Vegetable By-Products from Industrial Processing: From Waste to Functional Ingredient Through Fermentation
Abstract
1. Introduction
2. Aim of the Review
3. Search Procedure
Database Generation
4. Fermentation: A Sustainable Approach to Valorizing Vegetable By-Products
4.1. Solid-State Fermentation
4.2. Submerged Fermentation
5. Fermenting Microorganisms
5.1. Lactic Acid Bacteria
5.2. Fermenting Microorganisms Other than Lactic Acid Bacteria
5.2.1. Acetic Acid Bacteria
5.2.2. Other Bacteria
5.2.3. Yeasts
5.2.4. Filamentous Fungi
6. Fermented Vegetable By-Products
Target Vegetable | Microorganisms | Fermentation Parameters | Fermented Substrate | Results | Reference |
---|---|---|---|---|---|
Solanaceae | |||||
Tomato | L. plantarum, L. casei, L. paracasei and L. rhamnosus | Submerged (30 °C for L. plantarum, 37 °C for L. casei, L. paracasei and L. rhamnosus—72 h) | By-product extract | Increased antimicrobial activity against Listeria monocytogenes, Salmonella spp., Escherichia coli, Staphylococcus aureus and Bacillus cereus. | [28] |
L. plantarum, L. casei, L. paracasei and L. rhamnosus | Submerged (30 °C for L. plantarum, 37 °C for L. casei, L. paracasei and L. rhamnosus—72 h) | By-product extract | Increased antimicrobial activity in vitro and in foodstuff, surpassing those of commercial preservatives against spoilage microorganisms and foodborne pathogens such as Salmonella spp., L. monocytogenes, and B. cereus. | [118] | |
Pediococcus acidilactici, L. rhamnosus | Submerged (37 °C for 6/14/24/30/48 h) | Tomato puree, tomato var. ciliegino juice and tomato var. pizzutello juice | Increased antioxidant activity and total phenolic content (except for tomato puree). | [119] | |
Brassicaceae | |||||
Broccoli | L. reuteri, L. plantarum and L. salivarius | Submerged (37 °C for 7/24/48/72/96 h) | Stem powder | Increased total phenols and flavonoids. | [120] |
Rapeseed | Rhizopus microsporus var. oligosporus | Solid state fermentation (32 °C for 48 h) | Rapeseed presscake | Decreased anti-nutritional factors, glucosinolates, cell wall polysaccharides and phenolic compounds. | [121] |
Poaceae | |||||
Maize | L. plantarum T6B10 and Weissella confusa BAN8 | Submerged (30 °C 24 h) | Milling by-products | Increased free amino acids and peptides concentrations. Enhanced antioxidant activity and total phenol content. Decreased phytic acid, lipase activity (preventing oxidative processes). Increased nutritional, textural and sensory properties of wheat bread. Increased protein digestibility in fortified bread. Relevant lowering of starch hydrolysis index in fortified bread. | [122] |
Wheat | L. plantarum DSM 20174T, Lactiplantibacillus fabifermentans T30PCM38, L. fermentum LM7, and Streptococcus thermophilus TH985 | Submerged (37 °C for 24 h) | Wheat middlings | Improved total phenolic content, antioxidant, anti-browning, antibacterial, and prebiotic properties. | [123] |
L. curvatus, L. mesenteroides, Pediococcus pentosaceus, Kazachstania servazzii Kazachstania unispora | Solid state fermentation (25 °C for 24 h) | durum wheat by-products (micronized bran and middling | Increased alcohols, ketones, acids, peptides, short-chain fatty acids. Increased total phenols, antioxidant activity and prebiotic activity. Decreased phytic acid content. | [124] | |
Consortium composed of Kazachstania unispora, Kazachstania servazii and L. curvatus | Submerged (25 °C for 24 h) | milling by-product mixture (70% rye bran and 30% wheat germ) | Increased complexity of aroma-related compounds such as acids, alcohols and esters. Increased short-chain fatty acids, antioxidant activity, total phenol content, bioactive peptides, prebiotic activity. Decreased phytic acid content. Enhanced color stability compared to fermentation with baker’s yeast. | [125] | |
Spring hull-less barley, emmer, blue- and yellow-grained wheat varieties and one conventional redgrained wheat variety | L. plantarum and Weissella confusa | Solid state fermentation (30 °C for 24 h) | brans from wheat, barley and emmer | Increased radical scavenging activity, TFAA and phenolic compounds, free amino acids concentration and peptides. Enhanced in vitro protein digestibility. Decreased phytic acid content. Increased dietary fibers, proteins and protein digestibility in fortified bread. All fortified breads showed improved nutritional value. | [126] |
Rice | Aspergillus brasiliensis, Aspergillus awamori, Aspergillus sojae | Solid state fermentation (25 °C for 8 days (Aspergillus brasiliensis) or 14 days (Aspergillus awamori, Aspergillus sojae) | Rice bran | Enhanced antioxidant, cosmeceutical activities (tyrosinase and elastase inhibitory activities). Improved overall content of bioactive components. | [127] |
L. plantarum | Submerged (30 °C for 48 h) | Rice bran | Decreased cholesterol. Increased antimicrobial activities against foodborne pathogenic bacteria and food spoilage fungi. Decreased phytic acid. | [128] | |
L. plantarum | Submerged (36 °C for 16 h) | Rice bran | Enhanced cooking qualities, sensory evaluation, and textural properties. Decreased aldehydes. Increased alcohols. Improved DPPH radical scavenging activity. Increased antioxidant bioavailability. | [129] |
6.1. Solanaceae
6.2. Brassicaceae
6.3. Poaceae
7. Future Perspectives in Fermentation
8. Discussions and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FAO | Food and Agriculture Organization of the United Nations |
USDA | United States Department of Agriculture |
EPA | United States Environmental Protection Agency |
BP | Billion pounds |
AD | Anaerobic Digestion |
MAE | Microwave-assisted extraction |
SFE | Supercritical fluid extraction |
UAE | Ultrasound-assisted extraction |
HHP | High-pressure processing |
EPS | Exopolysaccharides |
SSF | Solid-state fermentation |
SmF | Submerged fermentation |
Imp | Mechanical index |
LAB | Lactic acid bacteria |
NSLAB | Non-starter lactic acid bacteria |
AAB | Acetic acid bacteria |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
FRAP | Ferric Reducing Antioxidant Power |
DPP-IV | Dipeptidyl peptidase-IV |
T2D | Type 2 diabetes mellitus |
ROS | Reactive oxygen species |
GLS | Glucosinolates |
ITC | Isothiocyanates |
GAE | Gallic Acid Equivalent |
QE | Quercetin Equivalents |
CRC | Colorectal cancer |
IL-8 | Interleukin-8 |
ORAC | Oxygen Radical Absorbance Capacity |
TPC | Total phenolic content |
WHC | Water-holding capacity |
SCFA | Short-chain fatty acids |
FW | Food waste |
GWP | Global warming potential |
GMP | Good Manufacturing Practices |
WTA | Willingness to accept |
References
- FAO. Sustainable Development Goals Data Portal. Available online: https://www.fao.org/sustainable-development-goals-data-portal/data/ (accessed on 10 July 2025).
