Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2447 KiB  
Article
Characterization of the Flavor Precursors and Flavor Fingerprints in Grazing Lambs by Foodomics
by Yuanyuan Yang, Jing Li, Xueting Jia, Qingyu Zhao, Qing Ma, Yanan Yu, Chaohua Tang and Junmin Zhang
Foods 2022, 11(2), 191; https://doi.org/10.3390/foods11020191 - 12 Jan 2022
Cited by 18 | Viewed by 3732
Abstract
Tan sheep are greatly preferred by consumers in China because of their nutritional value and unique flavor. However, the meat quality of Tan sheep has decreased due to the change in feeding systems from grazing to indoor. Studies investigating the mechanisms for the [...] Read more.
Tan sheep are greatly preferred by consumers in China because of their nutritional value and unique flavor. However, the meat quality of Tan sheep has decreased due to the change in feeding systems from grazing to indoor. Studies investigating the mechanisms for the decrease in meat quality are limited. A total of 28 Tan sheep were randomly allocated to two treatments, receiving a concentrated diet, or pasture. Flavor precursors and volatile compounds were analyzed with foodomics. E-nose and E-tongue analyses suggested that the aroma and taste profiles differed between the feeding systems. The grazing lambs had higher levels of linoleic acid and n-3 polyunsaturated fatty acids (p < 0.01). Metabolomics indicated that 25 hydrophilic metabolites active in glycolipid and amino acid metabolisms were changed by the feeding system. Among the 57 volatile compounds identified, methional, γ-butyrolactone, benzaldehyde, and ethyl acetate were at concentrations significantly higher in the grazing lambs than the indoor-fed lambs (p < 0.01). These results reveal key changes in flavor precursors and flavor profiles affected by the feeding system, which may provide an initial view of the reason for consumer preference for the grazing Tan sheep. Full article
(This article belongs to the Special Issue Application of Chromatography to Food Analysis)
Show Figures

Figure 1

12 pages, 731 KiB  
Article
Identifying Consumer Groups and Their Characteristics Based on Their Willingness to Engage with Cultured Meat: A Comparison of Four European Countries
by Anouk Boereboom, Philippe Mongondry, Luis K. de Aguiar, Beatriz Urbano, Zheng (Virgil) Jiang, Wim de Koning and Frank Vriesekoop
Foods 2022, 11(2), 197; https://doi.org/10.3390/foods11020197 - 12 Jan 2022
Cited by 28 | Viewed by 4619
Abstract
Cultured meat, as a product of recent advancement in food technology, might become a viable alternative source of protein to traditional meat. As such, cultured meat production is disruptive as it has the potential to change the demand for traditional meats. Moreover, it [...] Read more.
Cultured meat, as a product of recent advancement in food technology, might become a viable alternative source of protein to traditional meat. As such, cultured meat production is disruptive as it has the potential to change the demand for traditional meats. Moreover, it has been claimed it can be more sustainable regarding the environment and that it is, perhaps, a solution to animal welfare issues. This study aimed at investigating associations between the consumer groups and demographic and psychographic factors as well as identifying distinct consumer groups based on their current willingness to engage with cultured meat. Four European countries were studied: the Netherlands (NL), the United Kingdom (UK), France (FR) and Spain (ES). A sample of 1291 responses from all four countries was collected between February 2017 and March 2019. Cluster analysis was used, resulting in three groups in the NL and UK, and two groups in FR and ES. The results suggest that Dutch consumers are the most willing to engage with cultured meat. Food neophobia and food technology neophobia seem to distinguish the groups the clearest. Moreover, there is some evidence that food cultural differences among the four countries seem to be also influencing consumers’ decision. Full article
(This article belongs to the Section Sensory and Consumer Sciences)
Show Figures

Figure 1

13 pages, 1553 KiB  
Article
Design of a Functional Pea Protein Matrix for Fermented Plant-Based Cheese
by Carmen Masiá, Poul Erik Jensen, Iben Lykke Petersen and Patrizia Buldo
Foods 2022, 11(2), 178; https://doi.org/10.3390/foods11020178 - 11 Jan 2022
Cited by 44 | Viewed by 15175
Abstract
The production of a fermented plant-based cheese requires understanding the behavior of the selected raw material prior to fermentation. Raw material processing affects physicochemical properties of plant protein ingredients, and it determines their ability to form fermentation-induced protein gels. Moreover, the addition of [...] Read more.
The production of a fermented plant-based cheese requires understanding the behavior of the selected raw material prior to fermentation. Raw material processing affects physicochemical properties of plant protein ingredients, and it determines their ability to form fermentation-induced protein gels. Moreover, the addition of oil also influences structure formation and therefore affects gel firmness. This study focuses on identifying and characterizing an optimal pea protein matrix suitable for fermentation-induced plant-based cheese. Stability and gel formation were investigated in pea protein matrices. Pea protein isolate (PPI) emulsions with 10% protein and 0, 5, 10, 15, and 20% olive oil levels were produced and further fermented with a starter culture suitable for plant matrices. Emulsion stability was evaluated through particle size, ζ-potential, and back-scattered light changes over 7 h. Gel hardness and oscillation measurements of the fermented gels were taken after 1 and 7 days of storage under refrigeration. The water-holding capacity of the gels was measured after 7 days of storage and their microstructure was visualized with confocal microscopy. Results indicate that all PPI emulsions were physically stable after 7 h. Indeed, ζ-potential did not change significantly over time in PPI emulsions, a bimodal particle size distribution was observed in all samples, and no significant variation was observed after 7 h in any of the samples. Fermentation time oscillated between 5.5 and 7 h in all samples. Higher oil content led to weaker gels and lower elastic modulus and no significant changes in gel hardness were observed over 7 days of storage under refrigeration in closed containers. Water-holding capacity increased in samples with higher olive oil content. Based on our results, an optimal pea protein matrix for fermentation-induced pea protein gels can be produced with 10% protein content and 10% olive oil levels without compromising gel hardness. Full article
Show Figures

Graphical abstract

16 pages, 2598 KiB  
Article
Inhibitory Mechanism of Baicalein on Acetylcholinesterase: Inhibitory Interaction, Conformational Change, and Computational Simulation
by Yijing Liao, Xing Hu, Junhui Pan and Guowen Zhang
Foods 2022, 11(2), 168; https://doi.org/10.3390/foods11020168 - 10 Jan 2022
Cited by 24 | Viewed by 3089
Abstract
Alzheimer’s disease (AD) is the most prevalent chronic neurodegenerative disease in elderly individuals, causing dementia. Acetylcholinesterase (AChE) is regarded as one of the most popular drug targets for AD. Herbal secondary metabolites are frequently cited as a major source of AChE inhibitors. In [...] Read more.
Alzheimer’s disease (AD) is the most prevalent chronic neurodegenerative disease in elderly individuals, causing dementia. Acetylcholinesterase (AChE) is regarded as one of the most popular drug targets for AD. Herbal secondary metabolites are frequently cited as a major source of AChE inhibitors. In the current study, baicalein, a typical bioactive flavonoid, was found to inhibit AChE competitively, with an associated IC50 value of 6.42 ± 0.07 µM, through a monophasic kinetic process. The AChE fluorescence quenching by baicalein was a static process. The binding constant between baicalein and AChE was an order of magnitude of 104 L mol−1, and hydrogen bonding and hydrophobic interaction were the major forces for forming the baicalein−AChE complex. Circular dichroism analysis revealed that baicalein caused the AChE structure to shrink and increased its surface hydrophobicity by increasing the α-helix and β-turn contents and decreasing the β-sheet and random coil structure content. Molecular docking revealed that baicalein predominated at the active site of AChE, likely tightening the gorge entrance and preventing the substrate from entering and binding with the enzyme, resulting in AChE inhibition. The preceding findings were confirmed by molecular dynamics simulation. The current study provides an insight into the molecular-level mechanism of baicalein interaction with AChE, which may offer new ideas for the research and development of anti-AD functional foods and drugs. Full article
Show Figures

Graphical abstract

17 pages, 18844 KiB  
Review
Pigmented Potatoes: A Potential Panacea for Food and Nutrition Security and Health?
by Callistus Bvenura, Hildegard Witbooi and Learnmore Kambizi
Foods 2022, 11(2), 175; https://doi.org/10.3390/foods11020175 - 10 Jan 2022
Cited by 26 | Viewed by 4150
Abstract
Although there are over 4000 potato cultivars in the world, only a few have been commercialized due to their marketability and shelf-life. Most noncommercialized cultivars are pigmented and found in remote regions of the world. White-fleshed potatoes are well known for their energy-enhancing [...] Read more.
Although there are over 4000 potato cultivars in the world, only a few have been commercialized due to their marketability and shelf-life. Most noncommercialized cultivars are pigmented and found in remote regions of the world. White-fleshed potatoes are well known for their energy-enhancing complex carbohydrates; however, pigmented cultivars are potentially high in health-promoting polyphenolic compounds. Therefore, we reveal the comprehensive compositions of pigmented cultivars and associated potential health benefits, including their potential role in ameliorating hunger, food, and nutrition insecurity, and their prospects. The underutilization of such resources is a direct threat to plant-biodiversity and local traditions and cultures. Full article
Show Figures

Figure 1

15 pages, 1619 KiB  
Article
Food Behavior in Emergency Time: Wild Plant Use for Human Nutrition during the Conflict in Syria
by Naji Sulaiman, Andrea Pieroni, Renata Sõukand and Zbynek Polesny
Foods 2022, 11(2), 177; https://doi.org/10.3390/foods11020177 - 10 Jan 2022
Cited by 31 | Viewed by 6622
Abstract
Wild food plants (WFPs) have been an important source of human nutrition since ancient times, and it particularly revives when conventional food is not available due to emergency situations, such as natural disasters and conflicts. The war in Syria has entered 10 years [...] Read more.
Wild food plants (WFPs) have been an important source of human nutrition since ancient times, and it particularly revives when conventional food is not available due to emergency situations, such as natural disasters and conflicts. The war in Syria has entered 10 years since it started in 2011, and it has caused the largest war-related crises since World War II. Nearly 60% of the Syrian population (12.4 million people) are food-insecure. WFPs are already culturally important in the region, and may be supplementing local diets during this conflict. Our study aimed to uncover the conflict’s effect on the use of WFPs and to know what species are consumed by local people during the current crisis. The fieldwork was carried out between March 2020 and March 2021 in the Tartus governorate located in the coastal region of Syria. Semi-structured interviews were conducted with 50 participants (26 women and 24 men) distributed in 26 villages along the study area. We recorded the vernacular names, uses, plant parts used, modes of preparation and consumption, change in WFP use before and during the conflict, and informants’ perceptions towards WFPs. We documented 75 wild food plant species used for food and drink. Almost two-thirds (64%) of informants reported an increase in their reliance on wild plants as a food source during the conflict. The species of Origanum syriacum, Rhus coriaria, Eryngium creticum, and Cichorium intybus were among the most quoted species by informants. Sleeq (steamed leafy vegetables), Zaatar (breakfast/dinner food), and Louf (soup) were the most popular wild plant-based dishes. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

