Chemical Characterization of Different Products from the Tunisian Opuntia ficus-indica (L.) Mill.
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Collection
2.2. Chemicals and Reagents
2.3. Proximate Composition
2.4. Fatty acid (FA) Profile
2.5. Inorganic Elements
2.6. Sugars
2.7. Total and Single Polyphenols
2.8. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition
3.2. Fatty Acid (FA) Profile
3.3. Element Profile
3.4. Sugars
3.5. Polyphenols
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sáez-Almendros, S.; Obrador, B.; Bach-Faig, A.; Serra-Majem, L. Environmental footprints of Mediterranean versus Western dietary patterns: Beyond the health benefits of the Mediterranean diet. Environ. Health 2013, 12, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Albergamo, A.; Vadalà, R.; Metro, D.; Nava, V.; Bartolomeo, G.; Rando, R.; Macrì, A.; Messina, L.; Gualtieri, R.; Colombo, N.; et al. Physicochemical, Nutritional, Microbiological, and Sensory Qualities of Chicken Burgers Reformulated with Mediterranean Plant Ingredients and Health-Promoting Compounds. Foods 2021, 10, 2129. [Google Scholar] [CrossRef] [PubMed]
- Mottese, A.F.; Albergamo, A.; Bartolomeo, G.; Bua, G.D.; Rando, R.; De Pasquale, P.; Saija, E.; Donato, D.; Dugo, G. Evaluation of fatty acids and inorganic elements by multivariate statistics for the traceability of the Sicilian Capparis spinosa L. J. Food Comp. Anal. 2018, 72, 66–74. [Google Scholar] [CrossRef]
- Costa, R.; Albergamo, A.; Piparo, M.; Zaccone, G.; Capillo, G.; Manganaro, A.; Dugo, P.; Mondello, L. Multidimensional gas chromatographic techniques applied to the analysis of lipids from wild-caught and farmed marine species. Eur. J. Lipid Sci. Technol. 2017, 119, 1600043. [Google Scholar] [CrossRef]
- Albergamo, A.; Rotondo, A.; Salvo, A.; Pellizzeri, V.; Bua, D.G.; Maggio, A.; Cicero, N.; Dugo, G. Metabolite and mineral profiling of “Violetto di Niscemi” and “Spinoso di Menfi” globe artichokes by 1H-NMR and ICP-MS. Nat. Prod. Res. 2017, 31, 990–999. [Google Scholar] [CrossRef]
- Albergamo, A.; Bua, G.D.; Rotondo, A.; Bartolomeo, G.; Annuario, G.; Costa, R.; Dugo, G. Transfer of major and trace elements along the “farm-to-fork” chain of different whole grain products. J. Food Comp. Anal. 2018, 66, 212–220. [Google Scholar] [CrossRef]
- Di Bella, G.; Turco, V.L.; Potortì, A.G.; Bua, G.D.; Fede, M.R.; Dugo, G. Geographical discrimination of Italian honey by multi-element analysis with a chemometric approach. J. Food Compos. Anal. 2015, 44, 25–35. [Google Scholar] [CrossRef]
- Di Bella, G.; Naccari, C.; Bua, G.D.; Rastrelli, L.; Lo Turco, V.; Potorti, A.G.; Dugo, G. Mineral composition of some varieties of beans from Mediterranean and Tropical areas. Int. J. Food Sci. Nutr. 2016, 67, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Lo Turco, V.; Potortì, A.G.; Rando, R.; Ravenda, P.; Dugo, G.; Di Bella, G. Functional properties and fatty acids profile of different beans varieties. Nat. Prod. Res. 2016, 30, 2243–2248. [Google Scholar] [CrossRef]