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef]
- Zhu, Y.; Luan, Y.; Zhao, Y.; Liu, J.; Duan, Z.; Ruan, R. Current Technologies and Uses for Fruit and Vegetable Wastes in a Sustainable System: A Review. Foods 2023, 12, 1949. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2019—Moving Forward on Food Loss and Waste Reduction; FAO: Rome, Italy, 2019. [Google Scholar]
- Kowalska, H.; Czajkowska, K.; Cichowska, J.; Lenart, A. What’s New in Biopotential of Fruit and Vegetable by-Products Applied in the Food Processing Industry. Trends Food Sci. Technol. 2017, 67, 150–159. [Google Scholar] [CrossRef]
- Wild, F.; Czerny, M.; Janssen, A.M.; Kole, A.P.W.; Marija, Z.; Domig, K.J. The Evolution of a Plant-Based Alternative to Meat. Agro Food Ind. Hi Tech 2014, 25, 45–49. [Google Scholar]
- FAO. Global Food Losses and Food Waste—Extent, Causes and Prevention; FAO: Rome, Italy, 2011. [Google Scholar]
- Garrido-Galand, S.; Asensio-Grau, A.; Calvo-Lerma, J.; Heredia, A.; Andrés, A. The Potential of Fermentation on Nutritional and Technological Improvement of Cereal and Legume Flours: A Review. Food Res. Int. 2021, 145, 110398. [Google Scholar] [CrossRef]
- Skowron, K.; Budzyńska, A.; Grudlewska-Buda, K.; Wiktorczyk-Kapischke, N.; Andrzejewska, M.; Wałecka-Zacharska, E.; Gospodarek-Komkowska, E. Two Faces of Fermented Foods—The Benefits and Threats of Its Consumption. Front. Microbiol. 2022, 13, 845166. [Google Scholar] [CrossRef]
- Mannaa, M.; Han, G.; Seo, Y.-S.; Park, I. Evolution of Food Fermentation Processes and the Use of Multi-Omics in Deciphering the Roles of the Microbiota. Foods 2021, 10, 2861. [Google Scholar] [CrossRef]
- Marsh, A.J.; Hill, C.; Ross, R.P.; Cotter, P.D. Fermented Beverages with Health-Promoting Potential: Past and Future Perspectives. Trends Food Sci. Technol. 2014, 38, 113–124. [Google Scholar] [CrossRef]
- Liu, L.; Wang, J.; Rosenberg, D.; Zhao, H.; Lengyel, G.; Nadel, D. Fermented Beverage and Food Storage in 13,000 y-old Stone Mortars at Raqefet Cave, Israel: Investigating Natufian Ritual Feasting. J. Archaeol. Sci. Rep. 2018, 21, 783–793. [Google Scholar] [CrossRef]
- Đorđević, T.M.; Šiler-Marinković, S.S.; Dimitrijević-Branković, S.I. Effect of Fermentation on Antioxidant Properties of Some Cereals and Pseudo Cereals. Food Chem. 2010, 119, 957–963. [Google Scholar] [CrossRef]
- Thirunathan, P.; Manickavasagan, A. Processing Methods for Reducing Alpha-Galactosides in Pulses. Crit. Rev. Food Sci. Nutr. 2019, 59, 3334–3348. [Google Scholar] [CrossRef]
- Adebo, O.A.; Njobeh, P.B.; Adebiyi, J.A.; Gbashi, S.; Phoku, J.Z.; Kayitesi, E. Fermented Pulse-Based Food Products in Developing Nations as Functional Foods and Ingredients. In Functional Food—Improve Health Through Adequate Food; InTech: London, UK, 2017. [Google Scholar]
- Saharan, P.; Sadh, P.K.; Duhan, J.S. Comparative Assessment of Effect of Fermentation on Phenolics, Flavanoids and Free Radical Scavenging Activity of Commonly Used Cereals. Biocatal. Agric. Biotechnol. 2017, 12, 236–240. [Google Scholar] [CrossRef]
- Xiang, H.; Sun-Waterhouse, D.; Waterhouse, G.I.N.; Cui, C.; Ruan, Z. Fermentation-Enabled Wellness Foods: A Fresh Perspective. Food Sci. Hum. Wellness 2019, 8, 203–243. [Google Scholar] [CrossRef]
- Onweluzo, J.C.; Nwabugwu, C.C. Fermentation of Millet (Pennisetum americanum) and Pigeon Pea (Cajanus cajan) Seeds for Flour Production: Effects on Composition and Selected Functional Properties. Pak. J. Nutr. 2009, 8, 737–744. [Google Scholar] [CrossRef]
- Onimawo, I.A.; Nmerole, E.C.; Idoko, P.I.; Akubor, P.I. Effects of Fermentation on Nutrient Content and Some Functional Properties of Pumpkin Seed (Telfaria occidentalis). Plant Foods Hum. Nutr. 2003, 58, 1–9. [Google Scholar] [CrossRef]
- Olagunju, A.I.; Ifesan, B.O.T. Changes in Nutrient and Antinutritional Contents of Sesame Seeds during Fermentation. J. Microbiol. Biotechnol. Food Sci. 2013, 2, 2407–2410. [Google Scholar]
- Xing, Q.; Dekker, S.; Kyriakopoulou, K.; Boom, R.M.; Smid, E.J.; Schutyser, M.A.I. Enhanced Nutritional Value of Chickpea Protein Concentrate by Dry Separation and Solid State Fermentation. Innov. Food Sci. Emerg. Technol. 2020, 59, 102269. [Google Scholar] [CrossRef]
- Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; et al. Health Benefits of Fermented Foods: Microbiota and Beyond. Curr. Opin. Biotechnol. 2017, 44, 94–102. [Google Scholar] [CrossRef]
- De Roos, J.; De Vuyst, L. Acetic Acid Bacteria in Fermented Foods and Beverages. Curr. Opin. Biotechnol. 2018, 49, 115–119. [Google Scholar] [CrossRef]
- Anal, A.K. Quality Ingredients and Safety Concerns for Traditional Fermented Foods and Beverages from Asia: A Review. Fermentation 2019, 5, 8. [Google Scholar] [CrossRef]
- Filannino, P.; Di Cagno, R.; Gobbetti, M. Metabolic and Functional Paths of Lactic Acid Bacteria in Plant Foods: Get out of the Labyrinth. Curr. Opin. Biotechnol. 2018, 49, 64–72. [Google Scholar] [CrossRef]