17 pages, 5387 KiB  
Article
Extraction, Purification and In Vitro Antioxidant Activity Evaluation of Phenolic Compounds in California Olive Pomace
by Hefei Zhao, Roberto J. Avena-Bustillos and Selina C. Wang
Foods 2022, 11(2), 174; https://doi.org/10.3390/foods11020174 - 10 Jan 2022
Cited by 30 | Viewed by 6683
Abstract
Olive pomace (OP) is a valuable food byproduct that contains natural phenolic compounds with health benefits related to their antioxidant activities. Few investigations have been conducted on OP from the United States while many studies on European OP have been reported. OP of [...] Read more.
Olive pomace (OP) is a valuable food byproduct that contains natural phenolic compounds with health benefits related to their antioxidant activities. Few investigations have been conducted on OP from the United States while many studies on European OP have been reported. OP of Arbequina, the most common cultivar from California, was collected and extracted by water, 70% methanol and 70% ethanol, followed by purification using macroporous absorbing resin. Results showed that the extractable total phenolic content (TPC) was 36–43 mg gallic acid equivalents (GAE)/g in pitted, drum-dried defatted olive pomace (DOP), with major contributions from hydroxytyrosol, oleuropein, rutin, verbascoside, 4-hydroxyphenyl acetic acid, hydroxytyrosol-glucoside and tyrosol-glucoside. Macroporous resin purification increased TPC by 4.6 times the ethanol crude extracts of DOP, while removing 37.33% total sugar. The antioxidant activities increased 3.7 times Trolox equivalents (TrE) by DPPH and 4.7 times TrE by ferric reducing antioxidant power (FRAP) in the resin purified extracts compared to the ethanol crude extracts. This study provided a new understanding of the extraction of the bioactive compounds from OP which could lead to practical applications as natural antioxidants, preservatives and antimicrobials in clean-label foods in the US. Full article
Show Figures

Figure 1

23 pages, 1420 KiB  
Review
Exopolysaccharides Produced by Lactic Acid Bacteria: From Biosynthesis to Health-Promoting Properties
by Dominika Jurášková, Susana C. Ribeiro and Celia C. G. Silva
Foods 2022, 11(2), 156; https://doi.org/10.3390/foods11020156 - 8 Jan 2022
Cited by 192 | Viewed by 18412
Abstract
The production of exopolysaccharides (EPS) by lactic acid bacteria (LAB) has attracted particular interest in the food industry. EPS can be considered as natural biothickeners as they are produced in situ by LAB and improve the rheological properties of fermented foods. Moreover, much [...] Read more.
The production of exopolysaccharides (EPS) by lactic acid bacteria (LAB) has attracted particular interest in the food industry. EPS can be considered as natural biothickeners as they are produced in situ by LAB and improve the rheological properties of fermented foods. Moreover, much research has been conducted on the beneficial effects of EPS produced by LAB on modulating the gut microbiome and promoting health. The EPS, which varies widely in composition and structure, may have diverse health effects, such as glycemic control, calcium and magnesium absorption, cholesterol-lowering, anticarcinogenic, immunomodulatory, and antioxidant effects. In this article, the latest advances on structure, biosynthesis, and physicochemical properties of LAB-derived EPS are described in detail. This is followed by a summary of up-to-date methods used to detect, characterize and elucidate the structure of EPS produced by LAB. In addition, current strategies on the use of LAB-produced EPS in food products have been discussed, focusing on beneficial applications in dairy products, gluten-free bakery products, and low-fat meat products, as they positively influence the consistency, stability, and quality of the final product. Highlighting is also placed on reports of health-promoting effects, with particular emphasis on prebiotic, immunomodulatory, antioxidant, cholesterol-lowering, anti-biofilm, antimicrobial, anticancer, and drug-delivery activities. Full article
(This article belongs to the Topic Probiotics, Prebiotics and Postbiotics in Human Health)
Show Figures

Figure 1

19 pages, 1921 KiB  
Article
Effect of the Post-Harvest Processing on Protein Modification in Green Coffee Beans by Phenolic Compounds
by Gustavo A. Figueroa Campos, Johannes G. K. T. Kruizenga, Sorel Tchewonpi Sagu, Steffen Schwarz, Thomas Homann, Andreas Taubert and Harshadrai M. Rawel
Foods 2022, 11(2), 159; https://doi.org/10.3390/foods11020159 - 8 Jan 2022
Cited by 18 | Viewed by 5304
Abstract
The protein fraction, important for coffee cup quality, is modified during post-harvest treatment prior to roasting. Proteins may interact with phenolic compounds, which constitute the major metabolites of coffee, where the processing affects these interactions. This allows the hypothesis that the proteins are [...] Read more.
The protein fraction, important for coffee cup quality, is modified during post-harvest treatment prior to roasting. Proteins may interact with phenolic compounds, which constitute the major metabolites of coffee, where the processing affects these interactions. This allows the hypothesis that the proteins are denatured and modified via enzymatic and/or redox activation steps. The present study was initiated to encompass changes in the protein fraction. The investigations were limited to major storage protein of green coffee beans. Fourteen Coffea arabica samples from various processing methods and countries were used. Different extraction protocols were compared to maintain the status quo of the protein modification. The extracts contained about 4–8 µg of chlorogenic acid derivatives per mg of extracted protein. High-resolution chromatography with multiple reaction monitoring was used to detect lysine modifications in the coffee protein. Marker peptides were allocated for the storage protein of the coffee beans. Among these, the modified peptides K.FFLANGPQQGGK.E and R.LGGK.T of the α-chain and R.ITTVNSQK.I and K.VFDDEVK.Q of β-chain were detected. Results showed a significant increase (p < 0.05) of modified peptides from wet processed green beans as compared to the dry ones. The present study contributes to a better understanding of the influence of the different processing methods on protein quality and its role in the scope of coffee cup quality and aroma. Full article
Show Figures

Graphical abstract

14 pages, 329 KiB  
Review
Vegan Egg: A Future-Proof Food Ingredient?
by Fatma Boukid and Mohammed Gagaoua
Foods 2022, 11(2), 161; https://doi.org/10.3390/foods11020161 - 8 Jan 2022
Cited by 49 | Viewed by 14825
Abstract
Vegan eggs are designed with the aim to provide a healthier and more sustainable alternative to regular eggs. The major drivers of this industry are the increasing prevalence of egg allergies, awareness towards environmental sustainability, and the shift to vegan diets. This study [...] Read more.
Vegan eggs are designed with the aim to provide a healthier and more sustainable alternative to regular eggs. The major drivers of this industry are the increasing prevalence of egg allergies, awareness towards environmental sustainability, and the shift to vegan diets. This study intends to discuss, for the first time, the vegan egg market, including their formulation, nutritional aspects, and some applications (i.e., mayonnaise and bakery products). Recreating the complete functionality of eggs using plant-based ingredients is very challenging due to the complexity of eggs. Current, but scarce, research in this field is focused on making mixtures of plant-based ingredients to fit specific food formulations. Nutritionally, providing vegan eggs with similar or higher nutritional value to that of eggs can be of relevance to attract health-conscious consumers. Claims such as clean labels, natural, vegan, animal-free, gluten-free, and/or cholesterol-free can further boost the position of vegan eggs in the market in the coming year. At present, this market is still in its infancy stages, and clear regulations of labeling, safety, and risk assessment are deemed mandatory to organize the sector, and protect consumers. Full article
(This article belongs to the Special Issue Physicochemical and Sensory Evaluation of Grain-Based Food)
Show Figures

Graphical abstract

19 pages, 800 KiB  
Article
Chemical Characterization of Different Products from the Tunisian Opuntia ficus-indica (L.) Mill.
by Ambrogina Albergamo, Angela Giorgia Potortí, Giuseppa Di Bella, Nawres Ben Amor, Giovanna Lo Vecchio, Vincenzo Nava, Rossana Rando, Hedi Ben Mansour and Vincenzo Lo Turco
Foods 2022, 11(2), 155; https://doi.org/10.3390/foods11020155 - 7 Jan 2022
Cited by 45 | Viewed by 5351
Abstract
Various dried (by-)products from the Tunisian O. ficus-indica were elucidated for their proximate composition, fatty acid (FA) composition, inorganic elements, sugars, and polyphenols. Nopal and prickly pear peel and seeds were abundant in fiber (respectively, 28.39, 12.54, and 16.28%). Seeds had also high [...] Read more.
Various dried (by-)products from the Tunisian O. ficus-indica were elucidated for their proximate composition, fatty acid (FA) composition, inorganic elements, sugars, and polyphenols. Nopal and prickly pear peel and seeds were abundant in fiber (respectively, 28.39, 12.54, and 16.28%). Seeds had also high protein (17.34%) and may be source of an edible oil, due to lipids (9.65%) poor in saturated FAs (14.12%) and rich in linoleic acid (61.11%). Nopal and peel showed the highest levels of Mg (493.57 and 345.19 mg/100 g), K (6949.57 and 1820.83 mg/100 g), Mn (59.73 and 46.86 mg/Kg) and Fe (23.15 and 15.23 mg/Kg), while the fruit pulp predominantly constituted of sugars, glucose and arabinose being predominant (42.57 and 13.56 g/100 g). Total polyphenols widely varied among the Opuntia products (108.36–4785.36 mg GAE/100 g), being mainly represented by hydroxycinnamic and hydroxybenzoic acids, and flavonoids as well. In particular, peel may be revalorized for these valuable bioactives, including 4-hydroxybenzoic acid (484.95 mg/100 g), cinnamic acid (318.95 mg/100 g), rutin (818.94 mg/100 g), quercetin (605.28 mg/100 g), and several isorhamnetin and kaempferol glycosides. Overall, the Tunisian prickly pear cactus could encourage a sustainable production, an effective waste management, and may provide several benefits for human health, in accordance with the model of the Mediterranean diet. Full article
Show Figures

Figure 1

26 pages, 1897 KiB  
Perspective
Towards Sustainable Shifts to Healthy Diets and Food Security in Sub-Saharan Africa with Climate-Resilient Crops in Bread-Type Products: A Food System Analysis
by Martijn W. J. Noort, Stefano Renzetti, Vincent Linderhof, Gerrie E. du Rand, Nadéne J. M. M. Marx-Pienaar, Henriëtte L. de Kock, Nomzamo Magano and John R. N. Taylor
Foods 2022, 11(2), 135; https://doi.org/10.3390/foods11020135 - 6 Jan 2022
Cited by 78 | Viewed by 13816
Abstract
Massive urbanization and increasing disposable incomes favor a rapid transition in diets and lifestyle in sub-Saharan Africa (SSA). As a result, the SSA population is becoming increasingly vulnerable to the double burden of malnutrition and obesity. This, combined with the increasing pressure to [...] Read more.
Massive urbanization and increasing disposable incomes favor a rapid transition in diets and lifestyle in sub-Saharan Africa (SSA). As a result, the SSA population is becoming increasingly vulnerable to the double burden of malnutrition and obesity. This, combined with the increasing pressure to produce sufficient food and provide employment for this growing population together with the threat of climate change-induced declining crop yields, requires urgent sustainable solutions. Can an increase in the cultivation of climate-resilient crops (CRCs) and their utilization to produce attractive, convenient and nutritious bread products contribute to climate change adaptation and healthy and sustainable diets? A food system analysis of the bread food value chain in SSA indicates that replacement of refined, mostly imported, wheat in attractive bread products could (1) improve food and nutrition security, (2) bring about a shift to more nutritionally balanced diets, (3) increase economic inclusiveness and equitable benefits, and (4) improve sustainability and resilience of the food system. The food system analysis also provided systematic insight into the challenges and hurdles that need to be overcome to increase the availability, affordability and uptake of CRCs. Proposed interventions include improving the agronomic yield of CRCs, food product technology, raising consumer awareness and directing policies. Overall, integrated programs involving all stakeholders in the food system are needed. Full article
Show Figures