- Costa, R.; Capillo, G.; Albergamo, A.; Li Volsi, R.; Bartolomeo, G.; Bua, G.; Ferracane, A.; Savoca, S.; Gervasi, T.; Rando, R.; et al. A multi-screening Evaluation of the Nutritional and Nutraceutical Potential of the Mediterranean Jellyfish Pelagia noctiluca. Marine Drugs 2019, 17, 172. [Google Scholar] [CrossRef] [Green Version]
- Lo Turco, V.; Potortì, A.G.; Tropea, A.; Dugo, G.; Di Bella, G. Element analysis of dried figs (Ficus carica L.) from the Mediterranean areas. J. Food Comp. Anal. 2020, 90, 103503. [Google Scholar] [CrossRef]
- Potortì, A.G.; Bua, G.D.; Lo Turco, V.; Tekaya, A.B.; Beltifa, A.; Mansour, H.B.; Di Bella, G. Major, minor and trace element concentrations in spices and aromatic herbs from Sicily (Italy) and Mahdia (Tunisia) by ICP-MS and multivariate analysis. Food Chem. 2020, 313, 126094. [Google Scholar] [CrossRef] [PubMed]
- Serra-Majem, L.; Tomaino, L.; Dernini, S.; Berry, E.M.; Lairon, D.; Ngo de la Cruz, J.; Trichopoulou, A. Updating the mediterranean diet pyramid towards sustainability: Focus on environmental concerns. Int. J. Environ. Res. Public Health 2020, 17, 8758. [Google Scholar] [CrossRef] [PubMed]
- Pairotti, M.B.; Cerutti, A.K.; Martini, F.; Vesce, E.; Padovan, D.; Beltramo, R. Energy consumption and GHG emission of the Mediterranean diet: A systemic assessment using a hybrid LCA-IO method. J. Clean. Prod. 2015, 103, 507–516. [Google Scholar] [CrossRef]
- Burlingame, B.; Dernini, S. Sustainable diets: The Mediterranean diet as an example. Public Health Nutr. 2011, 14, 2285–2287. [Google Scholar] [CrossRef] [Green Version]
- Nefzaoui, A.; Ben Salem, H. Opuntia: A strategic fodder and efficient tool to combat desertification in the WANA (West Asia/North Africa) region. FAO Plant Prod. Prot. Pap. 2001. Available online: https://www.fao.org/3/y2808e/y2808e0d.html (accessed on 27 November 2021).
- Arba, M. The Potential of Cactus Pear (Opuntia ficus-indica (L.) Mill.) as Food and Forage Crop. In Emerging Research in Alternative Crops; Hirich, A., Choukr-Allah, R., Ragab, R., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 335–357. [Google Scholar]
- Albergamo, A.; Mottese, A.F.; Bua, G.D.; Caridi, F.; Sabatino, G.; Barrega, L.; Costa, R.; Dugo, G. Discrimination of the Sicilian prickly pear (Opuntia ficus-indica L., cv. Muscaredda) according to the provenance by testing unsupervised and supervised chemometrics. J. Food Sci. 2018, 83, 2933–2942. [Google Scholar] [CrossRef]
- Albergamo, A.; Bartolomeo, G.; Messina, L.; Rando, R.; Di Bella, G. Traceability of Opuntia spp. In Opuntia spp.: Chemistry, Bioactivity and Industrial Applications; Ramadan, M.F., Ayoub, T.E.M., Rohn, S., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 457–482. [Google Scholar]
- Mouas, N.T.; Kabouche, Z.; Bellel, N.; Chertout, L.K. Opuntia ficus-indica a Mediterranean Diet Product. In Proceedings of the 1st International Electronic Conference on Biological Diversity, Ecology and Evolution, online, 15–31 March 2021; Volume 68. [Google Scholar]
- Piga, A. Cactus pear: A fruit of nutraceutical and functional importance. J. Prof. Assoc. Cactus Dev. 2004, 6, 9–22. [Google Scholar]
- Mondragon-Jacobo, C.; Perez-Gonzalez, S. Cactus (Opuntia spp.) as Forage; Food and Agriculture Organization (FAO): Roma, Italia, 2001; Available online: http://www.fao.org/3/a-y2808e.pdf (accessed on 27 November 2021).
