Formation of Secondary and Tertiary Volatile Compounds Resulting from the Lipid Oxidation of Rapeseed Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Chemicals and Materials
2.3. Preparation of Model Systems and Experiments with Oils
2.4. Determination of the Peroxide Value (POV)
2.5. VOC Analysis with Static Headspace GC-MS (HS-GC-MS)
2.6. GC-MS Analysis
2.7. Chemical Identification with GC-MS
2.8. Statistical Analysis
3. Results and Discussion
3.1. POV and Hexanal
3.2. Formation of Volatile Organic Compounds (VOC)
3.3. Further Degradation Reactions of Secondary Lipid Oxidation Products to Tertiary Products
3.3.1. Formation of 2-Alkyl Furans–Degradation of 2-Alkenales in Model Studies
3.3.2. Degradation of Aldehydes–Aldol Condensation Reaction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Barden, L.; Decker, E.A. Lipid Oxidation in Low-moisture Food: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 2467–2482. [Google Scholar] [CrossRef] [PubMed]
- Choe, E.; Min, D.B. Chemistry of Deep-Fat Frying Oils. J. Food Sci. 2007, 72, R77–R86. [Google Scholar] [CrossRef]
- Holman, R.T.; Elmer, O.C. The rates of oxidation of unsaturated fatty acids and esters. J. Am. Oil Chem. Soc. 1947, 24, 127–129. [Google Scholar] [CrossRef]
- Drusch, S.; Groß, N.; Schwarz, K. Efficient stabilization of bulk fish oil rich in long-chain polyunsaturated fatty acids. Eur. J. Lipid Sci. Technol. 2008, 110, 351–359. [Google Scholar] [CrossRef]
- Zajdenwerg, C.; Branco, G.F.; Alamed, J.; Decker, E.A.; Castro, I.A. Correlation between sensory and chemical markers in the evaluation of Brazil nut oxidative shelf-life. Eur. Food Res. Technol. 2011, 233, 109–116. [Google Scholar] [CrossRef]
- Gama, T.; Wallace, H.M.; Trueman, S.J.; Hosseini-Bai, S. Quality and shelf life of tree nuts: A review. Sci. Hortic. 2018, 242, 116–126. [Google Scholar] [CrossRef]
- Jacobsen, C. Enrichment of foods with omega-3 fatty acids: A multidisciplinary challenge. Ann. N. Y. Acad. Sci. 2010, 1190, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Vatansever, L.; Kurt, E.; Enser, M.; Nute, G.R.; Scollan, N.D.; Wood, J.D.; Richardson, R.I. Shelf life and eating quality of beef from cattle of different breeds given diets differing in n-3 polyunsaturated fatty acid composition. Anim. Sci. 2000, 71, 471–482. [Google Scholar] [CrossRef]
- Gómez-Cortés, P.; Sacks, G.L.; Brenna, J.T. Quantitative analysis of volatiles in edible oils following accelerated oxidation using broad spectrum isotope standards. Food Chem. 2014, 174, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Brühl, L. Fatty acid alterations in oils and fats during heating and frying. Eur. J. Lipid Sci. Technol. 2014, 116, 707–715. [Google Scholar] [CrossRef]
- Grebenteuch, S.; Kanzler, C.; Klaußnitzer, S.; Kroh, L.W.; Rohn, S. The Formation of Methyl Ketones during Lipid Oxidation at Elevated Temperatures. Molecules 2021, 26, 1104. [Google Scholar] [CrossRef] [PubMed]
- Campo, M.M.; Nute, G.R.; Hughes, S.I.; Enser, M.; Wood, J.D.; Richardson, R.I. Flavour perception of oxidation in beef. Meat Sci. 2006, 72, 303–311. [Google Scholar] [CrossRef]
- Böttcher, S.; Steinhäuser, U.; Drusch, S. Off-flavour masking of secondary lipid oxidation products by pea dextrin. Food Chem. 2015, 169, 492–498. [Google Scholar] [CrossRef]
- Guillen, M.D.; Goicoechea, E. Formation of oxygenated α,β-unsaturated aldehydes and other toxic compounds in sunflower oil oxidation at room temperature in closed receptacles. Food Chem. 2008, 111, 157–164. [Google Scholar] [CrossRef]
- Perluigi, M.; Coccia, R.; Butterfield, D.A. 4-Hydroxy-2-Nonenal, a Reactive Product of Lipid Peroxidation, and Neurodegenerative Diseases: A Toxic Combination Illuminated by Redox Proteomics Studies. Antioxid Redox Signal. 2011, 17, 1590–1609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubow, S. Toxicity of dietary lipid peroxidation products. Trends Food Sci. Technol. 1990, 1, 67–71. [Google Scholar] [CrossRef]
- Barriuso, B.; Astiasarán, I.; Ansorena, D. A review of analytical methods measuring lipid oxidation status in foods: A challenging task. Eur. Food Res. Technol. 2013, 236, 1–15. [Google Scholar] [CrossRef]