Figure 1

19 pages, 325 KiB  
Article
An Exploratory Study of the Purchase and Consumption of Beef: Geographical and Cultural Differences between Spain and Brazil
by Danielle Rodrigues Magalhaes, María Teresa Maza, Ivanor Nunes do Prado, Giovani Fiorentini, Jackeline Karsten Kirinus and María del Mar Campo
Foods 2022, 11(1), 129; https://doi.org/10.3390/foods11010129 - 5 Jan 2022
Cited by 31 | Viewed by 4504
Abstract
Beef consumption and production in Spain and Brazil are different with the consumption of beef in Brazil being three times higher than in Spain. In addition, there are variations in the economic value of production and in the traceability system. Therefore, the aim [...] Read more.
Beef consumption and production in Spain and Brazil are different with the consumption of beef in Brazil being three times higher than in Spain. In addition, there are variations in the economic value of production and in the traceability system. Therefore, the aim of this research was to understand the purchasing and consumption patterns using the customer behavior analysis technique of focus groups, which analyzed motivations for the consumption of beef, classifying their preferences by the intrinsic and extrinsic attributes at the time of purchase. The key aspect of the consumption of beef, both for Spanish and Brazilian consumers, was personal satisfaction/flavor. Spanish consumers were more conscious than Brazilians of the beneficial and harmful qualities that meat provides. The presence of fat was the factor that most restricted intake in both countries. The most important intrinsic attributes for Spanish and Brazilian consumers were the visual aspects of the meat: color, freshness, and the quantity and disposition of fat. The most important extrinsic characteristics were the price and expiration date. Spanish consumers see packaged meat as convenient and safe, although it is considered by Brazilians to be over-manipulated. The traceability certification on the label provides credibility to the product for the Spanish but only partially for Brazilians. Full article
(This article belongs to the Special Issue Sensory and Quality Assessments of Foods of Animal Origin)
18 pages, 2073 KiB  
Article
Enzymatic Hydrolysis and Fermentation of Pea Protein Isolate and Its Effects on Antigenic Proteins, Functional Properties, and Sensory Profile
by Verónica García Arteaga, Victoria Demand, Karolin Kern, Andrea Strube, Michael Szardenings, Isabel Muranyi, Peter Eisner and Ute Schweiggert-Weisz
Foods 2022, 11(1), 118; https://doi.org/10.3390/foods11010118 - 4 Jan 2022
Cited by 46 | Viewed by 8186
Abstract
Combinations of enzymatic hydrolysis using different proteolytic enzymes (papain, Esperase®, trypsin) and lactic fermentation with Lactobacillus plantarum were used to alter potential pea allergens, the functional properties and sensory profile of pea protein isolate (PPI). The order in which the treatments [...] Read more.
Combinations of enzymatic hydrolysis using different proteolytic enzymes (papain, Esperase®, trypsin) and lactic fermentation with Lactobacillus plantarum were used to alter potential pea allergens, the functional properties and sensory profile of pea protein isolate (PPI). The order in which the treatments were performed had a major impact on the changes in the properties of the pea protein isolate; the highest changes were seen with the combination of fermentation followed by enzymatic hydrolysis. SDS-PAGE, gel filtration, and ELISA results showed changes in the protein molecular weight and a reduced immunogenicity of treated samples. Treated samples showed significantly increased protein solubility at pH 4.5 (31.19–66.55%) and at pH 7.0 (47.37–74.95%), compared to the untreated PPI (6.98% and 40.26%, respectively). The foaming capacity was significantly increased (1190–2575%) compared to the untreated PPI (840%). The treated PPI showed reduced pea characteristic off-flavors, where only the treatment with Esperase® significantly increased the bitterness. The results from this study suggest that the combination of enzymatic hydrolysis and lactic fermentation is a promising method to be used in the food industry to produce pea protein ingredients with higher functionality and a highly neutral taste. A reduced detection signal of polyclonal rabbit anti-pea-antibodies against the processed protein preparations in ELISA furthermore might indicate a decreased immunological reaction after consumption. Full article
(This article belongs to the Special Issue Analytical Methods for Allergen Control in Food Processing)
Show Figures

Graphical abstract

18 pages, 1294 KiB  
Review
Application of High-Intensity Ultrasound to Improve Food Processing Efficiency: A Review
by Prasad Chavan, Pallavi Sharma, Sajeev Rattan Sharma, Tarsem Chand Mittal and Amit K. Jaiswal
Foods 2022, 11(1), 122; https://doi.org/10.3390/foods11010122 - 4 Jan 2022
Cited by 138 | Viewed by 16992
Abstract
The use of non-thermal processing technologies has grown in response to an ever-increasing demand for high-quality, convenient meals with natural taste and flavour that are free of chemical additions and preservatives. Food processing plays a crucial role in addressing food security issues by [...] Read more.
The use of non-thermal processing technologies has grown in response to an ever-increasing demand for high-quality, convenient meals with natural taste and flavour that are free of chemical additions and preservatives. Food processing plays a crucial role in addressing food security issues by reducing loss and controlling spoilage. Among the several non-thermal processing methods, ultrasound technology has shown to be very beneficial. Ultrasound processing, whether used alone or in combination with other methods, improves food quality significantly and is thus considered beneficial. Cutting, freezing, drying, homogenization, foaming and defoaming, filtration, emulsification, and extraction are just a few of the applications for ultrasound in the food business. Ultrasounds can be used to destroy germs and inactivate enzymes without affecting the quality of the food. As a result, ultrasonography is being hailed as a game-changing processing technique for reducing organoleptic and nutritional waste. This review intends to investigate the underlying principles of ultrasonic generation and to improve understanding of their applications in food processing to make ultrasonic generation a safe, viable, and innovative food processing technology, as well as investigate the technology’s benefits and downsides. The breadth of ultrasound’s application in the industry has also been examined. This will also help researchers and the food sector develop more efficient strategies for frequency-controlled power ultrasound in food processing applications. Full article
(This article belongs to the Special Issue Application of Emerging Nonthermal Technologies in the Food Industry)
Show Figures

Figure 1

28 pages, 534 KiB  
Review
Development of Novel Pasta Products with Evidence Based Impacts on Health—A Review
by Mike Sissons
Foods 2022, 11(1), 123; https://doi.org/10.3390/foods11010123 - 4 Jan 2022
Cited by 39 | Viewed by 11202
Abstract
Pasta made from durum wheat is a widely consumed worldwide and is a healthy and convenient food. In the last two decades, there has been much research effort into improving the nutritional value of pasta by inclusion of nonconventional ingredients due to the [...] Read more.
Pasta made from durum wheat is a widely consumed worldwide and is a healthy and convenient food. In the last two decades, there has been much research effort into improving the nutritional value of pasta by inclusion of nonconventional ingredients due to the demand by health-conscious consumers for functional foods. These ingredients can affect the technological properties of the pasta, but their health impacts are not always measured rather inferred. This review provides an overview of pasta made from durum wheat where the semolina is substituted in part with a range of ingredients (barley fractions, dietary fibre sources, fish ingredients, herbs, inulin, resistant starches, legumes, vegetables and protein extracts). Impacts on pasta technological properties and in vitro measures of phytonutrient enhancement or changes to starch digestion are included. Emphasis is on the literature that provides clinical or animal trial data on the health benefits of the functional pasta. Full article
(This article belongs to the Special Issue Durum Wheat Products - Recent Advances)
Show Figures

Graphical abstract

15 pages, 1035 KiB  
Article
HS-SPME Combined with GC-MS/O to Analyze the Flavor of Strong Aroma Baijiu Daqu
by Zhe Wang, Song Wang, Pengfei Liao, Lu Chen, Jinyuan Sun, Baoguo Sun, Dongrui Zhao, Bowen Wang and Hehe Li
Foods 2022, 11(1), 116; https://doi.org/10.3390/foods11010116 - 3 Jan 2022
Cited by 68 | Viewed by 6097
Abstract
Daqu has gained wide attention because it is an essential source of microorganisms and flavor in baijiu production. In this study, HS-SPME combined with GC-MS/O was used to analyze the volatile flavor components of Strong aroma baijiu Daqu. DI-GC-O was used to [...] Read more.
Daqu has gained wide attention because it is an essential source of microorganisms and flavor in baijiu production. In this study, HS-SPME combined with GC-MS/O was used to analyze the volatile flavor components of Strong aroma baijiu Daqu. DI-GC-O was used to choose the best extraction fiber to extract the representative overall aroma profile of Daqu. A total of 139 compounds were identified in the six different maturity stages of Daqu, and these compounds are of different types and concentrations. HS-SPME combined with GC-MS/O was used to analyze the aroma active substances in the finished Daqu, and a total of 43 aroma compounds were identified. The OAVs of 21 aromatic compounds were calculated based on the quantitative analysis results of MHS-SPME. Eighteen compounds with OAVs ≥ 1 made significant contributions to the overall aroma of Daqu, including guaiacol, 4-ethyl-2-methoxy phenol, 2-ethyl-3,5-dimethylpyrazine, etc. Full article
Show Figures

Graphical abstract

16 pages, 807 KiB  
Review
Bioproduction of 2-Phenylethanol through Yeast Fermentation on Synthetic Media and on Agro-Industrial Waste and By-Products: A Review
by Sara Mitri, Mohamed Koubaa, Richard G. Maroun, Tristan Rossignol, Jean-Marc Nicaud and Nicolas Louka
Foods 2022, 11(1), 109; https://doi.org/10.3390/foods11010109 - 1 Jan 2022
Cited by 63 | Viewed by 8565
Abstract
Due to its pleasant rosy scent, the aromatic alcohol 2-phenylethanol (2-PE) has a huge market demand. Since this valuable compound is used in food, cosmetics and pharmaceuticals, consumers and safety regulations tend to prefer natural methods for its production rather than the synthetic [...] Read more.
Due to its pleasant rosy scent, the aromatic alcohol 2-phenylethanol (2-PE) has a huge market demand. Since this valuable compound is used in food, cosmetics and pharmaceuticals, consumers and safety regulations tend to prefer natural methods for its production rather than the synthetic ones. Natural 2-PE can be either produced through the extraction of essential oils from various flowers, including roses, hyacinths and jasmine, or through biotechnological routes. In fact, the rarity of natural 2-PE in flowers has led to the inability to satisfy the large market demand and to a high selling price. Hence, there is a need to develop a more efficient, economic, and environmentally friendly biotechnological approach as an alternative to the conventional industrial one. The most promising method is through microbial fermentation, particularly using yeasts. Numerous yeasts have the ability to produce 2-PE using l-Phe as precursor. Some agro-industrial waste and by-products have the particularity of a high nutritional value, making them suitable media for microbial growth, including the production of 2-PE through yeast fermentation. This review summarizes the biotechnological production of 2-PE through the fermentation of different yeasts on synthetic media and on various agro-industrial waste and by-products. Full article
Show Figures

Figure 1

36 pages, 2246 KiB  
Review
Geographical Origin Assessment of Extra Virgin Olive Oil via NMR and MS Combined with Chemometrics as Analytical Approaches
by Francesca Calò, Chiara Roberta Girelli, Selina C. Wang and Francesco Paolo Fanizzi
Foods 2022, 11(1), 113; https://doi.org/10.3390/foods11010113 - 1 Jan 2022
Cited by 41 | Viewed by 6422
Abstract
Geographical origin assessment of extra virgin olive oil (EVOO) is recognised worldwide as raising consumers’ awareness of product authenticity and the need to protect top-quality products. The need for geographical origin assessment is also related to mandatory legislation and/or the obligations of true [...] Read more.
Geographical origin assessment of extra virgin olive oil (EVOO) is recognised worldwide as raising consumers’ awareness of product authenticity and the need to protect top-quality products. The need for geographical origin assessment is also related to mandatory legislation and/or the obligations of true labelling in some countries. Nevertheless, official methods for such specific authentication of EVOOs are still missing. Among the analytical techniques useful for certification of geographical origin, nuclear magnetic resonance (NMR) and mass spectroscopy (MS), combined with chemometrics, have been widely used. This review considers published works describing the use of these analytical methods, supported by statistical protocols such as multivariate analysis (MVA), for EVOO origin assessment. The research has shown that some specific countries, generally corresponding to the main worldwide producers, are more interested than others in origin assessment and certification. Some specific producers such as Italian EVOO producers may have been focused on this area because of consumers’ interest and/or intrinsic economical value, as testified also by the national concern on the topic. Both NMR- and MS-based approaches represent a mature field where a general validation method for EVOOs geographic origin assessment could be established as a reference recognised procedure. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

