-inflammatory activities. Foods 2023, 12, 577. [Google Scholar] [CrossRef]
- Chatterjee, N.S.; Anandan, R.; Navitha, M.; Asha, K.K.; Kumar, K.A.; Mathew, S.; Ravishankar, C.N. Development of thiamine and pyridoxine loaded ferulic acidgrafted chitosan microspheres for dietary supplementation. J. Food Sci. Technol. 2016, 53, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Sun, H.; Tan, F.; Yi, R.; Zhou, C.; Deng, Y.; Mu, J.; Zhao, X. Anti-aging effect of Lactobacillus Plantarum Hfy09-fermented soymilk on D-gal-induced oxidative aging in mice through modulation of the Nrf2 signaling pathway. J. Funct. Foods 2021, 78, 104386. [Google Scholar] [CrossRef]
- Li, S.; He, Y.; Zhong, S.; Li, Y.; Di, Y.; Wang, Q.; Ren, D.; Liu, S.; Li, D.; Cao, F. Antioxidant and anti-aging properties of phenol–polysaccharide complex extract from Hizikia fusiforme. Foods 2023, 12, 3725. [Google Scholar] [CrossRef]
No. | Factor | Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
A | pH | 5 | 6 | 7 |
B | PBS (mol/L) | 0.05 | 0.1 | 0.15 |
C | Temperature (°C) | 0 | 15 | 30 |
No. | Factor | Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
D | pH | 5 | 6 | 7 |
E | PBS (mol/L) | 0.2 | 0.3 | 0.4 |
F | Temperature (°C) | 10 | 20 | 30 |
Number | pH | PBS Concentration (mol/L) | Temperature (°C) | Y: Adsorption Capacity (ug/mg) |
---|---|---|---|---|
A | B | C | ||
1 | 7 | 0.1 | 0 | 72.68 |
2 | 7 | 0.15 | 15 | 58.96 |
3 | 6 | 0.15 | 30 | 43.24 |
4 | 5 | 0.05 | 15 | 55.14 |
5 | 6 | 0.1 | 15 | 74.23 |
6 | 5 | 0.15 | 15 | 42.24 |
7 | 6 | 0.05 | 30 | 53.87 |
8 | 5 | 0.1 | 30 | 52.87 |
9 | 7 | 0.05 | 15 | 73.95 |
10 | 6 | 0.1 | 15 | 77.86 |
11 | 6 | 0.15 | 0 | 57.41 |
12 | 5 | 0.1 | 0 | 59.05 |
13 | 7 | 0.1 | 30 | 57.41 |
14 | 6 | 0.1 | 15 | 72.5 |
15 | 6 | 0.1 | 15 | 68.32 |
16 | 6 | 0.1 | 15 | 70.13 |
17 | 6 | 0.05 | 0 | 68.59 |
Number | pH | PBS Concentration (mol/L) | Temperature (°C) | Y: Adsorption Capacity (ug/mg) |
---|---|---|---|---|
D | E | F | ||
1 | 7 | 0.3 | 30 | 51.55 |
2 | 6 | 0.4 | 10 | 47.59 |
3 | 6 | 0.3 | 20 | 64.46 |
4 | 6 | 0.3 | 20 | 62.82 |
5 | 5 | 0.2 | 20 | 47.38 |
6 | 6 | 0.3 | 20 | 62.17 |
7 | 5 | 0.3 | 10 | 44.6 |
8 | 7 | 0.4 | 20 | 51.8 |
9 | 6 | 0.3 | 20 | 61.52 |
10 | 7 | 0.2 | 20 | 52.3 |
11 | 5 | 0.4 | 20 | 46.9 |
12 | 6 | 0.2 | 10 | 43.7 |
13 | 7 | 0.3 | 10 | 51.96 |
14 | 6 | 0.2 | 30 | 50.6 |
15 | 6 | 0.4 | 30 | 46.6 |
16 | 6 | 0.3 | 20 | 63.9 |
17 | 5 | 0.3 | 30 | 48.5 |
Source | Sum of Squared Deviations | Degrees of Freedom (df) | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 2130.51 | 9 | 236.72 | 24.75 | 0.0002 | ** |
A | 507.21 | 1 | 507.21 | 53.02 | 0.0002 | ** |