- Tlais, A.Z.A.; Fiorino, G.M.; Polo, A.; Filannino, P.; Cagno, R. Di High-Value Compounds in Fruit, Vegetable and Cereal Byproducts: An Overview of Potential Sustainable Reuse and Exploitation. Molecules 2020, 25, 2987. [Google Scholar] [CrossRef]
- Dey, T.B.; Chakraborty, S.; Jain, K.K.; Sharma, A.; Kuhad, R.C. Antioxidant Phenolics and Their Microbial Production by Submerged and Solid State Fermentation Process: A Review. Trends Food Sci. Technol. 2016, 53, 60–74. [Google Scholar] [CrossRef]
- Ricci, A.; Bernini, V.; Maoloni, A.; Cirlini, M.; Galaverna, G.; Neviani, E.; Lazzi, C. Vegetable By-Product Lacto-Fermentation as a New Source of Antimicrobial Compounds. Microorganisms 2019, 7, 607. [Google Scholar] [CrossRef]
- Kagkli, D.M.; Corich, V.; Bovo, B.; Lante, A.; Giacomini, A. Antiradical and Antimicrobial Properties of Fermented Red Chicory (Cichorium intybus L.) by-Products. Ann. Microbiol. 2016, 66, 1377–1386. [Google Scholar] [CrossRef]
- Pandey, A. Solid-State Fermentation. Biochem. Eng. J. 2003, 13, 81–84. [Google Scholar] [CrossRef]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-Industrial Wastes and Their Utilization Using Solid State Fermentation: A Review. Bioresour. Bioprocess. 2018, 5, 1. [Google Scholar] [CrossRef]
- Krishna, C. Solid-State Fermentation Systems—An Overview. Crit. Rev. Biotechnol. 2008, 25, 1–30. [Google Scholar] [CrossRef]
- Srivastava, N.; Srivastava, M.; Ramteke, P.W.; Mishra, P.K. Solid-State Fermentation Strategy for Microbial Metabolites Production: An Overview. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 345–354. [Google Scholar]
- Vassileva, M.; Malusà, E.; Sas-Paszt, L.; Trzcinski, P.; Galvez, A.; Flor-Peregrin, E.; Shilev, S.; Canfora, L.; Mocali, S.; Vassilev, N. Fermentation Strategies to Improve Soil Bio-Inoculant Production and Quality. Microorganisms 2021, 9, 1254. [Google Scholar] [CrossRef]
- Singhania, R.R.; Patel, A.K.; Soccol, C.R.; Pandey, A. Recent Advances in Solid-State Fermentation. Biochem. Eng. J. 2009, 44, 13–18. [Google Scholar] [CrossRef]
- Mitchell, D.A.; Berovič, M.; Krieger, N. Solid-State Fermentation Bioreactors; Mitchell, D.A., Berovič, M., Krieger, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 19, ISBN 978-3-540-31285-7. [Google Scholar]
- Liu, X.; Kokare, C. Microbial Enzymes of Use in Industry. In Biotechnology of Microbial Enzymes; Elsevier: Amsterdam, The Netherlands, 2017; pp. 267–298. [Google Scholar]
- Soccol, C.R.; da Costa, E.S.F.; Letti, L.A.J.; Karp, S.G.; Woiciechowski, A.L.; de Souza Vandenberghe, L.P. Recent Developments and Innovations in Solid State Fermentation. Biotechnol. Res. Innov. 2017, 1, 52–71. [Google Scholar] [CrossRef]
- Robinson, T.; Singh, D.; Nigam, P. Solid-State Fermentation: A Promising Microbial Technology for Secondary Metabolite Production. Appl. Microbiol. Biotechnol. 2001, 55, 284–289. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Chen, H. Correlations of Medium Physical Properties and Process Performance in Solid-State Fermentation. Chem. Eng. Sci. 2017, 165, 65–73. [Google Scholar] [CrossRef]
- Ravindran, R.; Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. A Review on Bioconversion of Agro-Industrial Wastes to Industrially Important Enzymes. Bioengineering 2018, 5, 93. [Google Scholar] [CrossRef]
- Satora, P.; Skotniczny, M.; Strnad, S.; Piechowicz, W. Chemical Composition and Sensory Quality of Sauerkraut Produced from Different Cabbage Varieties. LWT 2021, 136, 110325. [Google Scholar] [CrossRef]
- Yang, X.; Hu, W.; Xiu, Z.; Jiang, A.; Yang, X.; Sarengaowa; Ji, Y.; Guan, Y.; Feng, K. Microbial Dynamics and Volatilome Profiles during the Fermentation of Chinese Northeast Sauerkraut by Leuconostoc mesenteroides ORC 2 and Lactobacillus plantarum HBUAS 51041 under Different Salt Concentrations. Food Res. Int. 2020, 130, 108926. [Google Scholar] [CrossRef]
- Yang, Y.; Fan, Y.; Li, T.; Yang, Y.; Zeng, F.; Wang, H.; Suo, H.; Song, J.; Zhang, Y. Microbial Composition and Correlation between Microbiota and Quality-Related Physiochemical Characteristics in Chongqing Radish Paocai. Food Chem. 2022, 369, 130897. [Google Scholar] [CrossRef]
- Tan, X.; Cui, F.; Wang, D.; Lv, X.; Li, X.; Li, J. Fermented Vegetables: Health Benefits, Defects, and Current Technological Solutions. Foods 2023, 13, 38. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, J.; Liu, D. Biochemical Changes and Microbial Community Dynamics during Spontaneous Fermentation of Zhacai, a Traditional Pickled Mustard Tuber from China. Int. J. Food Microbiol. 2021, 347, 109199. [Google Scholar] [CrossRef]
- Maoloni, A.; Ferrocino, I.; Milanović, V.; Cocolin, L.; Corvaglia, M.R.; Ottaviani, D.; Bartolini, C.; Talevi, G.; Belleggia, L.; Cardinali, F.; et al. The Microbial Diversity of Non-Korean Kimchi as Revealed by Viable Counting and Metataxonomic Sequencing. Foods 2020, 9, 1568. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.B.; Zhu, J.C.; Feng, T.; Tian, H.X.; Yu, H.Y.; Niu, Y.W.; Zhang, X.M. Comparison of Volatile Components in Chinese Traditional Pickled Peppers Using HS–SPME–GC–MS, GC–O and Multivariate Analysis. Nat. Prod. Res. 2010, 24, 1939–1953. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Xu, F.; Xu, Y.; Wu, J.; Lao, F. Production of Marinated Chinese Lotus Root Slices Using High-Pressure Processing as an Alternative to Traditional Thermal-and-Soaking Procedure. Molecules 2022, 27, 6506. [Google Scholar] [CrossRef]