16 pages, 2649 KiB  
Review
Meat Analogues in the Perspective of Recent Scientific Research: A Review
by Klaudia Kołodziejczak, Anna Onopiuk, Arkadiusz Szpicer and Andrzej Poltorak
Foods 2022, 11(1), 105; https://doi.org/10.3390/foods11010105 - 31 Dec 2021
Cited by 112 | Viewed by 15774
Abstract
There are many reasons why consumers and food producers are looking for alternatives to meat and meat products, which includes the following: health, environmental or ethical aspects. This study reviews recent scientific reports on meat analogues. The scope of the review includes the [...] Read more.
There are many reasons why consumers and food producers are looking for alternatives to meat and meat products, which includes the following: health, environmental or ethical aspects. This study reviews recent scientific reports on meat analogues. The scope of the review includes the following: formulation and nutritional value; health safety and legal regulations; manufacturing and processing technologies including the latest developments in this area; product availability on the food market; and consumer attitudes towards meat analogues. The analysis of the literature data identified technological challenges, particularly in improving consumer acceptability of meat analogues. Among the risks and limitations associated with the production of meat analogues, the following were identified: contamination from raw materials and the risk of harmful by-products due to intensive processing; legal issues of product nomenclature; and consumer attitudes towards substituting meat with plant-based alternatives. The need for further research in this area, particularly on the nutritional value and food safety of meat analogues, was demonstrated. Full article
Show Figures

Graphical abstract

14 pages, 1678 KiB  
Article
Textural, Sensory and Volatile Compounds Analyses in Formulations of Sausages Analogue Elaborated with Edible Mushrooms and Soy Protein Isolate as Meat Substitute
by Xinyue Yuan, Wei Jiang, Dianwei Zhang, Huilin Liu and Baoguo Sun
Foods 2022, 11(1), 52; https://doi.org/10.3390/foods11010052 - 27 Dec 2021
Cited by 61 | Viewed by 9573
Abstract
In this study, edible mushroom and soybean protein isolate (SPI) were used to prepare a fibrous meat analogue using thermos-extrusion and the extruded mushroom-based meat analogue as meat replacer was further developed with different formulations in fabricating sausage analogues. The effect of water [...] Read more.
In this study, edible mushroom and soybean protein isolate (SPI) were used to prepare a fibrous meat analogue using thermos-extrusion and the extruded mushroom-based meat analogue as meat replacer was further developed with different formulations in fabricating sausage analogues. The effect of water content (35%, 70% and 100%), three types of edible mushroom (Lentinus edodes, Pleurotus ostreatus, Coprinus comatus and a mixture of equal proportions) and their amounts (from 15% to 100%) on the physicochemical and structural profiles were studied. The results showed that the extruded mushroom-based meat analogue prepared from Coprinus comatus (15% addition) and SPI with a water content of 35% exhibited close textural profiles to real beef. Furthermore, a texture profile analysis (TPA) combined with a principal component analysis (PCA) was conducted to compare and assess the textural traits of the sausage analogues with similar commercial products. The characterization and comparison of the flavor profile of post-processing mushroom-based meat sausage analogues (MMSA) were performed using headspace-phase microextraction (HS-SPME), coupled with gas chromatography-mass spectrometry (GC-MS). A total of 64 volatile compounds were identified, and the content in dried-processing treatment was significantly higher than for steamed-processing, which indicated that the natural fermentation process contributed to the increase in aroma substances in the non-animal sourced sausage. This study developed a feasible method to fabricate a meat replacement and to create high added-value products, which offer an opportunity for developing non-animal products with satisfactory sensory properties and flavor profiles. Full article
(This article belongs to the Topic Innovative Food Processing Technologies)
Show Figures

Figure 1

18 pages, 661 KiB  
Review
Microalgae as Sources of High-Quality Protein for Human Food and Protein Supplements
by Yanwen Wang, Sean M. Tibbetts and Patrick J. McGinn
Foods 2021, 10(12), 3002; https://doi.org/10.3390/foods10123002 - 4 Dec 2021
Cited by 219 | Viewed by 14932
Abstract
As a result of population growth, an emerging middle-class, and a more health-conscious society concerned with overconsumption of fats and carbohydrates, dietary protein intake is on the rise. To address this rapid change in the food market, and the subsequent high demand for [...] Read more.
As a result of population growth, an emerging middle-class, and a more health-conscious society concerned with overconsumption of fats and carbohydrates, dietary protein intake is on the rise. To address this rapid change in the food market, and the subsequent high demand for protein products, agriculture, aquaculture, and the food industry have been working actively in recent years to increase protein product output from both production and processing aspects. Dietary proteins derived from animal sources are of the highest quality, containing well-balanced profiles of essential amino acids that generally exceed those of other food sources. However, as a result of studies highlighting low production efficiency (e.g., feed to food conversion) and significant environmental impacts, together with the negative health impacts associated with the dietary intake of some animal products, especially red meats, the consumption of animal proteins has been remaining steady or even declining over the past few decades. To fill this gap, researchers and product development specialists at all levels have been working closely to discover new sources of protein, such as plant-based ingredients. In this regard, microalgae have been recognized as strategic crops, which, due to their vast biological diversity, have distinctive phenotypic traits and interactions with the environment in the production of biomass and protein, offering possibilities of production of large quantities of microalgal protein through manipulating growing systems and conditions and bioengineering technologies. Despite this, microalgae remain underexploited crops and research into their nutritional values and health benefits is in its infancy. In fact, only a small handful of microalgal species are being produced at a commercial scale for use as human food or protein supplements. This review is intended to provide an overview on microalgal protein content, its impact by environmental factors, its protein quality, and its associated evaluation methods. We also attempt to present the current challenges and future research directions, with a hope to enhance the research, product development, and commercialization, and ultimately meet the rapidly increasing market demand for high-quality protein products. Full article
Show Figures

Figure 1

18 pages, 333 KiB  
Review
Latest Developments in Edible Coatings on Minimally Processed Fruits and Vegetables: A Review
by Amalia Carmen Miteluț, Elisabeta Elena Popa, Mihaela Cristina Drăghici, Paul Alexandru Popescu, Vlad Ioan Popa, Oana-Crina Bujor, Violeta Alexandra Ion and Mona Elena Popa
Foods 2021, 10(11), 2821; https://doi.org/10.3390/foods10112821 - 16 Nov 2021
Cited by 76 | Viewed by 11957
Abstract
The food industry nowadays is facing new challenges in terms of sustainability and health implications of packaging and processing techniques. Due to their desire for new and natural products coupled with changes in lifestyle, consumers are looking for food products that have been [...] Read more.
The food industry nowadays is facing new challenges in terms of sustainability and health implications of packaging and processing techniques. Due to their desire for new and natural products coupled with changes in lifestyle, consumers are looking for food products that have been less processed but possess longer shelf life and maintain nutritional and sensorial proprieties during storage. These requirements represent real challenges when dealing with highly perishable food products, such as fruits and vegetables. Thus, in recent years, edible coatings have been intensively developed and studied because of their capacity to improve the quality, shelf life, safety, and functionality of the treated products. Edible coatings can be applied through different techniques, like dipping, spraying, or coating, in order to control moisture transfer, gas exchange, or oxidative processes. Furthermore, some functional ingredients can be incorporated into an edible matrix and applied on the surface of foods, thus enhancing safety or even nutritional and sensory attributes. In the case of coated fruits and vegetables, their quality parameters, such as color, firmness, microbial load, decay ratio, weight loss, sensorial attributes, and nutritional parameters, which are very specific to the type of products and their storage conditions, should be carefully monitored. This review attempts to summarize recent studies of different edible coatings (polysaccharides, proteins, lipids, and composites) as carriers of functional ingredients (antimicrobials, texture enhancers, and nutraceuticals) applied on different minimally processed fruits and vegetables, highlighting the coating ingredients, the application methods and the effects on food shelf life and quality. Full article
15 pages, 3909 KiB  
Article
Development of Multifunctional Pullulan/Chitosan-Based Composite Films Reinforced with ZnO Nanoparticles and Propolis for Meat Packaging Applications
by Swarup Roy, Ruchir Priyadarshi and Jong-Whan Rhim
Foods 2021, 10(11), 2789; https://doi.org/10.3390/foods10112789 - 12 Nov 2021
Cited by 97 | Viewed by 5540
Abstract
Pullulan/chitosan-based multifunctional edible composite films were fabricated by reinforcing mushroom-mediated zinc oxide nanoparticles (ZnONPs) and propolis. The ZnONPs were synthesized using enoki mushroom extract and characterized using physicochemical methods. The mushroom-mediated ZnONPs showed an irregular shape with an average size of 26.7 ± [...] Read more.
Pullulan/chitosan-based multifunctional edible composite films were fabricated by reinforcing mushroom-mediated zinc oxide nanoparticles (ZnONPs) and propolis. The ZnONPs were synthesized using enoki mushroom extract and characterized using physicochemical methods. The mushroom-mediated ZnONPs showed an irregular shape with an average size of 26.7 ± 8.9 nm. The combined incorporation of ZnONPs and propolis pointedly improved the composite film’s UV-blocking property without losing transparency. The reinforcement with ZnONPs and propolis improved the mechanical strength of the pullulan/chitosan-based film by ~25%. Additionally, the water vapor barrier property and hydrophobicity of the film were slightly increased. In addition, the pullulan/chitosan-based biocomposite film exhibited good antioxidant activity due to the propolis and excellent antibacterial activity against foodborne pathogens due to the ZnONPs. The developed edible pullulan/chitosan-based film was used for pork belly packaging, and the peroxide value and total number of aerobic microorganisms were significantly reduced in meat wrapped with the pullulan/chitosan/ZnONPs/propolis film. Full article
Show Figures

Figure 1

16 pages, 4619 KiB  
Article
Astragalus Polysaccharides and Saponins Alleviate Liver Injury and Regulate Gut Microbiota in Alcohol Liver Disease Mice
by Jingxuan Zhou, Nanhai Zhang, Liang Zhao, Wei Wu, Liebing Zhang, Feng Zhou and Jingming Li
Foods 2021, 10(11), 2688; https://doi.org/10.3390/foods10112688 - 3 Nov 2021
Cited by 53 | Viewed by 4737
Abstract
Astragalus, a medical and edible plant in China, shows several bioactive properties. However, the role of astragalus in attenuating alcoholic liver disease (ALD) is less clear. The objective of this project is to investigate the improving effect of astragalus saponins (AS) and astragalus [...] Read more.
Astragalus, a medical and edible plant in China, shows several bioactive properties. However, the role of astragalus in attenuating alcoholic liver disease (ALD) is less clear. The objective of this project is to investigate the improving effect of astragalus saponins (AS) and astragalus polysaccharides (AP), which are the two primary constituents in astragalus on hepatic injury induced by alcohol, and the potential mechanisms of action. Different doses of AS (50 and 100 mg/kg bw) and AP (300 and 600 mg/kg bw) were orally given to alcohol-treated mice for four weeks. The results demonstrated that both AP and AS could reverse the increase of the levels of TC, TG, FFA, and LDL-C in serum, and the decrease of serum HDL-C content, as well as the elevation of hepatic TC and TG levels induced by alcohol. The activities of AST, ALT, ALP, and γ-GT in ALD mice were raised after AP and AS supplementation. The antioxidant markers (SOD, CAT, GSH, and GSH-Px) were obviously augmented and the pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and hepatic histological variations were alleviated by AP and AS, which was in line with the levels of oxidative stress-associated genes (Keap1, Nfe2l2, Nqo1, and Hmox1) and inflammation-associated genes (Tlr4, Myd88 and Nfkb1). In addition, AS exerted a more efficient effect than AP and the results presented dose proportionality. Moreover, AS and AP could modulate the intestinal microbiota disturbance induced by alcohol. Overall, AS and AP administration could ameliorate lipid accumulation in the serum and liver, as well as hepatic function, oxidative stress, inflammatory response, and gut flora disorders in mice as a result of alcohol. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