- Kaur, M.; Kaur, A.; Sharma, R. Pharmacological actions of Opuntia ficus-indica: A Review. J. Appl. Pharm. Sci. 2012, 2, 15–18. [Google Scholar] [CrossRef] [Green Version]
- Di Bella, G.; Lo Vecchio, G.; Albergamo, A.; Nava, V.; Bartolomeo, G.; Macrì, A.; Bacchetta, L.; Lo Turco, V.; Potortì, A.G. Chemical characterization of Sicilian dried nopal [Opuntia ficus-indica (L.) Mill.]. J. Food Comp. Anal. 2021; in press. [Google Scholar] [CrossRef]
- Cardador-Martínez, A.; Jiménez-Martínez, C.; Sandoval, G. Revalorization of cactus pear (Opuntia spp.) wastes as a source of antioxidants. Food Sci. Technol. 2011, 31, 782–788. [Google Scholar] [CrossRef] [Green Version]
- Procacci, S.; Bojórquez-Quintal, E.; Platamone, G.; Maccioni, O.; Lo Vecchio, V.; Morreale, V.; Alisi, C.; Balducchi, R.; Bacchetta, L. Opuntia ficus-indica pruning waste recycling: Recovery and characterization of mucilage from cladodes. Nat. Resour. 2021, 12, 91–107. [Google Scholar]
- Ciriminna, R.; Fidalgo, A.; Avellone, G.; Danzì, C.; Timpanaro, G.; Locatelli, M.; Pagliaro, M. Integral extraction of Opuntia ficus indica peel bioproducts via microwave-assisted hydrodiffusion and hydrodistillation. ACS Sustain. Chem. Eng. 2019, 7, 7884–7891. [Google Scholar] [CrossRef]
- Patel, S. Opuntia cladodes (nopal): Emerging functional food and dietary supplement. Mediterr. J. Nutr. Metab. 2014, 7, 11–19. [Google Scholar] [CrossRef]
- López-García, F.; Jiménez-Martínez, C.; Guzmán-Lucero, D.; Maciel-Cerda, A.; Delgado-Macuil, R.; Cabrero-Palomino, D.; Terres-Rojas, E.; Arzate-Vázquez, I. Physical and chemical characterization of a biopolymer film made with corn starch and nopal xoconostle (Opuntia joconsotle) mucilage. Rev. Mex. Ing. Quim. 2017, 16, 147–158. [Google Scholar] [CrossRef]
- Zouhri, M.A.; Anouar, A. Bioflocculants extraction from Cactaceae and their application in treatment of water and wastewater. J. Water Process. Eng. 2015, 7, 306–313. [Google Scholar]
- Kamaraj, M.; Nithya, T.G.; Chidambararajan, P.; Kebede, M. Photocatalytic degradation of Bisphenol-A in water under sunlight irradiation over ZnO nanoparticles fabricated by Ethiopian cactus pear fruit peel infusions. Optik 2020, 208, 164539. [Google Scholar] [CrossRef]
- Marwa, Z.M.; Abd-Elnoor, A.V. Housewives’ knowledges and practices of utilizing prickly pear peels and its use in fortifying some bakery products (cake & biscuits): An applied study. Home Econ. J. 2020, 36, 163–196. [Google Scholar]
- Scarano, P.; Naviglio, D.; Prigioniero, A.; Tartaglia, M.; Postiglione, A.; Sciarrillo, R.; Guarino, C. Sustainability: Obtaining natural dyes from waste matrices using the prickly pear peels of Opuntia ficus-indica (L.) Miller. Agronomy 2020, 10, 528. [Google Scholar] [CrossRef] [Green Version]
- El Mannoubi, I.; Barrek, S.; Skanji, T.; Casabianca, H.; Zarrouk, H. Characterization of Opuntia ficus indica seed oil from Tunisia. Chem. Nat. Compd. 2009, 45, 616–620. [Google Scholar] [CrossRef]
- Ali, R.F.; El-Anany, A.M.; Mousa, H.M.; Hamad, E.M. Nutritional and sensory characteristics of bread enriched with roasted prickly pear (Opuntia ficus-indica) seed flour. Food Funct. 2020, 11, 2117–2125. [Google Scholar] [CrossRef]
- El-Safy, F.S.; Salem, R.H.; Abd El-Ghany, M.E. Chemical and nutritional evaluation of different seed flours as novel sources of protein. World J. Dairy Food Sci. 2012, 7, 59–65. [Google Scholar]