B | 308.76 | 1 | 308.76 | 32.28 | 0.0007 | ** |
C | 455.11 | 1 | 455.11 | 47.57 | 0.0002 | ** |
AB | 1.09 | 1 | 1.09 | 0.1142 | 0.7454 | ns |
AC | 0.2070 | 1 | 0.2070 | 0.0216 | 0.8872 | ns |
BC | 0.0756 | 1 | 0.0756 | 0.0079 | 0.9316 | ns |
A2 | 172.75 | 1 | 172.75 | 18.06 | 0.0038 | ** |
B2 | 313.61 | 1 | 313.61 | 32.78 | 0.0007 | ** |
C2 | 283.13 | 1 | 283.13 | 29.60 | 0.0010 | ** |
Residual | 66.96 | 7 | 9.57 | |||
Misfit term | 12.21 | 3 | 4.07 | 0.2974 | 0.8266 | ns |
Pure error | 54.75 | 4 | 13.69 | |||
Total | 2197.47 | 16 | ||||
R2 = 0.9416, Adj R2 = 0.9303, PredR2 = 0.8722 |
Source | Sum of Squared Deviations | Degrees of Freedom (df) | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 822.26 | 9 | 91.36 | 93.67 | <0.0001 | ** |
D | 50.55 | 1 | 50.55 | 51.83 | 0.0002 | ** |
E | 0.1200 | 1 | 0.1200 | 0.1231 | 0.7360 | ns |
F | 10.97 | 1 | 10.97 | 11.25 | 0.0122 | * |
DE | 0.0000 | 1 | 0.0000 | 0.0000 | 0.9961 | ns |
DF | 4.49 | 1 | 4.49 | 4.61 | 0.0690 | ns |
EF | 15.72 | 1 | 15.72 | 16.12 | 0.0051 | ** |
D2 | 135.75 | 1 | 135.75 | 139.18 | <0.0001 | ** |
E2 | 249.03 | 1 | 249.03 | 255.32 | <0.0001 | ** |
F2 | 279.88 | 1 | 279.88 | 286.96 | <0.0001 | ** |
Residual | 6.83 | 7 | 0.9753 | |||
Misfit term | 0.9588 | 3 | 0.3196 | 0.2178 | 0.8795 | ns |
Pure error | 5.87 | 4 | 1.47 | |||
Total | 829.09 | 16 | ||||
R2 = 0.9918, Adj R2 = 0.9812, PredR2 = 0.9704 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Yang, Y.; Jiang, M.; Gu, W.; Cao, Y.; Zou, L.; Peng, L. Preparation Optimization and Antioxidant Properties of the β-Glucan and Ferulic Acid/Quercetin Complex from Highland Barley (Hordeum vulgare var. nudum). Foods 2025, 14, 2712. https://doi.org/10.3390/foods14152712
Ren Y, Yang Y, Jiang M, Gu W, Cao Y, Zou L, Peng L. Preparation Optimization and Antioxidant Properties of the β-Glucan and Ferulic Acid/Quercetin Complex from Highland Barley (Hordeum vulgare var. nudum). Foods. 2025; 14(15):2712. https://doi.org/10.3390/foods14152712
Chicago/Turabian StyleRen, Yuanhang, Yanting Yang, Mi Jiang, Wentao Gu, Yanan Cao, Liang Zou, and Lianxin Peng. 2025. "Preparation Optimization and Antioxidant Properties of the β-Glucan and Ferulic Acid/Quercetin Complex from Highland Barley (Hordeum vulgare var. nudum)" Foods 14, no. 15: 2712. https://doi.org/10.3390/foods14152712
APA StyleRen, Y., Yang, Y., Jiang, M., Gu, W., Cao, Y., Zou, L., & Peng, L. (2025). Preparation Optimization and Antioxidant Properties of the β-Glucan and Ferulic Acid/Quercetin Complex from Highland Barley (Hordeum vulgare var. nudum). Foods, 14(15), 2712. https://doi.org/10.3390/foods14152712