15 pages, 1067 KiB  
Review
Polyphenols: From Theory to Practice
by Alberto Bertelli, Marco Biagi, Maddalena Corsini, Giulia Baini, Giorgio Cappellucci and Elisabetta Miraldi
Foods 2021, 10(11), 2595; https://doi.org/10.3390/foods10112595 - 27 Oct 2021
Cited by 126 | Viewed by 14754
Abstract
Background: The importance of polyphenols in human health is well known; these compounds are common in foods, such as fruits, vegetables, spices, extra virgin olive oil and wine. On the other hand, the different factors that modulate the biological activity of these compounds [...] Read more.
Background: The importance of polyphenols in human health is well known; these compounds are common in foods, such as fruits, vegetables, spices, extra virgin olive oil and wine. On the other hand, the different factors that modulate the biological activity of these compounds are less well known. Conceptualization of the work: In this review we took into account about 200 relevant and recent papers on the following topics: “polyphenols bioavailability”, “polyphenols matrix effect”, “food matrix effect”, “polyphenols-cytochromes interaction”, after having reviewed and updated information on chemical classification and main biological properties of polyphenols, such as the antioxidant, anti-radical and anti-inflammatory activity, together with the tricky link between in vitro tests and clinical trials. Key findings: the issue of polyphenols bioavailability and matrix effect should be better taken into account when health claims are referred to polyphenols, thus considering the matrix effect, enzymatic interactions, reactions with other foods or genetic or gender characteristics that could interfere. We also discovered that in vitro studies often underrate the role of phytocomplexes and thus we provided practical hints to describe a clearer way to approach an investigation on polyphenols for a more resounding transfer to their use in medicine. Full article
Show Figures

Figure 1

23 pages, 394 KiB  
Review
A Review of Health-Beneficial Properties of Oats
by Devendra Paudel, Bandana Dhungana, Melanie Caffe and Padmanaban Krishnan
Foods 2021, 10(11), 2591; https://doi.org/10.3390/foods10112591 - 26 Oct 2021
Cited by 134 | Viewed by 51830
Abstract
Oat is among the food crops and ancient grains cultivated and consumed worldwide. It is gaining in popularity owing to its nutritional composition and multifunctional benefits of select bioactive compounds. Beta-glucan is an important component of dietary fiber found in oat grains. It [...] Read more.
Oat is among the food crops and ancient grains cultivated and consumed worldwide. It is gaining in popularity owing to its nutritional composition and multifunctional benefits of select bioactive compounds. Beta-glucan is an important component of dietary fiber found in oat grains. It is the major active compound in oats with proven cholesterol-lowering and antidiabetic effects. Oats also provide substantial levels of other bioactive compounds such as phenolic acids, tocols, sterols, avenacosides, and avenanthramides. The consumption of oats has been determined to be beneficial for human health by promoting immunomodulation and improving gut microbiota. In addition, oat consumption assists in preventing diseases such as atherosclerosis, dermatitis, and some forms of cancer. While much has been published in relation to oat nutrients and oat fibers and their impact on major diseases, the oat industries and consumers may benefit from greater knowledge and understanding of clinical effects, range of occurrence, distribution, therapeutic doses and food functional attributes of other oat bioactives such as avenanthramides and saponins as well as other anti-inflammatory agents found in the cereal. This review focuses on the various studies relevant to the contribution of the consumption of oats and oat-based products in preventing human diseases and promoting human health. Full article
(This article belongs to the Special Issue Dietary Bioactive Compound and Health)
14 pages, 4359 KiB  
Article
Formation of Secondary and Tertiary Volatile Compounds Resulting from the Lipid Oxidation of Rapeseed Oil
by Sandra Grebenteuch, Lothar W. Kroh, Stephan Drusch and Sascha Rohn
Foods 2021, 10(10), 2417; https://doi.org/10.3390/foods10102417 - 12 Oct 2021
Cited by 98 | Viewed by 10943
Abstract
The lipid oxidation of fats and oils leads to volatile organic compounds, having a decisive influence on the sensory quality of foods. To understand formation and degradation pathways and to evaluate the suitability of lipid-derived aldehydes as marker substances for the oxidative status [...] Read more.
The lipid oxidation of fats and oils leads to volatile organic compounds, having a decisive influence on the sensory quality of foods. To understand formation and degradation pathways and to evaluate the suitability of lipid-derived aldehydes as marker substances for the oxidative status of foods, the formation of secondary and tertiary lipid oxidation compounds was investigated with gas chromatography in rapeseed oils. After 120 min, up to 65 compounds were detected. In addition to secondary degradation products, tertiary products such as alkyl furans, ketones, and aldol condensation products were also found. The comparison of rapeseed oils, differing in their initial peroxide values, showed that the formation rate of secondary compounds was higher in pre-damaged oils. Simultaneously, a faster degradation, especially of unsaturated aldehydes, was observed. Consequently, the formation of tertiary products (e.g., alkyl furans, aldol adducts) from well-known lipid oxidation products (i.e., propanal, hexanal, 2-hexenal, and 2-nonenal) was investigated in model systems. The experiments showed that these compounds form the new substances in subsequent reactions, especially, when other compounds such as phospholipids are present. Hexanal and propanal are suitable as marker compounds in the early phase of lipid oxidation, but at an advanced stage they are subject to aldol condensation. Consequently, the detection of tertiary degradation products needs to be considered in advanced lipid oxidation. Full article
(This article belongs to the Special Issue New Insights into Lipid Oxidation in Foods)
Show Figures

Graphical abstract

22 pages, 372 KiB  
Review
Application of Natural Preservatives for Meat and Meat Products against Food-Borne Pathogens and Spoilage Bacteria: A Review
by Hwan Hee Yu, Young-Wook Chin and Hyun-Dong Paik
Foods 2021, 10(10), 2418; https://doi.org/10.3390/foods10102418 - 12 Oct 2021
Cited by 114 | Viewed by 14709
Abstract
Meat and meat products are excellent sources of nutrients for humans; however, they also provide a favorable environment for microbial growth. To prevent the microbiological contamination of livestock foods, synthetic preservatives, including nitrites, nitrates, and sorbates, have been widely used in the food [...] Read more.
Meat and meat products are excellent sources of nutrients for humans; however, they also provide a favorable environment for microbial growth. To prevent the microbiological contamination of livestock foods, synthetic preservatives, including nitrites, nitrates, and sorbates, have been widely used in the food industry due to their low cost and strong antibacterial activity. Use of synthetic chemical preservatives is recently being considered by customers due to concerns related to negative health issues. Therefore, the demand for natural substances as food preservatives has increased with the use of plant-derived and animal-derived products, and microbial metabolites. These natural preservatives inhibit the growth of spoilage microorganisms or food-borne pathogens by increasing the permeability of microbial cell membranes, interruption of protein synthesis, and cell metabolism. Natural preservatives can extend the shelf-life and inhibit the growth of microorganisms. However, they can also influence food sensory properties, including the flavor, taste, color, texture, and acceptability of food. To increase the applicability of natural preservatives, a number of strategies, including combinations of different preservatives or food preservation methods, such as active packaging systems and encapsulation, have been explored. This review summarizes the current applications of natural preservatives for meat and meat products. Full article
(This article belongs to the Special Issue Meat Quality and Health)
17 pages, 4175 KiB  
Article
Deep Eutectic Solvent-Assisted Extraction, Partially Structural Characterization, and Bioactivities of Acidic Polysaccharides from Lotus Leaves
by Ding-Tao Wu, Kang-Lin Feng, Ling Huang, Ren-You Gan, Yi-Chen Hu and Liang Zou
Foods 2021, 10(10), 2330; https://doi.org/10.3390/foods10102330 - 30 Sep 2021
Cited by 61 | Viewed by 3966
Abstract
Lotus leaves are often discarded as byproducts in the lotus industry. Polysaccharides are regarded as one of the essentially bioactive components in lotus leaves. Therefore, in order to promote the application of lotus leaves in the functional food industry, the deep eutectic solvent [...] Read more.
Lotus leaves are often discarded as byproducts in the lotus industry. Polysaccharides are regarded as one of the essentially bioactive components in lotus leaves. Therefore, in order to promote the application of lotus leaves in the functional food industry, the deep eutectic solvent (DES) assisted extraction of polysaccharides from lotus leaves (LLPs) was optimized, and structural and biological properties of LLPs extracted by DES and hot water were further investigated. At the optimal extraction conditions (water content of 61.0% in DES, extraction temperature of 92 °C, liquid-solid ratio of 31.0 mL/g and extraction time of 126 min), the maximum extraction yield (5.38%) was obtained. Furthermore, LLP-D extracted by DES and LLP-W extracted by hot water possessed the same sugar residues, such as 1,4-α-D-GalAp, 1,4-α-D-GalAMep, 1,3,6-β-D-Galp, 1,4-β-D-Galp, 1,5-α-L-Araf, and 1,2-α-L-Rhap, suggesting the presence of homogalacturonan (HG), rhamnogalacturonan I and arabinogalactan in both LLP-W and LLP-D. Notably, LLP-D was much richer in HG fraction than that of LLP-W, suggesting that the DES could assist to specifically extract HG from lotus leaves. Additionally, the lower molecular weight and higher content of uronic acids were observed in LLP-D, which might contribute to its much stronger in vitro antioxidant, hypoglycemic, and immunomodulatory effects. These findings suggest that the optimized DES assisted extraction method can be a potential approach for specific extraction of acidic polysaccharides with good bioactivities from lotus leaves for applications in the functional food industry. Full article
Show Figures

Figure 1

18 pages, 686 KiB  
Review
Metabolomics Approaches for the Comprehensive Evaluation of Fermented Foods: A Review
by Yaxin Gao, Lizhen Hou, Jie Gao, Danfeng Li, Zhiliang Tian, Bei Fan, Fengzhong Wang and Shuying Li
Foods 2021, 10(10), 2294; https://doi.org/10.3390/foods10102294 - 28 Sep 2021
Cited by 68 | Viewed by 10110
Abstract
Fermentation is an important process that can provide new flavors and nutritional and functional foods, to deal with changing consumer preferences. Fermented foods have complex chemical components that can modulate unique qualitative properties. Consequently, monitoring the small molecular metabolites in fermented food is [...] Read more.
Fermentation is an important process that can provide new flavors and nutritional and functional foods, to deal with changing consumer preferences. Fermented foods have complex chemical components that can modulate unique qualitative properties. Consequently, monitoring the small molecular metabolites in fermented food is critical to clarify its qualitative properties and help deliver personalized nutrition. In recent years, the application of metabolomics to nutrition research of fermented foods has expanded. In this review, we examine the application of metabolomics technologies in food, with a primary focus on the different analytical approaches suitable for food metabolomics and discuss the advantages and disadvantages of these approaches. In addition, we summarize emerging studies applying metabolomics in the comprehensive analysis of the flavor, nutrition, function, and safety of fermented foods, as well as emphasize the applicability of metabolomics in characterizing the qualitative properties of fermented foods. Full article
Show Figures