- Rayan, A.M.; Morsy, N.E.; Youssef, K.M. Enrichment of rice-based extrudates with cactus Opuntia dillenii seed powder: A novel source of fiber and antioxidants. J. Food Sci. Technol. 2018, 55, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, W.; Latimer, G. AOAC Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists Arlington: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Dimić, I.; Teslić, N.; Putnik, P.; Bursać Kovačević, D.; Zeković, Z.; Šojić, B.; Mrkonjić, Ž.; Čolović, D.; Montesano, D.; Pavlić, B. Innovative and conventional valorizations of grape seeds from winery by-products as sustainable source of lipophilic antioxidants. Antioxidants 2020, 9, 568. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Potortί, A.G.; Lo Turco, V.; Saitta, M.; Bua, G.D.; Tropea, A.; Dugo, G.; Di Bella, G. Chemometric analysis of minerals and trace elements in Sicilian wines from two different grape cultivars. Nat. Prod. Res. 2017, 31, 1000–1005. [Google Scholar] [CrossRef] [PubMed]
- Potortì, A.G.; Di Bella, G.; Mottese, A.F.; Bua, G.D.; Fede, M.R.; Sabatino, G.; Lo Turco, V. Traceability of Protected Geographical Indication (PGI) Interdonato lemon pulps by chemometric analysis of the mineral composition. J. Food Comp. Anal. 2018, 69, 122–128. [Google Scholar] [CrossRef]
- Di Bella, G.; Licata, P.; Potortì, A.G.; Crupi, R.; Nava, V.; Qada, B.; Rando, R.; Bartolomeo, G.; Lo Turco, V. Mineral content and physico-chemical parameters of honey from North regions of Algeria. Nat. Prod. Res. 2020, 1–8. [Google Scholar] [CrossRef]
- Di Bella, G.; Potortì, A.G.; Beltifa, A.; Mansour, H.B.; Nava, V.; Lo Turco, V. Discrimination of Tunisian Honey by Mineral and Trace Element Chemometrics Profiling. Foods 2021, 10, 724. [Google Scholar] [CrossRef]
- Bua, G.D.; Albergamo, A.; Annuario, G.; Zammuto, V.; Costa, R.; Dugo, G. High-throughput ICP-MS and chemometrics for exploring the major and trace element profile of the Mediterranean sepia ink. Food Anal. Methods. 2017, 10, 1181–1190. [Google Scholar] [CrossRef]
- Mottese, A.F.; Fede, M.R.; Caridi, F.; Sabatino, G.; Marcianò, G.; Calabrese, G.; Albergamo, A.; Dugo, G. Chemometrics and innovative multidimensional data analysis (MDA) based on multi-element screening to protect the Italian porcino (Boletus sect. Boletus) from fraud. Food Control. 2020, 110, 107004. [Google Scholar] [CrossRef]
- Baldini, M.; Fabietti, F.; Giammarioli, S.; Onori, R.; Orefice, L.; Stacchini, A. Analytical methods used in food chemical control. Rapporti ISTISAN 1996, 96/34, 66–67. [Google Scholar]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef]
- Albergamo, A.; Costa, R.; Bartolomeo, G.; Rando, R.; Vadalà, R.; Nava, V.; Gervasi, T.; Toscano, G.; Germanò, M.P.; D’Angelo, V.; et al. Grape water: Reclaim and valorization of a by-product from the industrial cryoconcentration of grape (Vitis vinifera) must. J. Sci. Food Agric. 2020, 100, 2971–2981. [Google Scholar] [CrossRef]
- Lanuzza, F.; Occhiuto, F.; Monforte, M.T.; Tripodo, M.M.; D’Angelo, V.; Galati, E.M. Antioxidant phytochemicals of Opuntia ficus indica (L.) Mill. cladodes with potential anti-spasmodic activity. Pharmacogn. Mag. 2017, 13, S424. [Google Scholar] [PubMed]