- Kaykhaii, M.; Rahmani, M. Headspace liquid phase microextraction for quantitation of hexanal in potato crisps by gas chromatography. J. Sep. Sci. 2007, 30, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Pegg, R.B. Hexanal as an Indicator of the Flavor Deterioration of Meat and Meat Products. In Lipids in Food Flavors; Hartman, T.G., Ho, C.-T., Eds.; American Chemical Society: Washington, DC, USA, 1994; pp. 256–279. ISBN 9780841214576. [Google Scholar]
- Pignoli, G.; Bou, R.; Rodriguez-Estrada, M.T.; Decker, E.A. Suitability of saturated aldehydes as lipid oxidation markers in washed turkey meat. Meat Sci. 2009, 83, 412–416. [Google Scholar] [CrossRef]
- Gromadzka, J.; Wardencki, W. Static Headspace Sampling and Solid-Phase Microextraction for Assessment of Edible Oils Stability. Chromatographia 2010, 71, 81–86. [Google Scholar] [CrossRef]
- Macku, C. Headspace volatile compounds formed from heated corn oil and corn oil with glycine. J. Agric. Food Chem. 1991, 39, 1265–1269. [Google Scholar] [CrossRef]
- Tsuzuki, W.; Matsuoka, A.; Ushida, K. Formation of trans fatty acids in edible oils during the frying and heating process. Food Chem. 2010, 123, 976–982. [Google Scholar] [CrossRef]
- Ajith, S.; Pramod, S.; Prabha Kumari, C.; Potty, V.P. Effect of storage temperatures and humidity on proximate composition, peroxide value and iodine value of raw cashew nuts. J. Food Sci. Technol. 2015, 52, 4631–4636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanner, J. Dietary advanced lipid oxidation endproducts are risk factors to human health. Mol. Nutr. Food Res. 2007, 51, 1094–1101. [Google Scholar] [CrossRef]
- Adams, A.; Bouckaert, C.; Van Lancker, F.; De Meulenaer, B.; De Kimpe, N. Amino acid catalysis of 2-alkylfuran formation from lipid oxidation-derived α,β-unsaturated aldehydes. J. Agric. Food Chem. 2011, 59, 11058–11062. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, F.J.; Zamora, R. Amino Acid Degradations Produced by Lipid Oxidation Products. Crit. Rev. Food Sci. Nutr. 2016, 56, 1242–1252. [Google Scholar] [CrossRef] [Green Version]
- Taubert, D.; Harlfinger, S.; Henkes, L.; Berkels, R.; Schömig, E. Influence of Processing Parameters on Acrylamide Formation during Frying of Potatoes. J. Agric. Food Chem. 2004, 52, 2735–2739. [Google Scholar] [CrossRef]
- Mogol, B.A.; Gökmen, V. Thermal process contaminants: Acrylamide, chloropropanols and furan. Curr. Opin. Food Sci. 2016, 7, 86–92. [Google Scholar] [CrossRef]
- Gertz, C.; Klostermann, S.; Parkash Kochhar, S. Deep frying: The role of water from food being fried and acrylamide formation. OCL 2003, 10, 297–303. [Google Scholar] [CrossRef]
- Rusinek, R.; Kmiecik, D.; Gawrysiak-Witulska, M.; Malaga-Toboła, U.; Tabor, S.; Findura, P.; Siger, A.; Gancarz, M. Identification of the Olfactory Profile of Rapeseed Oil as a Function of Heating Time and Ratio of Volume and Surface Area of Contact with Oxygen Using an Electronic Nose. Sensors 2021, 21, 303. [Google Scholar] [CrossRef] [PubMed]
- Majchrzak, T.; Wojnowski, W.; Głowacz-Różyńska, A.; Wasik, A. On-line assessment of oil quality during deep frying using an electronic nose and proton transfer reaction mass spectrometry. Food Control 2021, 121, 107659. [Google Scholar] [CrossRef]
- Geleijnse, J.M.; de Goede, J.; Brouwer, I.A. Alpha-Linolenic Acid: Is It Essential to Cardiovascular Health? Curr. Atheroscler. Rep. 2010, 12, 359–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolfram, G.; Bechthold, A.; Boeing, H.; Ellinger, S.; Hauner, H.; Kroke, A.; Leschik-Bonnet, E.; Linseisen, J.; Lorkowski, S.; Schulze, M.; et al. Evidence-Based Guideline of the German Nutrition Society: Fat Intake and Prevention of Selected Nutrition-Related Diseases. Ann. Nutr. Metab. 2015, 67, 141–204. [Google Scholar] [CrossRef]
- Kojima, Y.; Parcell, J.; Cain, J. A Global Demand Analysis of Vegetable Oils for Food and Industrial Use: A Cross-Country Panel Data Analysis with Spatial Econometrics 333-2016-14539. 2016. Available online: https://ageconsearch.umn.edu/record/235744/ (accessed on 22 July 2021).