Figure 1

11 pages, 509 KiB  
Article
Targeted Phenolic Characterization and Antioxidant Bioactivity of Extracts from Edible Acheta domesticus
by Maria Catalina Nino, Lavanya Reddivari, Mario G. Ferruzzi and Andrea M. Liceaga
Foods 2021, 10(10), 2295; https://doi.org/10.3390/foods10102295 - 28 Sep 2021
Cited by 56 | Viewed by 4037
Abstract
With entomophagy gaining popularity in the Western hemisphere as a solution for future food insecurity, research on alternative protein sources, such as edible insects, has become relevant. Most of the research performed on insects has been on their nutritional qualities; however, little is [...] Read more.
With entomophagy gaining popularity in the Western hemisphere as a solution for future food insecurity, research on alternative protein sources, such as edible insects, has become relevant. Most of the research performed on insects has been on their nutritional qualities; however, little is known regarding bioactive compounds, such as polyphenols, that, if present in the insect, could provide additional benefits when the insect is consumed. In this study, methanolic extracts of Acheta domesticus from two farms and their corresponding feeds were obtained using a microwave-assisted extraction. Targeted phenolic characterization was accomplished through LC-MS/MS leading to the identification of 4-hydroxybenzoic acid, p-coumaric acid, ferulic acid, and syringic acid as major phenolic compounds in both A. domesticus extracts. Furthermore, the in vitro antioxidant activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl radical cation (DPPH) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical assays demonstrating the superior quenching activity of the A. domesticus extracts compared to the feeds. The discovery of phenolic compounds in A. domesticus implies the ability of this insect species to sequester and absorb dietary phenolics leading to possible added health benefits when consumed. Full article
Show Figures

Graphical abstract

24 pages, 403 KiB  
Review
Functionality and Applicability of Starch-Based Films: An Eco-Friendly Approach
by Sneh Punia Bangar, Sukhvinder Singh Purewal, Monica Trif, Sajid Maqsood, Manoj Kumar, Vishal Manjunatha and Alexandru Vasile Rusu
Foods 2021, 10(9), 2181; https://doi.org/10.3390/foods10092181 - 14 Sep 2021
Cited by 102 | Viewed by 12224
Abstract
The accumulation of high amounts of petro-based plastics is a growing environmental devastation issue, leading to the urgent need to innovate eco-safe packaging materials at an equivalent cost to save the environment. Among different substitutes, starch-based types and their blends with biopolymers are [...] Read more.
The accumulation of high amounts of petro-based plastics is a growing environmental devastation issue, leading to the urgent need to innovate eco-safe packaging materials at an equivalent cost to save the environment. Among different substitutes, starch-based types and their blends with biopolymers are considered an innovative and smart material alternative for petrol-based polymers because of their abundance, low cost, biodegradability, high biocompatibility, and better-quality film-forming and improved mechanical characteristics. Furthermore, starch is a valuable, sustainable food packaging material. The rising and growing importance of designing starch-based films from various sources for sustainable food packaging purposes is ongoing research. Research on “starch food packaging” is still at the beginning, based on the few studies published in the last decade in Web of Science. Additionally, the functionality of starch-based biodegradable substances is technically a challenge. It can be improved by starch modification, blending starch with other biopolymers or additives, and using novel preparation techniques. Starch-based films have been applied to packaging various foods, such as fruits and vegetables, bakery goods, and meat, indicating good prospects for commercial utilization. The current review will give a critical snapshot of starch-based films’ properties and potential applicability in the sustainable smart (active and intelligent) new packaging concepts and discuss new challenges and opportunities for starch bio composites. Full article
27 pages, 2166 KiB  
Review
Bacterial Biofilms and Their Implications in Pathogenesis and Food Safety
by Xingjian Bai, Cindy H. Nakatsu and Arun K. Bhunia
Foods 2021, 10(9), 2117; https://doi.org/10.3390/foods10092117 - 8 Sep 2021
Cited by 120 | Viewed by 14512
Abstract
Biofilm formation is an integral part of the microbial life cycle in nature. In food processing environments, bacterial transmissions occur primarily through raw or undercooked foods and by cross-contamination during unsanitary food preparation practices. Foodborne pathogens form biofilms as a survival strategy in [...] Read more.
Biofilm formation is an integral part of the microbial life cycle in nature. In food processing environments, bacterial transmissions occur primarily through raw or undercooked foods and by cross-contamination during unsanitary food preparation practices. Foodborne pathogens form biofilms as a survival strategy in various unfavorable environments, which also become a frequent source of recurrent contamination and outbreaks of foodborne illness. Instead of focusing on bacterial biofilm formation and their pathogenicity individually, this review discusses on a molecular level how these two physiological processes are connected in several common foodborne pathogens such as Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica and Escherichia coli. In addition, biofilm formation by Pseudomonas aeruginosa is discussed because it aids the persistence of many foodborne pathogens forming polymicrobial biofilms on food contact surfaces, thus significantly elevating food safety and public health concerns. Furthermore, in-depth analyses of several bacterial molecules with dual functions in biofilm formation and pathogenicity are highlighted. Full article
Show Figures

Graphical abstract

11 pages, 502 KiB  
Review
Migration of Various Nanoparticles into Food Samples: A Review
by Saeed Paidari, Reza Tahergorabi, Ensieh Sadat Anari, Abdorezza Moahammdi Nafchi, Nafiseh Zamindar and Mohammad Goli
Foods 2021, 10(9), 2114; https://doi.org/10.3390/foods10092114 - 7 Sep 2021
Cited by 76 | Viewed by 5471
Abstract
Nanotechnology has provided new opportunities for the food industry with its applications in food packaging. The addition of nanoparticles, such as clay, silver and copper, can improve the mechanical and antimicrobial properties of food packaging. However, nanoparticles may have an adverse impact on [...] Read more.
Nanotechnology has provided new opportunities for the food industry with its applications in food packaging. The addition of nanoparticles, such as clay, silver and copper, can improve the mechanical and antimicrobial properties of food packaging. However, nanoparticles may have an adverse impact on human health. This has led to legislative and regulatory concerns. The inhibitory effects of nano packaging on different microorganisms, such as Salmonella, E. coli, and molds, have been studied. Nanoparticles, like other materials, may have a diverse set of properties that need to be determined. In this review, different features of silver, clay and copper nanoparticles, such as their anti-microbial, cell toxicity, genetic toxicity, mechanical properties, and migration, are critically evaluated in the case of food packaging. Specifically, the viewpoints of WHO, FDA, and ESFA, concerning the nano-silver application in food packaging, are discussed as well. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

15 pages, 784 KiB  
Article
Whole or Defatted Sesame Seeds (Sesamum indicum L.)? The Effect of Cold Pressing on Oil and Cake Quality
by Diana Melo, Manuel Álvarez-Ortí, Maria Antónia Nunes, Anabela S. G. Costa, Susana Machado, Rita C. Alves, José E. Pardo and Maria Beatriz P. P. Oliveira
Foods 2021, 10(9), 2108; https://doi.org/10.3390/foods10092108 - 6 Sep 2021
Cited by 72 | Viewed by 10559
Abstract
Whole sesame seeds and sesame oil, which is obtained after cold pressing the seeds, are foodstuffs globally consumed due to their nutritional characteristics. The press cake that remains from the oil extraction process can be ground to form a defatted flour that can [...] Read more.
Whole sesame seeds and sesame oil, which is obtained after cold pressing the seeds, are foodstuffs globally consumed due to their nutritional characteristics. The press cake that remains from the oil extraction process can be ground to form a defatted flour that can be incorporated into the human diet, contributing to the valorisation of this product. The nutritional comparison between the whole seeds and the press cake reveals the potential of this by-product to be incorporated in the formulation of diverse foodstuff, since it is richer than the seeds in proteins (30%) and fibre (25%) and still contains a proportion of oil (32%) with a fatty acid pattern characterized by the abundance of unsaturated fatty acids. The protein fraction of both the seeds and the cake shows a balanced composition regarding amino acid composition, with all the essential amino acids included. On the other hand, the oil obtained by cold pressing is shown as a high-quality oil, where the predominant fatty acids are oleic (42.66%) and linoleic (41.25%), which are essential fatty acids because they are not synthetised in the organism and must be obtained through the diet. In addition, it is rich in vitamin E, especially in γ-tocopherol, that was the main isomer found. Regarding these results, all products (sesame seeds, oil and press cake) are components suitable to be included in a healthy diet. Full article
Show Figures

Graphical abstract

15 pages, 17630 KiB  
Article
3D Printing of Steak-like Foods Based on Textured Soybean Protein
by Yangyang Chen, Min Zhang and Bhesh Bhandari
Foods 2021, 10(9), 2011; https://doi.org/10.3390/foods10092011 - 26 Aug 2021
Cited by 94 | Viewed by 9152
Abstract
Due to the lack of a sufficient amount of animal protein and the pursuit of health and reduced environmental impact, the global demand for plant protein is increasing. This study endeavors to using textured soybean protein (TSP) or drawing soy protein (DSP) as [...] Read more.
Due to the lack of a sufficient amount of animal protein and the pursuit of health and reduced environmental impact, the global demand for plant protein is increasing. This study endeavors to using textured soybean protein (TSP) or drawing soy protein (DSP) as raw materials to produce steak-like foods through 3D printing technology. The textural difference between fried 3D printed samples and fried commercial chicken breast (control) was studied. The results show that different ink substrates (TSP and DSP) and hydrocolloids (xanthan gum, konjac gum, sodium alginate, guar gum, sodium carboxymethyl cellulose, and hydroxyethyl cellulose) were the keys to successful printing. The ink composed of TSP and xanthan gum had the best printing characteristics and sample integrity after frying. It was found that different infilling patterns and infill rates had a significant effect on the texture properties of the fried samples. When the triangle infilling pattern was used at an infill rate of 60%, the product had had the closest hardness (2585.13 ± 262.55), chewiness (1227.18 ± 133.00), and gumminess (1548.09 ± 157.82) to the control sample. This work proved the feasibility of using 3D printing based on plant protein to produce steak-like food with texture properties similar to chicken breast. Full article
(This article belongs to the Topic Future Food Analysis and Detection)
Show Figures

Figure 1

18 pages, 2237 KiB  
Review
A Literature Review on Maillard Reaction Based on Milk Proteins and Carbohydrates in Food and Pharmaceutical Products: Advantages, Disadvantages, and Avoidance Strategies
by Jia Xiang, Fenglin Liu, Bo Wang, Lin Chen, Wenjie Liu and Songwen Tan
Foods 2021, 10(9), 1998; https://doi.org/10.3390/foods10091998 - 25 Aug 2021
Cited by 83 | Viewed by 15694
Abstract
Milk has two main components that have high nutritional value—milk protein (casein and whey protein), and lactose. These components are extensively used in various areas, especially in food, i.e., as sweeteners, stabilizers, functional food ingredients, nutritional fortifiers, etc. Non-enzymatic browning refers to a [...] Read more.
Milk has two main components that have high nutritional value—milk protein (casein and whey protein), and lactose. These components are extensively used in various areas, especially in food, i.e., as sweeteners, stabilizers, functional food ingredients, nutritional fortifiers, etc. Non-enzymatic browning refers to a series of chemical reactions between sugars and proteins that make food more appetizing. Non-enzymatic browning reactions include degradation of ascorbic acid, lipid peroxidation, caramel reaction, and the Maillard reaction (MR). The MR, as one of the four non-enzymatic browning reactions, has been well studied and utilized in food fields. Milk protein and lactose, as two main components of milk, have high chemical activities; they are used as reactants to participate in the MR, generating Maillard reaction products (MRPs). The MR involves a condensation reaction between carbonyl groups of various sugars and amino groups of amino acids/proteins. These MRPs have different applications in various areas, including food flavor, food oxidation resistance, drug carriers, etc. This work presents the positive and negative effects of the MR, based on the two main components of milk, used in food and medicine, as well as avoidance approaches to prevent the occurrence of negative effects. Full article
(This article belongs to the Special Issue Formation of Conjugated Protein via Maillard Reaction)
Show Figures