- Wang, Z.-P.; Wang, Q.-Q.; Liu, S.; Liu, X.-F.; Yu, X.-J.; Jiang, Y.-L. Efficient Conversion of Cane Molasses Towards High-Purity Isomaltulose and Cellular Lipid Using an Engineered Yarrowia lipolytica Strain in Fed-Batch Fermentation. Molecules 2019, 24, 1228. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, L.; Liu, L.; Bi, X.; Liu, X. Characteristics of Microbial Communities in Fermentation of Pickled Ginger and Their Correlation with Its Volatile Flavors. Food Biosci. 2023, 53, 102736. [Google Scholar] [CrossRef]
- Moore, J.F.; DuVivier, R.; Johanningsmeier, S.D. Changes in the Free Amino Acid Profile of Pickling Cucumber during Lactic Acid Fermentation. J. Food Sci. 2022, 87, 599–611. [Google Scholar] [CrossRef]
- Janiszewska-Turak, E.; Tracz, K.; Bielińska, P.; Rybak, K.; Pobiega, K.; Gniewosz, M.; Woźniak, Ł.; Gramza-Michałowska, A. The Impact of the Fermentation Method on the Pigment Content in Pickled Beetroot and Red Bell Pepper Juices and Freeze-Dried Powders. Appl. Sci. 2022, 12, 5766. [Google Scholar] [CrossRef]
- Cardinali, F.; Botta, C.; Harasym, J.; Ferrocino, I.; Reale, A.; Boscaino, F.; Di Renzo, T.; Milanović, V.; Garofalo, C.; Rampanti, G.; et al. Lacto-Fermented Garlic Handcrafted in the Lower Silesia Region (Poland): Microbial Diversity, Morpho-Textural Traits, and Volatile Compounds. Food Res. Int. 2024, 188, 114484. [Google Scholar] [CrossRef]
- Montaño, A.; Casado, F.J.; de Castro, A.; Sánchez, A.H.; Rejano, L. Vitamin Content and Amino Acid Composition of Pickled Garlic Processed with and without Fermentation. J. Agric. Food Chem. 2004, 52, 7324–7330. [Google Scholar] [CrossRef] [PubMed]
- Fayek, N.M.; Farag, M.A.; Saber, F.R. Metabolome Classification via GC/MS and UHPLC/MS of Olive Fruit Varieties Grown in Egypt Reveal Pickling Process Impact on Their Composition. Food Chem. 2021, 339, 127861. [Google Scholar] [CrossRef]
- Shang, Z.; Li, M.; Zhang, W.; Cai, S.; Hu, X.; Yi, J. Analysis of Phenolic Compounds in Pickled Chayote and Their Effects on Antioxidant Activities and Cell Protection. Food Res. Int. 2022, 157, 111325. [Google Scholar] [CrossRef] [PubMed]
- Maoloni, A.; Milanović, V.; Osimani, A.; Cardinali, F.; Garofalo, C.; Belleggia, L.; Foligni, R.; Mannozzi, C.; Mozzon, M.; Cirlini, M.; et al. Exploitation of Sea Fennel (Crithmum maritimum L.) for Manufacturing of Novel High-Value Fermented Preserves. Food Bioprod. Process. 2021, 127, 174–197. [Google Scholar] [CrossRef]
- Estrella, M.J.; Pieckenstain, F.L.; Marina, M.; Diaz, L.E.; Ruiz, O.A. Cheese Whey: An Alternative Growth and Protective Medium for Rhizobium loti Cells. J. Ind. Microbiol. Biotechnol. 2004, 31, 122–126. [Google Scholar] [CrossRef]
- Singh, A.K.; Bhatt, R.P.; Pant, S. Optimization and Comparative Study of the Sugar Waste for the Growth of Rhizobium Cells Along with Traditional Laboratory Media. Res. J. Microbiol. 2011, 6, 715–723. [Google Scholar] [CrossRef]
- Suryanarayan, S. Current Industrial Practice in Solid State Fermentations for Secondary Metabolite Production: The Biocon India Experience. Biochem. Eng. J. 2003, 13, 189–195. [Google Scholar] [CrossRef]
- Ouedraogo, J.-P.; Tsang, A. Production of Native and Recombinant Enzymes by Fungi for Industrial Applications. In Encyclopedia of Mycology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 222–232. [Google Scholar]
- Mehra, S.; Chandrawanshi, V.; Prashad, K. Advanced Bioprocess Engineering: Fed-Batch and Perfusion Processes. In Applied Bioengineering; Wiley: Hoboken, NJ, USA, 2017; pp. 417–468. [Google Scholar]
- Kapoor, M.; Panwar, D.; Kaira, G.S. Bioprocesses for Enzyme Production Using Agro-Industrial Wastes. In Agro-Industrial Wastes as Feedstock for Enzyme Production; Elsevier: Amsterdam, The Netherlands, 2016; pp. 61–93. [Google Scholar]
- Lim, H.C.; Shin, H.S. Fed-Batch Cultures: Principles and Applications of Semi-Batch Bioreactors; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Damir, O.; Mladen, P.; Božidar, S.; Srñan, N. Cultivation of the Bacterium Azotobacter Chroococcum for Preparation of Biofertilizers. Afr. J. Biotechnol. 2011, 10, 3104–3111. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Erol, Z.; Rugji, J.; Taşçı, F.; Kahraman, H.A.; Toppi, V.; Musa, L.; Di Giacinto, G.; Bahmid, N.A.; Mehdizadeh, M.; et al. An Overview of Fermentation in the Food Industry—Looking Back from a New Perspective. Bioresour. Bioprocess. 2023, 10, 85. [Google Scholar] [CrossRef] [PubMed]