- Rocchetti, G.; Pellizzoni, M.; Montesano, D.; Lucini, L. Italian Opuntia ficus-indica cladodes as rich source of bioactive compounds with health-promoting properties. Foods 2018, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Guevara-Figueroa, T.; Jiménez-Islas, H.; Reyes-Escogido, M.L.; Mortensen, A.G.; Laursen, B.B.; Lin, L.W.; De León-Rodríguez, A.; Fomsgaard, I.S.; De La Rosa, A.P.B. Proximate composition, phenolic acids, and flavonoids characterization of commercial and wild nopal (Opuntia spp.). J. Food Comp. Anal. 2010, 23, 525–532. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Off. J. Eur. Union. 2006, 404, 9–25. [Google Scholar]
- Kotecka-Majchrzak, K.; Sumara, A.; Fornal, E.; Montowska, M. Oilseed proteins–Properties and application as a food ingredient. Trends Food Sci. Technol. 2020, 106, 160–170. [Google Scholar] [CrossRef]
- Ayadi, M.A.; Abdelmaksoud, W.; Ennouri, M.; Attia, H. Cladodes from Opuntia ficus-indica as a source of dietary fiber: Effect on dough characteristics and cake making. Ind. Crops Prod. 2009, 30, 40–47. [Google Scholar] [CrossRef]
- Angulo-Bejarano, P.I.; Martínez-Cruz, O.; Paredes-López, O. Phytochemical content, nutraceutical potential and biotechnological applications of an ancient Mexican plant: Nopal (Opuntia ficus-indica). Curr. Res. Nutr. Food Sci. 2014, 10, 196–217. [Google Scholar] [CrossRef]
- Salim, N.; Abdelwaheb, C.; Rabah, C.; Ahcene, B. Chemical composition of Opuntia ficus-indica (L.) fruit. Afr. J. Biotechnol. 2009, 8, 1623–1624. [Google Scholar]
- Medina, E.D.; Rodríguez, E.R.; Romero, C.D. Chemical characterization of Opuntia dillenii and Opuntia ficus-indica fruits. Food Chem. 2007, 103, 38–45. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Mohamed, H.I.; Elmelegy, A.A.; Eldesoky, S.E.; Safwat, G. Phytochemical screening, antimicrobial, antioxidant, anticancer activities and nutritional values of cactus (Opuntia ficus-indica) pulp and peel. Fresenius Environ. Bull. 2019, 28, 1545–1562. [Google Scholar]
- El-Said, N.M.; Nagib, A.I.; Rahman, Z.A.; Deraz, S.F. Prickly pear [Opuntia ficus-indica (L.) Mill] peels: Chemical composition, nutritional value, and protective effects on liver and kidney functions and cholesterol in rats. Funct. Plant Sci. Biotechnol. 2011, 5, 30–35. [Google Scholar]
- Siano, F.; Straccia, M.C.; Paolucci, M.; Fasulo, G.; Boscaino, F.; Volpe, M.G. Physico-chemical properties and fatty acid composition of pomegranate, cherry and pumpkin seed oils. J. Sci. Food Agric. 2016, 96, 1730–1735. [Google Scholar] [CrossRef]
- Özcan, M.M.; Al Juhaimi, F.Y. Nutritive value and chemical composition of prickly pear seeds (Opuntia ficus-indica L.) growing in Turkey. Int. J. Food Sci. Nutr. 2011, 62, 533–536. [Google Scholar] [CrossRef] [PubMed]
- Reda, T.H.; Atsbha, M.K. Nutritional composition, antinutritional factors, antioxidant activities, functional properties, and sensory evaluation of cactus pear (Opuntia ficus-indica) seeds grown in tigray region, Ethiopia. Int. J. Food Sci. 2019, 2019, 5697052. [Google Scholar] [CrossRef]
- Matthäus, B.; Özcan, M.M. Habitat effects on yield, fatty acid composition and tocopherol contents of prickly pear (Opuntia ficus-indica L.) seed oils. Sci. Hortic. 2011, 131, 95–98. [Google Scholar] [CrossRef]