Graphical abstract

13 pages, 2608 KiB  
Article
Development and Characterization of Fenugreek Protein-Based Edible Film
by Neha Kumari, Sneh Punia Bangar, Michal Petrů, R.A. Ilyas, Ajay Singh and Pradyuman Kumar
Foods 2021, 10(9), 1976; https://doi.org/10.3390/foods10091976 - 24 Aug 2021
Cited by 56 | Viewed by 6981
Abstract
The present investigation studied the physicochemical, mechanical, structural, thermal, and morphological attributes of a novel edible film formed from fenugreek protein concentrate. Films were produced at different pH—9, 10, 11, and 12—and the effect of the pH on the films was studied. As [...] Read more.
The present investigation studied the physicochemical, mechanical, structural, thermal, and morphological attributes of a novel edible film formed from fenugreek protein concentrate. Films were produced at different pH—9, 10, 11, and 12—and the effect of the pH on the films was studied. As the pH increased, tensile strength increased while water vapor absorption decreased, which is interrelated to the surface morphological properties; as the pH increased, the surface became smoother and compact without any cavities. The films produced were darker in color. Fenugreek protein films exhibited good thermal stability. Fourier transform infrared spectroscopy (FTIR) revealed the presence of strong bonding for the films made at alkaline pH. X-ray diffraction analysis (XRD) indicated the major structure of the film was amorphous. The study demonstrated that the fenugreek protein concentrate film has influential characteristics and can be used as an edible packaging film. Full article
Show Figures

Figure 1

32 pages, 3990 KiB  
Review
Plant Proteins for Future Foods: A Roadmap
by Shaun Yong Jie Sim, Akila SRV, Jie Hong Chiang and Christiani Jeyakumar Henry
Foods 2021, 10(8), 1967; https://doi.org/10.3390/foods10081967 - 23 Aug 2021
Cited by 228 | Viewed by 35386
Abstract
Protein calories consumed by people all over the world approximate 15–20% of their energy intake. This makes protein a major nutritional imperative. Today, we are facing an unprecedented challenge to produce and distribute adequate protein to feed over nine billion people by 2050, [...] Read more.
Protein calories consumed by people all over the world approximate 15–20% of their energy intake. This makes protein a major nutritional imperative. Today, we are facing an unprecedented challenge to produce and distribute adequate protein to feed over nine billion people by 2050, in an environmentally sustainable and affordable way. Plant-based proteins present a promising solution to our nutritional needs due to their long history of crop use and cultivation, lower cost of production, and easy access in many parts of the world. However, plant proteins have comparatively poor functionality, defined as poor solubility, foaming, emulsifying, and gelling properties, limiting their use in food products. Relative to animal proteins, including dairy products, plant protein technology is still in its infancy. To bridge this gap, advances in plant protein ingredient development and the knowledge to construct plant-based foods are sorely needed. This review focuses on some salient features in the science and technology of plant proteins, providing the current state of the art and highlighting new research directions. It focuses on how manipulating plant protein structures during protein extraction, fractionation, and modification can considerably enhance protein functionality. To create novel plant-based foods, important considerations such as protein–polysaccharide interactions, the inclusion of plant protein-generated flavors, and some novel techniques to structure plant proteins are discussed. Finally, the attention to nutrition as a compass to navigate the plant protein roadmap is also considered. Full article
Show Figures

Figure 1

41 pages, 8048 KiB  
Review
Comprehensive Review of Polysaccharide-Based Materials in Edible Packaging: A Sustainable Approach
by Yuan Zhao, Bo Li, Cuicui Li, Yangfan Xu, Yi Luo, Dongwu Liang and Chongxing Huang
Foods 2021, 10(8), 1845; https://doi.org/10.3390/foods10081845 - 10 Aug 2021
Cited by 107 | Viewed by 14353
Abstract
Edible packaging is a sustainable product and technology that uses one kind of “food” (an edible material) to package another kind of food (a packaged product), and organically integrates food with packaging through ingenious material design. Polysaccharides are a reliable source of edible [...] Read more.
Edible packaging is a sustainable product and technology that uses one kind of “food” (an edible material) to package another kind of food (a packaged product), and organically integrates food with packaging through ingenious material design. Polysaccharides are a reliable source of edible packaging materials with excellent renewable, biodegradable, and biocompatible properties, as well as antioxidant and antimicrobial activities. Using polysaccharide-based materials effectively reduces the dependence on petroleum resources, decreases the carbon footprint of the “product-packaging” system, and provides a “zero-emission” scheme. To date, they have been commercialized and developed rapidly in the food (e.g., fruits and vegetables, meat, nuts, confectioneries, and delicatessens, etc.) packaging industry. However, compared with petroleum-based polymers and plastics, polysaccharides still have limitations in film-forming, mechanical, barrier, and protective properties. Therefore, they need to be improved by reasonable material modifications (chemical or physical modification). This article comprehensively reviews recent research advances, hot issues, and trends of polysaccharide-based materials in edible packaging. Emphasis is given to fundamental compositions and properties, functional modifications, food-packaging applications, and safety risk assessment of polysaccharides (including cellulose, hemicellulose, starch, chitosan, and polysaccharide gums). Therefore, to provide a reference for the development of modern edible packaging. Full article
Show Figures

Figure 1

47 pages, 2835 KiB  
Review
Anti-Viral and Immunomodulatory Properties of Propolis: Chemical Diversity, Pharmacological Properties, Preclinical and Clinical Applications, and In Silico Potential against SARS-CoV-2
by Nermeen Yosri, Aida A. Abd El-Wahed, Reem Ghonaim, Omar M. Khattab, Aya Sabry, Mahmoud A. A. Ibrahim, Mahmoud F. Moustafa, Zhiming Guo, Xiaobo Zou, Ahmed F. M. Algethami, Saad H. D. Masry, Mohamed F. AlAjmi, Hanan S. Afifi, Shaden A. M. Khalifa and Hesham R. El-Seedi
Foods 2021, 10(8), 1776; https://doi.org/10.3390/foods10081776 - 31 Jul 2021
Cited by 74 | Viewed by 15205
Abstract
Propolis, a resin produced by honeybees, has long been used as a dietary supplement and folk remedy, and more recent preclinical investigations have demonstrated a large spectrum of potential therapeutic bioactivities, including antioxidant, antibacterial, anti-inflammatory, neuroprotective, immunomodulatory, anticancer, and antiviral properties. As an [...] Read more.
Propolis, a resin produced by honeybees, has long been used as a dietary supplement and folk remedy, and more recent preclinical investigations have demonstrated a large spectrum of potential therapeutic bioactivities, including antioxidant, antibacterial, anti-inflammatory, neuroprotective, immunomodulatory, anticancer, and antiviral properties. As an antiviral agent, propolis and various constituents have shown promising preclinical efficacy against adenoviruses, influenza viruses, respiratory tract viruses, herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Over 300 chemical components have been identified in propolis, including terpenes, flavonoids, and phenolic acids, with the specific constituent profile varying widely according to geographic origin and regional flora. Propolis and its constituents have demonstrated potential efficacy against SARS-CoV-2 by modulating multiple pathogenic and antiviral pathways. Molecular docking studies have demonstrated high binding affinities of propolis derivatives to multiple SARS-CoV-2 proteins, including 3C-like protease (3CLpro), papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), the receptor-binding domain (RBD) of the spike protein (S-protein), and helicase (NSP13), as well as to the viral target angiotensin-converting enzyme 2 (ACE2). Among these compounds, retusapurpurin A has shown high affinity to 3CLpro (ΔG = −9.4 kcal/mol), RdRp (−7.5), RBD (−7.2), NSP13 (−9.4), and ACE2 (−10.4) and potent inhibition of viral entry by forming hydrogen bonds with amino acid residues within viral and human target proteins. In addition, propolis-derived baccharin demonstrated even higher binding affinity towards PLpro (−8.2 kcal/mol). Measures of drug-likeness parameters, including metabolism, distribution, absorption, excretion, and toxicity (ADMET) characteristics, also support the potential of propolis as an effective agent to combat COVID-19. Full article
Show Figures

Figure 1

24 pages, 994 KiB  
Review
Wheat/Gluten-Related Disorders and Gluten-Free Diet Misconceptions: A Review
by Carolina Sabença, Miguel Ribeiro, Telma de Sousa, Patrícia Poeta, Ana Sofia Bagulho and Gilberto Igrejas
Foods 2021, 10(8), 1765; https://doi.org/10.3390/foods10081765 - 30 Jul 2021
Cited by 64 | Viewed by 16167
Abstract
In the last 10,000 years, wheat has become one of the most important cereals in the human diet and today, it is widely consumed in many processed food products. Mostly considered a source of energy, wheat also contains other essential nutrients, including fiber, [...] Read more.
In the last 10,000 years, wheat has become one of the most important cereals in the human diet and today, it is widely consumed in many processed food products. Mostly considered a source of energy, wheat also contains other essential nutrients, including fiber, proteins, and minor components, such as phytochemicals, vitamins, lipids, and minerals, that together promote a healthy diet. Apart from its nutritional properties, wheat has a set of proteins, the gluten, which confer key technical properties, but also trigger severe immune-mediated diseases, such as celiac disease. We are currently witnessing a rise in the number of people adhering to gluten-free diets unwarranted by any medical need. In this dynamic context, this review aims to critically discuss the nutritional components of wheat, highlighting both the health benefits and wheat/gluten-related disorders, in order to address common misconceptions associated with wheat consumption. Full article
Show Figures

Figure 1

15 pages, 1315 KiB  
Article
Headspace/GC–MS Analysis and Investigation of Antibacterial, Antioxidant and Cytotoxic Activity of Essential Oils and Hydrolates from Rosmarinus officinalis L. and Lavandula angustifolia Miller
by Stefania Garzoli, Valentina Laghezza Masci, Sara Franceschi, Antonio Tiezzi, Pierluigi Giacomello and Elisa Ovidi
Foods 2021, 10(8), 1768; https://doi.org/10.3390/foods10081768 - 30 Jul 2021
Cited by 43 | Viewed by 5907
Abstract
In this work, essential oils (EOs) and hydrolates (Hys) of Rosmarinus officinalis L. and Lavandula angustifolia Mill., grown in Tuscany (Italy), were studied to describe their chemical composition and biological activities. The aromatic profile of the EOs liquid phase was carried out by [...] Read more.
In this work, essential oils (EOs) and hydrolates (Hys) of Rosmarinus officinalis L. and Lavandula angustifolia Mill., grown in Tuscany (Italy), were studied to describe their chemical composition and biological activities. The aromatic profile of the EOs liquid phase was carried out by gas chromatography–mass spectrometry (GC–MS), while the volatile composition of vapor phase EOs and Hys was performed by headspace (HS)/GC–MS. The obtained results show that monoterpene hydrocarbons (71.5% and 89.5%) were the main compounds, followed by oxygenated monoterpenes (26.0% and 10.5%) in the liquid and vapor phase of R. officinalis EO, respectively. The oxygenated monoterpenes were the main components of L. angustifolia EO, reaching 86.9% in the liquid phase and 53.7% in the vapor phase. Regarding Hys, they consisted only of oxygenated monoterpenes, and 1,8-cineole (56.2%) and linalool (42.9%), were the main components of R. officinalis and L. officinalis Hys, respectively. Their cytotoxicity was investigated on an SHSY5Y neuroblastoma cell line by thiazolyl blue tetrazolium bromide (MTT) test, showing a notable effect of the EOs with a time-independent manner of activity and half maximal effective concentration (EC50) values quite similar for the two plant species (from 0.05% to 0.06% v/v for the three time points evaluated). A measurable activity of Hys was also obtained although with higher EC50 values. The antibacterial activity against Escherichia coli ATCC® 25922, Pseudomonas fluorescens ATCC® 13525, Acinetobacter bohemicus DSM 102855 as Gram-negative bacteria and Kocuria marina DSM 16420, Bacillus cereus ATCC® 10876 as Gram-positive bacteria, was evaluated by the agar disk-diffusion method and the VPT (vapor phase test) to determinate the MIC (minimal inhibitory concentration) and the MBC (minimal bactericidal concentration) values. Both EOs possessed a high activity against all the bacterial strains with MIC values ranging from 0.19% to 3.13% v/v. Unlike EOs, Hys did not show an inhibition of the bacterial growth at the tested concentrations. Furthermore, antioxidant power was measured by 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt-based (ABTS•+) and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays, showing a remarkable ability to reduce radicals by both EOs; Hys were slightly less active. The findings highlighted that R. officinalis and L. angustifolia EOs and Hys have a chemical composition rich in bioactive molecules, which can exert different biological activities. Full article
(This article belongs to the Special Issue Chemistry of Essential Oils and Food Flavours)
Show Figures