- Doert, M.; Krüger, S.; Morlock, G.E.; Kroh, L.W. Synergistic effect of lecithins for tocopherols: Formation and antioxidant effect of the phosphatidylethanolamine—l-ascorbic acid condensate. Eur. Food Res. Technol. 2017, 243, 583–596. [Google Scholar] [CrossRef]
- FAO. Codex Alimentarius Commission: Procedural Manual, 21th ed.; FAO: Rome, Italy, 2014; ISBN 9789251075708. [Google Scholar]
- Fiebig, H.-J.; Godelmann, R. Bestimmung der Peroxidzahl (Methode nach Wheeler)-Deutsche Einheitsmethoden zur Untersuchung von Fetten, Fettprodukten, Tensiden und verwandten Stoffen: Analyse von Fetten XXXVII. Fett/Lipid 1997, 99, 194–196. [Google Scholar] [CrossRef]
- Innawong, B.; Mallikarjunan, P.; Marcy, J.E. The determination of frying oil quality using a chemosensory system. LWT-Food Sci. Technol. 2004, 37, 35–41. [Google Scholar] [CrossRef]
- Fritsch, C.W. Measurements of frying fat deterioration: A brief review. J. Am. Oil Chem. Soc. 1981, 58, 272–274. [Google Scholar] [CrossRef]
- Man, Y.C.; Liu, J.L.; Jamilah, B.; Rahman, R.A. Quality changes of refined-bleached-deodorized (rbd) palm olein, soybean oil oil and their blends during deep-fat frying. J. Food Lipids 1999, 6, 181–193. [Google Scholar] [CrossRef]
- Dobarganes, M.C.; Velasco, J. Analysis of lipid hydroperoxides. Eur. J. Lipid Sci. Technol. 2002, 104, 420–428. [Google Scholar] [CrossRef]
- Crowe, T.D.; White, P.J. Adaptation of the AOCS official method for measuring hydroperoxides from small-scale oil samples. J. Am. Oil Chem. Soc. 2001, 78, 1267–1269. [Google Scholar] [CrossRef]
- Kardash-Strochkova, E.; Tur’yan, Y.; Kuselman, I. Redox-potentiometric determination of peroxide value in edible oils without titration. Talanta 2001, 54, 411–416. [Google Scholar] [CrossRef]
- Mba, O.I.; Dumont, M.-J.; Ngadi, M. Deterioration Kinetics of Crude Palm Oil, Canola Oil and Blend During Repeated Deep-Fat Frying. J. Am. Oil Chem. Soc. 2016, 93, 1243–1253. [Google Scholar] [CrossRef]
- Farhoosh, R.; Moosavi, S.M.R. Evaluating the performance of peroxide and conjugated diene values in monitoring quality of used frying oils. J. Agric. Sci. Technol. 2009, 11, 173–179. [Google Scholar]
- Velasco, J.; Dobarganes, C.; Márquez-Ruiz, G. Oxidative rancidity in foods and food quality. In Chemical Deterioration and Physical Instability of Food and Beverages; Skibsted, L.H., Ed.; Woodhead Publishing Limited: Cambridge, UK; CRC Press: Boca Raton, FL, USA, 2010; pp. 3–32. ISBN 9781845694951. [Google Scholar]
- Petersen, K.D.; Kleeberg, K.K.; Jahreis, G.; Busch-Stockfisch, M.; Fritsche, J. Comparison of analytical and sensory lipid oxidation parameters in conventional and high-oleic rapeseed oil. Eur. J. Lipid Sci. Technol. 2012, 114, 1193–1203. [Google Scholar] [CrossRef]
- Richards, A.; Wijesundera, C.; Salisbury, P. Evaluation of oxidative stability of canola oils by headspace analysis. J. Am. Oil Chem. Soc. 2005, 82, 869–874. [Google Scholar] [CrossRef]
- Zamora, R.; Navarro, J.L.; Aguilar, I.; Hidalgo, F.J. Lipid-derived aldehyde degradation under thermal conditions. Food Chem. 2015, 174, 89–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minotti, G.; Aust, S.D. The role of iron in oxygen radical mediated lipid peroxidation. Chem. Biol. Interact. 1989, 71, 1–19. [Google Scholar] [CrossRef]
- Maga, J.A.; Katz, I. Furans in foods. Crit. Rev. Food Sci. Nutr. 1979, 11, 355–400. [Google Scholar] [CrossRef] [PubMed]