- Dubois, V.; Breton, S.; Linder, M.; Fanni, J.; Parmentier, M. Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. Eur. J. Lipid Sci. Technol. 2007, 109, 710–732. [Google Scholar] [CrossRef]
- Cicero, N.; Albergamo, A.; Salvo, A.; Bua, G.D.; Bartolomeo, G.; Mangano, V.; Rotondo, A.; Di Stefano, V.; Di Bella, G.; Dugo, G. Chemical characterization of a variety of cold-pressed gourmet oils available on the Brazilian market. Food Res. Int. 2018, 109, 517–525. [Google Scholar] [CrossRef]
- Javardi, M.S.M.; Madani, Z.; Movahedi, A.; Karandish, M.; Abbasi, B. The correlation between dietary fat quality indices and lipid profile with Atherogenic index of plasma in obese and non-obese volunteers: A cross-sectional descriptive-analytic case-control study. Lipids Health Dis. 2020, 19, 213. [Google Scholar] [CrossRef]
- Razmaitė, V.; Pileckas, V.; Bliznikas, S.; Šiukščius, A. Fatty acid composition of Cannabis sativa, Linum usitatissimum and Camelina sativa seeds harvested in lithuania for food use. Foods 2021, 10, 1902. [Google Scholar] [CrossRef]
- Hashempour-Baltork, F.; Torbati, M.; Azadmard-Damirchi, S.; Savage, G.P. Chemical, rheological and nutritional characteristics of sesame and olive oils blended with linseed oil. Adv. Pharm. Bull. 2018, 8, 107. [Google Scholar] [CrossRef]
- Figueroa-Pérez, M.G.; Pérez-Ramírez, I.F.; Paredes-López, O.; Mondragón-Jacobo, C.; Reynoso-Camacho, R. Phytochemical composition and in vitro analysis of nopal (O. ficus-indica) cladodes at different stages of maturity. Int. J. Food Prop. 2018, 21, 1728–1742. [Google Scholar] [CrossRef] [Green Version]
- Andreu-Coll, L.; Cano-Lamadrid, M.; Sendra, E.; Carbonell-Barrachina, A.; Legua, P.; Hernández, F. Fatty acid profile of fruits (pulp and peel) and cladodes (young and old) of prickly pear [Opuntia ficus-indica (L.) Mill.] from six Spanish cultivars. J. Food Comp. Anal. 2019, 84, 103294. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Mörsel, J.T. Recovered lipids from prickly pear [Opuntia ficus-indica (L.) Mill] peel: A good source of polyunsaturated fatty acids, natural antioxidant vitamins and sterols. Food Chem. 2003, 83, 447–456. [Google Scholar] [CrossRef]
- Ennouri, M.; Evelyne, B.; Laurence, M.; Hamadi, A. Fatty acid composition and rheological behaviour of prickly pear seed oils. Food Chem. 2005, 93, 431–437. [Google Scholar] [CrossRef]
- Chougui, N.; Tamendjari, A.; Hamidj, W.; Hallal, S.; Barras, A.; Richard, T.; Larbat, R. Oil composition and characterisation of phenolic compounds of Opuntia ficus-indica seeds. Food Chem. 2013, 139, 796–803. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union. 2006, 364, 5–24. [Google Scholar]
- Khattak, K.F.; Rahman, T.U. Analysis of vegetable’s peels as a natural source of vitamins and minerals. Int. Food Res. J. 2017, 24, 292. [Google Scholar]
- Beyzi, E.; Gunes, A.; Beyzi, S.B.; Konca, Y. Changes in fatty acid and mineral composition of rapeseed (Brassica napus ssp. oleifera L.) oil with seed sizes. Ind. Crop. Prod. 2019, 129, 10–14. [Google Scholar] [CrossRef]
- Ding, Y.; Lin, H.W.; Lin, Y.L.; Yang, D.J.; Yu, Y.S.; Chen, J.W.; Chen, Y.C. Nutritional composition in the chia seed and its processing properties on restructured ham-like products. J. Food Drug Anal. 2018, 26, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Mehra, M.; Pasricha, V.; Gupta, R.K. Estimation of nutritional, phytochemical and antioxidant activity of seeds of musk melon (Cucumis melo) and watermelon (Citrullus lanatus) and nutritional analysis of their respective oils. J. Pharmacogn. Phytochem. 2015, 3, 98–102. [Google Scholar]