- Aleman, R.; Montero-Fernández, I.; Marcía, J.; Maldonado, S.S.; Martín-Vertedor, D. Application of Fermentation as a Strategy for the Transformation and Valorization of Vegetable Matrices. Fermentation 2024, 10, 124. [Google Scholar] [CrossRef]
- Khalisanni, K. An Overview of Lactic Acid Bacteria. Int. J. Biosci. 2011, 1, 1–13. [Google Scholar]
- Quinto, E.J.; Jiménez, P.; Caro, I.; Tejero, J.; Mateo, J.; Girbés, T. Probiotic Lactic Acid Bacteria: A Review. Food Nutr. Sci. 2014, 05, 1765–1775. [Google Scholar] [CrossRef]
- Ivanov, V. Environmental Microbiology for Engineers; CRC Press: Boca Raton, FL, USA, 2020; ISBN 9780429317156. [Google Scholar]
- Axelsson, L. Lactic Acid Bacteria: Classification and Physiology. Food Sci. Technol. 2004, 139, 1–66. [Google Scholar]
- Saadoun, J.H.; Bertani, G.; Levante, A.; Vezzosi, F.; Ricci, A.; Bernini, V.; Lazzi, C. Fermentation of Agri-Food Waste: A Promising Route for the Production of Aroma Compounds. Foods 2021, 10, 707. [Google Scholar] [CrossRef]
- Coelho, M.C.; Malcata, F.X.; Silva, C.C.G. Lactic Acid Bacteria in Raw-Milk Cheeses: From Starter Cultures to Probiotic Functions. Foods 2022, 11, 2276. [Google Scholar] [CrossRef]
- Leroy, F.; De Vuyst, L. Lactic Acid Bacteria as Functional Starter Cultures for the Food Fermentation Industry. Trends Food Sci. Technol. 2004, 15, 67–78. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A Taxonomic Note on the Genus Lactobacillus: Description of 23 Novel Genera, Emended Description of the Genus Lactobacillus Beijerinck 1901, and Union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Ramires, F.A.; Bavaro, A.R.; D’Antuono, I.; Linsalata, V.; D’Amico, L.; Baruzzi, F.; Pinto, L.; Tarantini, A.; Garbetta, A.; Cardinali, A.; et al. Liquid Submerged Fermentation by Selected Microbial Strains for Onion Skins Valorization and Its Effects on Polyphenols. World J. Microbiol. Biotechnol. 2023, 39, 258. [Google Scholar] [CrossRef]
- Khubber, S.; Marti-Quijal, F.J.; Tomasevic, I.; Remize, F.; Barba, F.J. Lactic Acid Fermentation as a Useful Strategy to Recover Antimicrobial and Antioxidant Compounds from Food and By-Products. Curr. Opin. Food Sci. 2022, 43, 189–198. [Google Scholar] [CrossRef]
- Kimoto-Nira, H.; Ohashi, Y.; Amamiya, M.; Moriya, N.; Ohmori, H.; Sekiyama, Y. Fermentation of Onion (Allium cepa L.) Peel by Lactic Acid Bacteria for Production of Functional Food. J. Food Meas. Charact. 2020, 14, 142–149. [Google Scholar] [CrossRef]
- Tsangalis, D.; Ashton, J.F.; Mcgill, A.E.J.; Shah, N.P. Enzymic Transformation of Isoflavone Phytoestrogens in Soymilk by Β-Glucosidase-Producing Bifidobacteria. J. Food Sci. 2002, 67, 3104–3113. [Google Scholar] [CrossRef]
- Qiu, X.; Zhang, Y.; Hong, H. Classification of Acetic Acid Bacteria and Their Acid Resistant Mechanism. AMB Express 2021, 11, 29. [Google Scholar] [CrossRef] [PubMed]
- Merli, G.; Becci, A.; Amato, A.; Beolchini, F. Acetic Acid Bioproduction: The Technological Innovation Change. Sci. Total Environ. 2021, 798, 149292. [Google Scholar] [CrossRef]
- Sabater, C.; Ruiz, L.; Delgado, S.; Ruas-Madiedo, P.; Margolles, A. Valorization of Vegetable Food Waste and By-Products Through Fermentation Processes. Front. Microbiol. 2020, 11, 581997. [Google Scholar] [CrossRef]
- Karel, K. The Family Acetobacteraceae: The Genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia. Prokaryotes 2006, 5, 163–200. [Google Scholar]
- Lynch, K.M.; Zannini, E.; Wilkinson, S.; Daenen, L.; Arendt, E.K. Physiology of Acetic Acid Bacteria and Their Role in Vinegar and Fermented Beverages. Compr. Rev. Food Sci. Food Saf. 2019, 18, 587–625. [Google Scholar] [CrossRef] [PubMed]
- Misra, H.S.; Rajpurohit, Y.S.; Khairnar, N.P. Pyrroloquinoline-Quinone and Its Versatile Roles in Biological Processes. J. Biosci. 2012, 37, 313–325. [Google Scholar] [CrossRef]
- Sainz, F.; Navarro, D.; Mateo, E.; Torija, M.J.; Mas, A. Comparison of D-Gluconic Acid Production in Selected Strains of Acetic Acid Bacteria. Int. J. Food Microbiol. 2016, 222, 40–47. [Google Scholar] [CrossRef]
- Raspor, P.; Goranovič, D. Biotechnological Applications of Acetic Acid Bacteria. Crit. Rev. Biotechnol. 2008, 28, 101–124. [Google Scholar] [CrossRef]
- Sengun, I.Y. Acetic Acid Bacteria: Fundamentals and Food Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Li, Y.; He, D.; Niu, D.; Zhao, Y. Acetic Acid Production from Food Wastes Using Yeast and Acetic Acid Bacteria Micro-Aerobic Fermentation. Bioprocess. Biosyst. Eng. 2015, 38, 863–869. [Google Scholar] [CrossRef]
- Gomes, R.J.; de Fatima Borges, M.; de Freitas Rosa, M.; Castro-Gómez, R.J.H.; Spinosa, W.A. Acetic Acid Bacteria in the Food Industry: Systematics, Characteristics and Applications. Food Technol. Biotechnol. 2018, 56, 139. [Google Scholar] [CrossRef]
- Vegas, C.; Mateo, E.; González, Á.; Jara, C.; Guillamón, J.M.; Poblet, M.; Torija, M.J.; Mas, A. Population Dynamics of Acetic Acid Bacteria during Traditional Wine Vinegar Production. Int. J. Food Microbiol. 2010, 138, 130–136. [Google Scholar] [CrossRef]