Graphical abstract

21 pages, 449 KiB  
Review
Brewing with Starchy Adjuncts: Its Influence on the Sensory and Nutritional Properties of Beer
by Raquel Cadenas, Isabel Caballero, Dieudonné Nimubona and Carlos A. Blanco
Foods 2021, 10(8), 1726; https://doi.org/10.3390/foods10081726 - 26 Jul 2021
Cited by 58 | Viewed by 13478
Abstract
In brewing, the use of cereals (wheat, barley, maize, rice, sorghum, oats, rye or millet), pseudo-cereals (buckwheat, quinoa or amaranth) and tubers (sweet potato), as starch adjuncts, is being promoted for the production of a variety of high-quality beers, from sensory and nutritional [...] Read more.
In brewing, the use of cereals (wheat, barley, maize, rice, sorghum, oats, rye or millet), pseudo-cereals (buckwheat, quinoa or amaranth) and tubers (sweet potato), as starch adjuncts, is being promoted for the production of a variety of high-quality beers, from sensory and nutritional points of view. The sensory properties of the obtained beer depend on the characteristics of each adjunct but also on the forms in which the adjunct is added: whole cereal, grits, malted, extruded grains, torrefied and syrup. Among these common forms, the extruded grains (maize or rice) produce a higher content of aroma compounds in beer. From a nutritional point of view, the use of non-conventional starch adjuncts, such as black rice, buckwheat or sweet potato, leads to an increase in the polyphenol content of the beer, and thus, its antioxidant capacity. Cereals such as maize, rice, sorghum or millet are the most promising for the production of gluten-free beers. A close relationship can be developed between the use of adjuncts in the beer industry and the use of commercial enzymes. Advances made by biotechnology to design new enzymes with different functionalities could be associated to a future increase in adjunct usage in brewing. Full article
(This article belongs to the Special Issue New Strategies to Improve Beer Quality)
Show Figures

Graphical abstract

12 pages, 1388 KiB  
Article
Effects of CaCl2 Treatment Alleviates Chilling Injury of Loquat Fruit (Eribotrya japonica) by Modulating ROS Homeostasis
by Yuanyuan Hou, Ziying Li, Yonghua Zheng and Peng Jin
Foods 2021, 10(7), 1662; https://doi.org/10.3390/foods10071662 - 19 Jul 2021
Cited by 70 | Viewed by 5164
Abstract
The effects of calcium chloride (CaCl2) treatment on chilling injury (CI), reactive oxygen species (ROS) metabolism, and ascorbate-glutathione (AsA-GSH) cycle in loquat fruit at 1 °C storage for 35 d were investigated. The results indicated that CaCl2 treatment remarkably suppressed [...] Read more.
The effects of calcium chloride (CaCl2) treatment on chilling injury (CI), reactive oxygen species (ROS) metabolism, and ascorbate-glutathione (AsA-GSH) cycle in loquat fruit at 1 °C storage for 35 d were investigated. The results indicated that CaCl2 treatment remarkably suppressed the increase in browning index and firmness as well as the decrease in extractable juice rate. CaCl2 treatment also decreased the production of superoxide radical (O2), hydrogen peroxide (H2O2) content, but increased the 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical (OH) scavenging ability, the activities of superoxide dismutase (SOD), catalase (CAT), and their gene expressions. Moreover, compared to the control loquat fruit, CaCl2-treated fruit maintained higher contents of AsA, GSH, higher levels of activities of ascorbate peroxidase (APX), glutathione reductase (GR), dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDHAR) and expressions of EjAPX, EjGR, EjMDHAR, and EjDHAR, but exhibited lower glutathione disulfide (GSSG) content. These results suggested that CaCl2 treatment alleviated CI in loquat fruit through enhancing antioxidant enzymes activities and AsA-GSH cycle system to quench ROS. Full article
Show Figures

Figure 1

15 pages, 1769 KiB  
Review
Food Ingredients and Nutraceuticals from Microalgae: Main Product Classes and Biotechnological Production
by Regina Kratzer and Michael Murkovic
Foods 2021, 10(7), 1626; https://doi.org/10.3390/foods10071626 - 14 Jul 2021
Cited by 85 | Viewed by 7919
Abstract
Microalgal products are an emerging class of food, feed, and nutraceuticals. They include dewatered or dried biomass, isolated pigments, and extracted fat. The oil, protein, and antioxidant-rich microalgal biomass is used as a feed and food supplement formulated as pastes, powders, tablets, capsules, [...] Read more.
Microalgal products are an emerging class of food, feed, and nutraceuticals. They include dewatered or dried biomass, isolated pigments, and extracted fat. The oil, protein, and antioxidant-rich microalgal biomass is used as a feed and food supplement formulated as pastes, powders, tablets, capsules, or flakes designed for daily use. Pigments such as astaxanthin (red), lutein (yellow), chlorophyll (green), or phycocyanin (bright blue) are natural food dyes used as isolated pigments or pigment-rich biomass. Algal fat extracted from certain marine microalgae represents a vegetarian source of n-3-fatty acids (eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), γ-linolenic acid (GLA)). Gaining an overview of the production of microalgal products is a time-consuming task. Here, requirements and options of microalgae cultivation are summarized in a concise manner, including light and nutrient requirements, growth conditions, and cultivation systems. The rentability of microalgal products remains the major obstacle in industrial application. Key challenges are the high costs of commercial-scale cultivation, harvesting (and dewatering), and product quality assurance (toxin analysis). High-value food ingredients are commonly regarded as profitable despite significant capital expenditures and energy inputs. Improvements in capital and operational costs shall enable economic production of low-value food products going down to fishmeal replacement in the future economy. Full article
(This article belongs to the Special Issue Reviews on Food Physics and Food (Bio)Chemistry)
Show Figures

Graphical abstract

17 pages, 334 KiB  
Review
Clean Label Alternatives in Meat Products
by Gonzalo Delgado-Pando, Sotirios I. Ekonomou, Alexandros C. Stratakos and Tatiana Pintado
Foods 2021, 10(7), 1615; https://doi.org/10.3390/foods10071615 - 13 Jul 2021
Cited by 68 | Viewed by 11493
Abstract
Food authorities have not yet provided a definition for the term “clean label”. However, food producers and consumers frequently use this terminology for food products with few and recognisable ingredients. The meat industry faces important challenges in the development of clean-label meat products, [...] Read more.
Food authorities have not yet provided a definition for the term “clean label”. However, food producers and consumers frequently use this terminology for food products with few and recognisable ingredients. The meat industry faces important challenges in the development of clean-label meat products, as these contain an important number of functional additives. Nitrites are an essential additive that acts as an antimicrobial and antioxidant in several meat products, making it difficult to find a clean-label alternative with all functionalities. Another important additive not complying with the clean-label requirements are phosphates. Phosphates are essential for the correct development of texture and sensory properties in several meat products. In this review, we address the potential clean-label alternatives to the most common additives in meat products, including antimicrobials, antioxidants, texturisers and colours. Some novel technologies applied for the development of clean label meat products are also covered. Full article
(This article belongs to the Special Issue New Strategies for Innovative and Enhanced Meat and Meat Products)
Show Figures

Graphical abstract

13 pages, 3156 KiB  
Article
Development and Characterization of Physical Modified Pearl Millet Starch-Based Films
by Sneh Punia Bangar, Manju Nehra, Anil Kumar Siroha, Michal Petrů, Rushdan Ahmad Ilyas, Urmila Devi and Priyanka Devi
Foods 2021, 10(7), 1609; https://doi.org/10.3390/foods10071609 - 12 Jul 2021
Cited by 60 | Viewed by 6858
Abstract
Pearl millet is an underutilized and drought-resistant crop that is mainly used for animal feed and fodder. Starch (70%) is the main constituent of the pearl millet grain; this starch may be a good substitute for major sources of starch such as corn, [...] Read more.
Pearl millet is an underutilized and drought-resistant crop that is mainly used for animal feed and fodder. Starch (70%) is the main constituent of the pearl millet grain; this starch may be a good substitute for major sources of starch such as corn, rice, potatoes, etc. Starch was isolated from pearl millet grains and modified with different physical treatments (heat-moisture (HMT), microwave (MT), and sonication treatment (ST)). The amylose content and swelling capacity of the starches decreased after HMT and MT, while the reverse was observed for ST. Transition temperatures (onset (To), peak of gelatinization (Tp), and conclusion (Tc)) of the starches ranged from 62.92–76.16 °C, 67.95–81.05 °C, and 73.78–84.50 °C, respectively. After modification (HMT, MT, and ST), an increase in the transition temperatures was observed. Peak-viscosity of the native starch was observed to be 995 mPa.s., which was higher than the starch modified with HMT and MT. Rheological characteristics (storage modulus (G′) and loss modulus (G′′)) of the native and modified starches differed from 1039 to 1730 Pa and 83 to 94 Pa; the largest value was found for starch treated with ST and HMT. SEM showed cracks and holes on granule surfaces after HMT as well as MT starch granules. Films were prepared using both native and modified starches. The modification of the starches with different treatments had a significant impact on the moisture, transmittance, and solubility of films. The findings of this study will provide a better understanding of the functional properties of pearl millet starch for its possible utilization in film formation. Full article
Show Figures

Figure 1

26 pages, 1553 KiB  
Review
Natural Bioactive Compounds from Food Waste: Toxicity and Safety Concerns
by Ana A. Vilas-Boas, Manuela Pintado and Ana L. S. Oliveira
Foods 2021, 10(7), 1564; https://doi.org/10.3390/foods10071564 - 6 Jul 2021
Cited by 141 | Viewed by 14118
Abstract
Although synthetic bioactive compounds are approved in many countries for food applications, they are becoming less and less welcome by consumers. Therefore, there has been an increasing interest in replacing these synthetic compounds by natural bioactive compounds. These natural compounds can be used [...] Read more.
Although synthetic bioactive compounds are approved in many countries for food applications, they are becoming less and less welcome by consumers. Therefore, there has been an increasing interest in replacing these synthetic compounds by natural bioactive compounds. These natural compounds can be used as food additives to maintain the food quality, food safety and appeal, and as food supplements or nutraceuticals to correct nutritional deficiencies, maintain a suitable intake of nutrients, or to support physiological functions, respectively. Recent studies reveal that numerous food wastes, particularly fruit and vegetables byproducts, are a good source of bioactive compounds that can be extracted and reintroduced into the food chain as natural food additives or in food matrices for obtaining nutraceuticals and functional foods. This review addresses general questions concerning the use of fruit and vegetables byproducts as new sources of natural bioactive compounds that are being addressed to foods as natural additives and supplements. Those bioactive compounds must follow the legal requirements and evaluations to assess the risks for human health and their toxicity must be considered before being launched into the market. To overcome the potential health risk while increasing the biological activity, stability and biodistribution of the supplements’ technological alternatives have been studied such as encapsulation of bioactive compounds into micro or nanoparticles or nanoemulsions. This will allow enhancing the stability and release along the gastrointestinal tract in a controlled manner into the specific tissues. This review summarizes the valorization path that a bioactive compound recovered from an agro-food waste can face from the moment their potentialities are exhibited until it reaches the final consumer and the safety and toxicity challenges, they may overcome. Full article
Show Figures

Figure 1

Back to TopTop