- Kaul, P. Nutritional potential, bioaccessibility of minerals and functionality of watermelon (Citrullus vulgaris) seeds. LWT-Food Sci. Technol. 2011, 44, 1821–1826. [Google Scholar]
- Hernández-Urbiola, M.I.; Contreras-Padilla, M.; Pérez-Torrero, E.; Hernández-Quevedo, G.; Rojas-Molina, J.I.; Cortes, M.E.; Rodríguez-García, M.E. Study of nutritional composition of nopal (Opuntia ficus indica cv. Redonda) at different maturity stages. Open Nutr. J. 2010, 4, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Moreno, E.; Marques, C.D.; Sánchez-Mata, M.C.; Goñi, I. In vitro calcium bioaccessibility in raw and cooked cladodes of prickly pear cactus (Opuntia ficus-indica L. Miller). LWT-Food Sci. Technol. 2011, 44, 1611–1615. [Google Scholar] [CrossRef]
- El Kossori, R.L.; Villaume, C.; El Boustani, E.; Sauvaire, Y.; Méjean, L. Composition of pulp, skin and seeds of prickly pears fruit (Opuntia ficus indica sp.). Plant Foods Hum. Nutr. 1998, 52, 263–270. [Google Scholar] [CrossRef]
- Chiteva, R.; Wairagu, N. Chemical and nutritional content of Opuntia ficus-indica (L.). Afr. J. Biotechnol. 2013, 12, 3309–3312. [Google Scholar]
- Sawaya, W.N.; Khahl, J.K.; Al-Mohammad, M.M. Nutritive value of prickly pear seeds, Opuntia ficus-indica. Plants Food Hum. Nutr. 1983, 33, 91–97. [Google Scholar] [CrossRef]
- Arena, G.; Spada, M.F.; Nocifora, R.; Matera, M. A proving of Opuntia vulgaris. Homoeopath. Links 2006, 19, e1–e3. [Google Scholar] [CrossRef]
- Lira-Ortiz, A.L.; Reséndiz-Vega, F.; Ríos-Leal, E.; Contreras-Esquivel, J.C.; Chavarría-Hernández, N.; Vargas-Torres, A.; Rodríguez-Hernández, A.I. Pectins from waste of prickly pear fruits (Opuntia albicarpa Scheinvar ‘Reyna’): Chemical and rheological properties. Food Hydrocoll. 2014, 37, 93–99. [Google Scholar] [CrossRef]
- Forni, E.; Penci, M.; Polesello, A. A preliminary characterization of some pectins from quince fruit (Cydonia oblonga Mill.) and prickly pear (Opuntia ficus-indica) peel. Carbohydr. Polym. 1994, 23, 231–234. [Google Scholar] [CrossRef]
- Ginestra, G.; Parker, M.L.; Bennett, R.N.; Robertson, J.; Mandalari, G.; Narbad, A.; Waldron, K.W. Anatomical, chemical, and biochemical characterization of cladodes from prickly pear [Opuntia ficus-indica (L.) Mill.]. J. Agric. Food Chem. 2009, 57, 10323–10330. [Google Scholar] [CrossRef] [PubMed]
- Habibi, Y.; Heux, L.; Mahrouz, M.; Vignon, M.R. Morphological and structural study of seed pericarp of Opuntia ficus-indica prickly pear fruits. Carbohydr. Polym. 2008, 72, 102–112. [Google Scholar] [CrossRef]
- Abdel-Hameed, E.S.S.; Nagaty, M.A.; Salman, M.S.; Bazaid, S.A. Phytochemicals, nutritionals and antioxidant properties of two prickly pear cactus cultivars (Opuntia ficus-indica Mill.) growing in Taif, KSA. Food Chem. 2014, 160, 31–38. [Google Scholar] [CrossRef]
- El-Mostafa, K.; El Kharrassi, Y.; Badreddine, A.; Andreoletti, P.; Vamecq, J.; El Kebbaj, M.; Cherkaoui-Malki, M. Nopal cactus (Opuntia ficus-indica) as a source of bioactive compounds for nutrition, health and disease. Molecules 2014, 19, 14879–14901. [Google Scholar] [CrossRef] [Green Version]