- Gullo, M.; Verzelloni, E.; Canonico, M. Aerobic Submerged Fermentation by Acetic Acid Bacteria for Vinegar Production: Process and Biotechnological Aspects. Process Biochem. 2014, 49, 1571–1579. [Google Scholar] [CrossRef]
- Alexandri, M.; Neu, A.; Schneider, R.; López-Gómez, J.P.; Venus, J. Evaluation of Various Bacillus coagulans Isolates for the Production of High Purity L-lactic Acid Using Defatted Rice Bran Hydrolysates. Int. J. Food Sci. Technol. 2019, 54, 1321–1329. [Google Scholar] [CrossRef]
- Cole, M.R.; Eggleston, G.; Gaines, D.K.; Heckemeyer, M. Development of an Enzyme Cocktail to Bioconvert Untapped Starch in Sweet Sorghum Processing By-Products: Part I. Ind. Crops Prod. 2019, 133, 142–150. [Google Scholar] [CrossRef]
- Mukherjee, R.; Chakraborty, R.; Dutta, A. Comparison of Optimization Approaches (Response Surface Methodology and Artificial Neural Network-genetic Algorithm) for a Novel Mixed Culture Approach in Soybean Meal Fermentation. J. Food Process Eng. 2019, 42, e13124. [Google Scholar] [CrossRef]
- Tomita, H.; Okazaki, F.; Tamaru, Y. Biomethane Production from Sugar Beet Pulp under Cocultivation with Clostridium Cellulovorans and Methanogens. AMB Express 2019, 9, 28. [Google Scholar] [CrossRef]
- Maicas, S. The Role of Yeasts in Fermentation Processes. Microorganisms 2020, 8, 1142. [Google Scholar] [CrossRef]
- Sarris, D.; Rapti, A.; Papafotis, N.; Koutinas, A.A.; Papanikolaou, S. Production of Added-Value Chemical Compounds through Bioconversions of Olive-Mill Wastewaters Blended with Crude Glycerol by a Yarrowia lipolytica Strain. Molecules 2019, 24, 222. [Google Scholar] [CrossRef]
- Gong, S.; Xie, F.; Lan, X.; Zhang, W.; Gu, X.; Wang, Z. Effects of Fermentation on Compositions, Color, and Functional Properties of Gelatinized Potato Flours. J. Food Sci. 2020, 85, 57–64. [Google Scholar] [CrossRef]
- Puligundla, P.; Smogrovicova, D.; Obulam, V.S.R.; Ko, S. Very High Gravity (VHG) Ethanolic Brewing and Fermentation: A Research Update. J. Ind. Microbiol. Biotechnol. 2011, 38, 1133–1144. [Google Scholar] [CrossRef]
- Müjdeci, G.N.; Khosravi-Darani, K. Valorization of Fruit and Vegetable Waste: Yeast Fermentation. In Fruits and Vegetable Wastes; Springer Nature: Singapore, 2022; pp. 315–342. [Google Scholar]
- Cebrián, M.; Ibarruri, J. Filamentous Fungi Processing by Solid-State Fermentation. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2023; pp. 251–292. [Google Scholar]
- Beg, Q.K.; Kapoor, M.; Mahajan, L.; Hoondal, G.S. Microbial Xylanases and Their Industrial Applications: A Review. Appl. Microbiol. Biotechnol. 2001, 56, 326–338. [Google Scholar] [CrossRef]
- Neira-Vielma, A.A.; Aguilar, C.N.; Ilyina, A.; Contreras-Esquivel, J.C.; das Graça Carneiro-da-Cunha, M.; Michelena-Álvarez, G.; Martínez-Hernández, J.L. Purification and Biochemical Characterization of an Aspergillus Niger Phytase Produced by Solid-State Fermentation Using Triticale Residues as Substrate. Biotechnol. Rep. 2018, 17, 49–54. [Google Scholar] [CrossRef]
- Mathew, J.J.; NK, P.J.S.; Vazhacharickal, A.A.; Sajeshkumar, N.K.; Ashokan, A. Amylase Production by Aspergillus niger through Submerged Fermentation Using Starchy Food Byproducts as Substrate. Int. J. Herb. Med. 2016, 4, 34–40. [Google Scholar]
- Melnichuk, N.; Braia, M.J.; Anselmi, P.A.; Meini, M.-R.; Romanini, D. Valorization of Two Agroindustrial Wastes to Produce Alpha-Amylase Enzyme from Aspergillus oryzae by Solid-State Fermentation. Waste Manag. 2020, 106, 155–161. [Google Scholar] [CrossRef]
- Novelli, P.K.; Barros, M.M.; Fleuri, L.F. Novel Inexpensive Fungi Proteases: Production by Solid State Fermentation and Characterization. Food Chem. 2016, 198, 119–124. [Google Scholar] [CrossRef]
- Oliveira, F.; Moreira, C.; Salgado, J.M.; Abrunhosa, L.; Venâncio, A.; Belo, I. Olive Pomace Valorization by Aspergillus Species: Lipase Production Using Solid-state Fermentation. J. Sci. Food Agric. 2016, 96, 3583–3589. [Google Scholar] [CrossRef]
- Amorim, C.; Silvério, S.C.; Rodrigues, L.R. One-Step Process for Producing Prebiotic Arabino-Xylooligosaccharides from Brewer’s Spent Grain Employing Trichoderma Species. Food Chem. 2019, 270, 86–94. [Google Scholar] [CrossRef]
- Costa, J.R.; Tonon, R.V.; Gottschalk, L.M.; Santiago, M.C.D.A.; Mellinger-Silva, C.; Pastrana, L.; Pintado, M.M.; Cabral, L.M. Enzymatic Production of Xylooligosaccharides from Brazilian Syrah Grape Pomace Flour: A Green Alternative to Conventional Methods for Adding Value to Agricultural By-Products. J. Sci. Food Agric. 2019, 99, 1250–1257. [Google Scholar] [CrossRef]
- Paz, A.; Outeiriño, D.; Guerra, N.P.; Domínguez, J.M. Enzymatic Hydrolysis of Brewer’s Spent Grain to Obtain Fermentable Sugars. Bioresour. Technol. 2019, 275, 402–409. [Google Scholar] [CrossRef]
- Ganaie, M.A.; Soni, H.; Naikoo, G.A.; Oliveira, L.T.S.; Rawat, H.K.; Mehta, P.K.; Narain, N. Screening of Low Cost Agricultural Wastes to Maximize the Fructosyltransferase Production and Its Applicability in Generation of Fructooligosaccharides by Solid State Fermentation. Int. Biodeterior. Biodegrad. 2017, 118, 19–26. [Google Scholar] [CrossRef]