- Fagerson, I.S. Thermal degradation of carbohydrates; a review. J. Agric. Food Chem. 1969, 17, 747–750. [Google Scholar] [CrossRef]
- Min, D.B.; Callison, A.L.; Lee, H.O. Singlet Oxygen Oxidation for 2-Pentylfuran and 2-Pentenyfuran Formation in Soybean Oil. J. Food Sci. 2003, 68, 1175–1178. [Google Scholar] [CrossRef]
- Lu, F.; Bruheim, I.; Haugsgjerd, B.O.; Jacobsen, C. Effect of temperature towards lipid oxidation and non-enzymatic browning reactions in krill oil upon storage. Food Chem. 2014, 157, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.B.; Morr, C.V. Changes of Headspace Volatile Compounds Due to Oxidation of Milk Fat During Storage of Dried Dairy Products. In Lipids in Food Flavors; American Chemical Society: Washington, DC, USA, 1994; pp. 98–107. ISBN 9780841229228. [Google Scholar]
- Ghorbani Gorji, S.; Calingacion, M.; Smyth, H.E.; Fitzgerald, M. Comprehensive profiling of lipid oxidation volatile compounds during storage of mayonnaise. J. Food Sci. Technol. 2019, 56, 4076–4090. [Google Scholar] [CrossRef] [PubMed]
- Hartvigsen, K.; Lund, P.; Hansen, L.F.; Hølmer, G. Dynamic Headspace Gas Chromatography/Mass Spectrometry Characterization of Volatiles Produced in Fish Oil Enriched Mayonnaise during Storage. J. Agric. Food Chem. 2000, 48, 4858–4867. [Google Scholar] [CrossRef]
- Lam, H.S.; Proctor, A. Milled Rice Oxidation Volatiles and Odor Development. J. Food Sci. 2003, 68, 2676–2681. [Google Scholar] [CrossRef]
- Gu, S.Q.; Wu, N.; Wang, X.C.; Zhang, J.J.; Ji, S.R. Analysis of Key Odor Compounds in Steamed Chinese Mitten Crab (Eriocheir sinensis). Adv. Mat. Res. 2014, 941–944, 1026–1035. [Google Scholar] [CrossRef]
- Dalsgaard, T.K.; Sørensen, J.; Bakman, M.; Vognsen, L.; Nebel, C.; Albrechtsen, R.; Nielsen, J.H. Light-induced protein and lipid oxidation in cheese: Dependence on fat content and packaging conditions. Dairy Sci. Technol. 2010, 90, 565–577. [Google Scholar] [CrossRef] [Green Version]
- Ross, C.F.; Smith, D.M. Use of Volatiles as Indicators of Lipid Oxidation in Muscle Foods. Compr. Rev. Food Sci. Food Saf. 2006, 5, 18–25. [Google Scholar] [CrossRef]
- Snyder, J.M.; Frankel, E.N.; Selke, E.; Warner, K. Comparison of gas chromatographic methods for volatile lipid oxidation compounds in soybean oil. J. Am. Oil Chem. Soc. 1988, 65, 1617–1620. [Google Scholar] [CrossRef]
- Chitsamphandhvej, W.; Phakdee, W.; Thanasan, W. A headspace solid phase microextraction method for using to monitor hexanal and heptanal content in food samples. Agric. Nat. Resour. 2008, 42, 206–212. [Google Scholar]
- Frankel, E.N. Chapter 4-Hydroperoxide decomposition. In Lipid Oxidation, 2nd Ed.; Oily Press Lipid Library Series; Frankel, E.N., Ed.; Woodhead Publishing: Cambridge, UK, 2012; pp. 67–98. ISBN 978-0-9531949-8-8. [Google Scholar]
- Selke, E.; Rohwedder, W.K.; Dutton, H.J. Volatile components from triolein heated in air. J. Am. Oil Chem. Soc. 1977, 54, 62–67. [Google Scholar] [CrossRef]
- Jeong, M.; Lee, J.; Cho, W.-I.; Lee, J. Correlation of volatiles and fatty acids in thermally oxidized fatty acid model systems using statistical approaches. Food Sci. Biotechnol. 2010, 19, 1233–1239. [Google Scholar] [CrossRef]
- Yang, S.; Lee, J.; Lee, J.; Lee, J. Effects of riboflavin-photosensitization on the formation of volatiles in linoleic acid model systems with sodium azide or D2O. Food Chem. 2007, 105, 1375–1381. [Google Scholar] [CrossRef]