- Muñiz-Márquez, D.B.; Teixeira, J.A.; Mussatto, S.I.; Contreras-Esquivel, J.C.; Rodríguez-Herrera, R.; Aguilar, C.N. Fructo-Oligosaccharides (FOS) Production by Fungal Submerged Culture Using Aguamiel as a Low-Cost by-Product. LWT 2019, 102, 75–79. [Google Scholar] [CrossRef]
- Strong, P.J.; Self, R.; Allikian, K.; Szewczyk, E.; Speight, R.; O’Hara, I.; Harrison, M.D. Filamentous Fungi for Future Functional Food and Feed. Curr. Opin. Biotechnol. 2022, 76, 102729. [Google Scholar] [CrossRef]
- Gmoser, R.; Sintca, C.; Taherzadeh, M.J.; Lennartsson, P.R. Combining Submerged and Solid State Fermentation to Convert Waste Bread into Protein and Pigment Using the Edible Filamentous Fungus N. intermedia. Waste Manag. 2019, 97, 63–70. [Google Scholar] [CrossRef]
- Intasit, R.; Cheirsilp, B.; Suyotha, W.; Boonsawang, P. Synergistic Production of Highly Active Enzymatic Cocktails from Lignocellulosic Palm Wastes by Sequential Solid State-Submerged Fermentation and Co-Cultivation of Different Filamentous Fungi. Biochem. Eng. J. 2021, 173, 108086. [Google Scholar] [CrossRef]
- Ricci, A.; Bertani, G.; Maoloni, A.; Bernini, V.; Levante, A.; Neviani, E.; Lazzi, C. Antimicrobial Activity of Fermented Vegetable Byproduct Extracts for Food Applications. Foods 2021, 10, 1092. [Google Scholar] [CrossRef]
- Ricci, A.; Marrella, M.; Saadoun, J.H.; Bernini, V.; Godani, F.; Dameno, F.; Neviani, E.; Lazzi, C. Development of Lactic Acid-Fermented Tomato Products. Microorganisms 2020, 8, 1192. [Google Scholar] [CrossRef]
- Serna-Barrera, M.A.; Bas-Bellver, C.; Seguí, L.; Betoret, N.; Barrera, C. Exploring Fermentation with Lactic Acid Bacteria as a Pretreatment for Enhancing Antioxidant Potential in Broccoli Stem Powders. AIMS Microbiol. 2024, 10, 255–272. [Google Scholar] [CrossRef]
- Lücke, F.-K.; Fritz, V.; Tannhäuser, K.; Arya, A. Controlled Fermentation of Rapeseed Presscake by Rhizopus, and Its Effect on Some Components with Relevance to Human Nutrition. Food Res. Int. 2019, 120, 726–732. [Google Scholar] [CrossRef]
- Pontonio, E.; Dingeo, C.; Gobbetti, M.; Rizzello, C.G. Maize Milling By-Products: From Food Wastes to Functional Ingredients Through Lactic Acid Bacteria Fermentation. Front. Microbiol. 2019, 10, 561. [Google Scholar] [CrossRef]
- Reque, P.M.; Pinilla, C.M.B.; Tinello, F.; Corich, V.; Lante, A.; Giacomini, A.; Brandelli, A. Biochemical and Functional Properties of Wheat Middlings Bioprocessed by Lactic Acid Bacteria. J. Food Biochem. 2020, 44, e13262. [Google Scholar] [CrossRef]
- Rossi, S.; Gottardi, D.; Siroli, L.; Giordani, B.; Vitali, B.; Vannini, L.; Patrignani, F.; Lanciotti, R. Functional and Biochemical Characterization of Pre-Fermented Ingredients Obtained by the Fermentation of Durum Wheat by-Products. J. Funct. Foods 2024, 116, 106136. [Google Scholar] [CrossRef]
- Siroli, L.; Giordani, B.; Rossi, S.; Gottardi, D.; McMahon, H.; Augustyniak, A.; Menon, A.; Vannini, L.; Vitali, B.; Patrignani, F.; et al. Antioxidant and Functional Features of Pre-Fermented Ingredients Obtained by the Fermentation of Milling By-Products. Fermentation 2022, 8, 722. [Google Scholar] [CrossRef]
- Pontonio, E.; Dingeo, C.; Di Cagno, R.; Blandino, M.; Gobbetti, M.; Rizzello, C.G. Brans from Hull-Less Barley, Emmer and Pigmented Wheat Varieties: From by-Products to Bread Nutritional Improvers Using Selected Lactic Acid Bacteria and Xylanase. Int. J. Food Microbiol. 2020, 313, 108384. [Google Scholar] [CrossRef]
- Ritthibut, N.; Oh, S.-J.; Lim, S.-T. Enhancement of Bioactivity of Rice Bran by Solid-State Fermentation with Aspergillus Strains. LWT 2021, 135, 110273. [Google Scholar] [CrossRef]
- Moon, S.-H.; Chang, H.-C. Rice Bran Fermentation Using Lactiplantibacillus Plantarum EM as a Starter and the Potential of the Fermented Rice Bran as a Functional Food. Foods 2021, 10, 978. [Google Scholar] [CrossRef]
- Yi, C.; Xie, L.; Cao, Z.; Quan, K.; Zhu, H.; Yuan, J. Effects of Rice Bran Fermented with Lactobacillus plantarum on Palatability, Volatile Profiles, and Antioxidant Activity of Brown Rice Noodles. Int. J. Food Sci. Technol. 2022, 57, 5048–5056. [Google Scholar] [CrossRef]
- Gong, S.; Yu, Y.; Li, W.; Wu, J.; Wang, Z. Effects of Amylolytic Lactobacillus Fermentation on the Nutritional Quality and Digestibility of Purple Potato Flour. J. Food Compos. Anal. 2022, 107, 104363. [Google Scholar] [CrossRef]
- Efenberger-Szmechtyk, M.; Nowak, A.; Czyzowska, A. Plant Extracts Rich in Polyphenols: Antibacterial Agents and Natural Preservatives for Meat and Meat Products. Crit. Rev. Food Sci. Nutr. 2021, 61, 149–178. [Google Scholar] [CrossRef]
- Iga-Buitrón, D.; Torres-Maravilla, E.; Bermúdez-Humaran, L.G.; Ascacio-Valdes, J.A.; Rodríguez-Herrera, R.; Aguilar, C.N.; Flores-Gallegos, A.C. Lactic Fermentation of Broccoli (Brassica oleracea Var. italica) to Enhance the Antioxidant and Antiproliferative Activities. Fermentation 2023, 9, 122. [Google Scholar] [CrossRef]