- García-Martínez, M.C.; Márquez-Ruiz, G.; Fontecha, J.; Gordon, M.H. Volatile oxidation compounds in a conjugated linoleic acid-rich oil. Food Chem. 2009, 113, 926–931. [Google Scholar] [CrossRef]
- Lee, J.H.; Min, D.B. Changes of Headspace Volatiles in Milk with Riboflavin Photosensitization. J. Food Sci. 2009, 74, C563–C568. [Google Scholar] [CrossRef]
- Gardner, H.W.; Selke, E. Volatiles from thermal decomposition of isomeric methyl (12S, 13S)-(E)-12,13-epoxy-9-hydroperoxy-10-octadecenoates. Lipids 1984, 19, 375–380. [Google Scholar] [CrossRef]
- Frankel, E.N.; Neff, W.E.; Selke, E. Analysis of autoxidized fats by gas chromatography-mass spectrometry: VII. Volatile thermal decomposition products of pure hydroperoxides from autoxidized and photosensitized oxidized methyl oleate, linoleate and linolenate. Lipids 1981, 16, 279–285. [Google Scholar] [CrossRef]
- Abreu, I.; Da Costa, N.C.; van Es, A.; Kim, J.-A.; Parasar, U.; Poulsen, M.L. Natural Occurrence of Aldol Condensation Products in Valencia Orange Oil. J. Food Sci. 2017, 82, 2805–2815. [Google Scholar] [CrossRef]
- Bryant, R.J.; McClung, A.M. Volatile profiles of aromatic and non-aromatic rice cultivars using SPME/GC-MS. Food Chem. 2011, 124, 501–513. [Google Scholar] [CrossRef]
- Lin, S.; Yang, R.; Cheng, S.; Wang, K.; Qin, L. Moisture absorption and dynamic flavor changes in hydrolysed and freeze-dried pine nut (Pinus koraiensis) by-products during storage. Food Res. Int. 2018, 103, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Uriarte, P.S.; Goicoechea, E.; Guillen, M.D. Volatile components of several virgin and refined oils differing in their botanical origin. J. Sci. Food Agric. 2011, 91, 1871–1884. [Google Scholar] [CrossRef]
- Ramarathnam, N. Studies on meat flavor. 3. A novel method for trapping volatile components from uncured and cured pork. J. Agric. Food Chem. 1993, 41, 933–938. [Google Scholar] [CrossRef]
- Robert, F.; Héritier, J.; Quiquerez, J.; Simian, H.; Blank, I. Synthesis and Sensorial Properties of 2-Alkylalk-2-enals and 3-(Acetylthio)-2-alkyl Alkanals. J. Agric. Food Chem. 2004, 52, 3525–3529. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Huynh-Ba, T.; Blank, I.; Robert, F. Temporal Changes in Aroma Release of Longjing Tea Infusion: Interaction of Volatile and Nonvolatile Tea Components and Formation of 2-Butyl-2-octenal upon Aging. J. Agric. Food Chem. 2008, 56, 2160–2169. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grebenteuch, S.; Kroh, L.W.; Drusch, S.; Rohn, S. Formation of Secondary and Tertiary Volatile Compounds Resulting from the Lipid Oxidation of Rapeseed Oil. Foods 2021, 10, 2417. https://doi.org/10.3390/foods10102417
Grebenteuch S, Kroh LW, Drusch S, Rohn S. Formation of Secondary and Tertiary Volatile Compounds Resulting from the Lipid Oxidation of Rapeseed Oil. Foods. 2021; 10(10):2417. https://doi.org/10.3390/foods10102417
Chicago/Turabian StyleGrebenteuch, Sandra, Lothar W. Kroh, Stephan Drusch, and Sascha Rohn. 2021. "Formation of Secondary and Tertiary Volatile Compounds Resulting from the Lipid Oxidation of Rapeseed Oil" Foods 10, no. 10: 2417. https://doi.org/10.3390/foods10102417
APA StyleGrebenteuch, S., Kroh, L. W., Drusch, S., & Rohn, S. (2021). Formation of Secondary and Tertiary Volatile Compounds Resulting from the Lipid Oxidation of Rapeseed Oil. Foods, 10(10), 2417. https://doi.org/10.3390/foods10102417