- FAO Cereal Supply and Demand Brief. World Food Situation. Food and Agriculture Organization of the United Nations; FAO: Rome, Italy, 2024. [Google Scholar]
- Zamaratskaia, G.; Gerhardt, K.; Wendin, K. Biochemical Characteristics and Potential Applications of Ancient Cereals—An Underexploited Opportunity for Sustainable Production and Consumption. Trends Food Sci. Technol. 2021, 107, 114–123. [Google Scholar] [CrossRef]
- Gobbetti, M.; De Angelis, M.; Di Cagno, R.; Calasso, M.; Archetti, G.; Rizzello, C.G. Novel Insights on the Functional/Nutritional Features of the Sourdough Fermentation. Int. J. Food Microbiol. 2019, 302, 103–113. [Google Scholar] [CrossRef]
- Katina, K.; Juvonen, R.; Laitila, A.; Flander, L.; Nordlund, E.; Kariluoto, S.; Piironen, V.; Poutanen, K. Fermented Wheat Bran as a Functional Ingredient in Baking. Cereal Chem. 2012, 89, 126–134. [Google Scholar] [CrossRef]
- Noort, M.W.J.; van Haaster, D.; Hemery, Y.; Schols, H.A.; Hamer, R.J. The Effect of Particle Size of Wheat Bran Fractions on Bread Quality—Evidence for Fibre–Protein Interactions. J. Cereal Sci. 2010, 52, 59–64. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, M.; Zhao, Y.; Zhu, Y.; Bai, J.; Fan, S.; Zhu, L.; Song, C.; Xiao, X. Recent Developments in Fermented Cereals on Nutritional Constituents and Potential Health Benefits. Foods 2022, 11, 2243. [Google Scholar] [CrossRef]
- Verni, M.; De Mastro, G.; De Cillis, F.; Gobbetti, M.; Rizzello, C.G. Lactic Acid Bacteria Fermentation to Exploit the Nutritional Potential of Mediterranean Faba Bean Local Biotypes. Food Res. Int. 2019, 125, 108571. [Google Scholar] [CrossRef]
- Li, Y.; He, W.; Liu, S.; Hu, X.; He, Y.; Song, X.; Yin, J.; Nie, S.; Xie, M. Innovative Omics Strategies in Fermented Fruits and Vegetables: Unveiling Nutritional Profiles, Microbial Diversity, and Future Prospects. Compr. Rev. Food Sci. Food Saf. 2024, 23, e70030. [Google Scholar] [CrossRef]
- Garcia, C.; Guerin, M.; Souidi, K.; Remize, F. Lactic Fermented Fruit or Vegetable Juices: Past, Present and Future. Beverages 2020, 6, 8. [Google Scholar] [CrossRef]
- Rastogi, Y.R.; Thakur, R.; Thakur, P.; Mittal, A.; Chakrabarti, S.; Siwal, S.S.; Thakur, V.K.; Saini, R.V.; Saini, A.K. Food Fermentation—Significance to Public Health and Sustainability Challenges of Modern Diet and Food Systems. Int. J. Food Microbiol. 2022, 371, 109666. [Google Scholar] [CrossRef]
- Muhammad, N.I.S.; Rosentrater, K.A. Comparison of Global-Warming Potential Impact of Food Waste Fermentation to Landfill Disposal. SN Appl. Sci. 2020, 2, 261. [Google Scholar] [CrossRef]
- Ayodele, A.; Chidinma, D.U. Microbial Fermentation for Sustainable Food Production: Engineered Microorganisms for Alternative Proteins and Food Ingredients. Quantum J. Eng. Sci. Technol. 2024, 5, 162–173. [Google Scholar]
- Dhagat, S.; Jujjavarapu, S.E. Economics of Fermentation Processes. In Recent Advances in Bioprocess Engineering and Bioreactor Design; Springer Nature: Singapore, 2024; pp. 287–298. [Google Scholar]
- Materia, V.C.; Linnemann, A.R.; Smid, E.J.; Schoustra, S.E. Upscaling of Traditional Fermented Foods to Build Value Chains and to Promote Women; IFAD: Rome, Italy, 2021. [Google Scholar]
- Valyasevi, R.; Rolle, R.S. An Overview of Small-Scale Food Fermentation Technologies in Developing Countries with Special Reference to Thailand: Scope for Their Improvement. Int. J. Food Microbiol. 2002, 75, 231–239. [Google Scholar] [CrossRef]
- Capozzi, V.; Fragasso, M.; Bimbo, F. Microbial Resources, Fermentation and Reduction of Negative Externalities in Food Systems: Patterns toward Sustainability and Resilience. Fermentation 2021, 7, 54. [Google Scholar] [CrossRef]
- Perito, M.A.; Di Fonzo, A.; Sansone, M.; Russo, C. Consumer Acceptance of Food Obtained from Olive By-Products. Br. Food J. 2019, 122, 212–226. [Google Scholar] [CrossRef]
- Nitzko, S. Consumer Acceptance of the Use of Plant and Animal By-Products of Food Manufacturing for Human Nutrition. Food Humanit. 2023, 1, 1238–1249. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcelli, A.; Osimani, A.; Aquilanti, L. Vegetable By-Products from Industrial Processing: From Waste to Functional Ingredient Through Fermentation. Foods 2025, 14, 2704. https://doi.org/10.3390/foods14152704
Marcelli A, Osimani A, Aquilanti L. Vegetable By-Products from Industrial Processing: From Waste to Functional Ingredient Through Fermentation. Foods. 2025; 14(15):2704. https://doi.org/10.3390/foods14152704
Chicago/Turabian StyleMarcelli, Andrea, Andrea Osimani, and Lucia Aquilanti. 2025. "Vegetable By-Products from Industrial Processing: From Waste to Functional Ingredient Through Fermentation" Foods 14, no. 15: 2704. https://doi.org/10.3390/foods14152704
APA StyleMarcelli, A., Osimani, A., & Aquilanti, L. (2025). Vegetable By-Products from Industrial Processing: From Waste to Functional Ingredient Through Fermentation. Foods, 14(15), 2704. https://doi.org/10.3390/foods14152704