- Gouws, C.A.; D’Cunha, N.M.; Georgousopoulou, E.N.; Mellor, D.D.; Naumovski, N. The effect of different drying techniques on phytochemical content and in vitro antioxidant properties of Australian-grown prickly pears (Opuntia ficus indica). J. Food Process. Preserv. 2019, 43, e13900. [Google Scholar] [CrossRef]
- Fernández-López, J.A.; Almela, L.; Obón, J.M.; Castellar, R. Determination of antioxidant constituents in cactus pear fruits. Plant. Foods Hum. Nutr. 2010, 65, 253–259. [Google Scholar] [CrossRef]
- Moussa-Ayoub, T.E.; El-Samahy, S.K.; Kroh, L.W.; Rohn, S. Identification and quantification of flavonol aglycons in cactus pear (Opuntia ficus-indica) fruit using a commercial pectinase and cellulase preparation. Food Chem. 2011, 124, 1177–1184. [Google Scholar] [CrossRef]
Component | Nopal | Prickly Pear | ||
---|---|---|---|---|
Pulp | Peel | Seeds | ||
Protein | 1.36 ± 0.22 a | 0.78 ± 0.28 b | 1.22 ± 0.49 a | 17.34 ± 3.86 c |
Lipids | 1.15 ± 0.53 a | 1.12 ± 0.51 a | 5.04 ± 0.57 b | 9.65 ± 2.05 c |
Ash | 18.58 ± 2.19 a | 0.28 ± 0.07 b | 3.58 ± 0.42 c | 1.79 ± 0.26 d |
Crude fiber | 28.39 ± 3.12 a | 4.06 ± 0.92 b | 12.54 ± 1.70 c | 16.28 ± 2.35 c |
Carbohydrates | 38.79 ± 3.56 a | 74.34 ± 7.38 b | 65.23 ± 5.46 c | 49.76 ± 6.66 d |
Moisture | 7.73 ± 1.26 a | 16.57 ± 2.98 b | 10.12 ± 2.06 a | 3.39 ± 0.86 c |
FA | Nopal | Prickly Pear | ||
---|---|---|---|---|
Pulp | Peels | Seeds | ||
C16:0 | 21.14 ± 1.74 a | 16.83 ± 2.33 b | 20.76 ± 1.25 a | 10.35 ± 1.02 c |
C18:0 | 2.64 ± 0.28 a | 4.96 ± 0.45 b | 2.65 ± 0.91 a | 3.45 ± 0.20 c |
C20:0 | 0.01 ± 0.00 a | 0.15 ± 0.07 b | 0.01 ± 0.00 a | 0.32 ± 0.00 b |
SFA | 23.79 ± 1.08 a | 21.94 ± 1.76 a | 23.42 ± 1.18 a | 14.12 ± 2.10 b |
C16:1 n-7 | 0.34 ± 0.12 a | 0.97 ± 0.38 b | 1.09 ± 0.26 b | 1.02 ± 0.23 b |
C17:1 n-7 | 0.57 ± 0.06 a | 0.57 ± 0.07 a | 0.50 ± 0.29 a | 0.12 ± 0.05 a |
C18:1 n-9 | 17.55 ± 2.63 a | 23.26 ± 1.31 b | 13.56 ± 1.78 c | 20.86 ± 1.22 b |
C20:1 n-9 | 0.95 ± 0.28 a | 0.25 ± 0.11 a | 1.05 ± 0.09 b | 0.42 ± 0.26 a |
MUFA | 19.41 ± 2.98 a | 25.05 ± 1.66 b | 16.21 ± 1.85 a | 22.42 ± 0.95 c |
C18:2 n-6 | 36.44 ± 3.81 a | 48.97 ± 4.86 b | 47.85 ± 3.86 b | 61.11 ± 5.55 c |
C18:3 n-3 | 19.64 ± 1.08 a | 3.26 ± 0.76 b | 11.44 ± 0.19 c | 0.29 ± 0.09 d |
C20:4 n-6 | 0.61 ± 0.19 a | 0.75 ± 0.09 a | 0.92 ± 0.14 a | 0.32 ± 0.08 b |
PUFA | 56.69 ± 5.89 a | 52.93 ± 6.09 a | 60.21 ± 4.67 a | 61.71 ± 3.05 a |
H/H | 3.48 | 5.45 | 3.50 | 7.95 |
AI | 1.11 | 0.86 | 1.09 | 0.49 |
TI | 0.27 | 0.43 | 0.35 | 0.32 |
ω-6/ω-3 | 1.89 | 15.26 | 4.27 | 211.83 |
Element | Nopal | Prickly Pear | ||
---|---|---|---|---|
Pulp | Peel | Seed | ||
Minerals (mg/100 g, dw) | ||||
Na | 144.54 ± 21.09 a | 2.58 ± 0.26 b | 114.29 ± 15.95 c | 14.09 ± 0.17 d |
Mg | 493.57 ± 87.73 a | 152.84 ± 29.38 b | 345.19 ± 55.67 c | 427.35 ± 76.17 a |
K | 6949.57 ± 1039.89 a | 187.05 ± 15.85 b | 1820.83 ± 20.33 c | 214.36 ± 18.93 b |
Essential trace elements (mg/Kg, dw) | ||||
Mn | 59.73 ± 12.96 a | 0.78 ± 0.07 b | 46.86 ± 6.13 a | 1.56 ± 0.09 c |
Fe | 23.15 ± 3.07 a | 2.36 ± 0.16 b | 15.27 ± 1.24 c | 4.99 ± 0.35 d |
Cu | 0.05 ± 0.01 a | 0.21 ± 0.03 b | 11.55 ± 1.58 c | 0.46 ± 0.12 b |
Zn | 11.16 ± 1.25 a | 5.09 ± 0.28 b | 24.96 ± 2.20 c | 31.58 ± 3.60 d |
Potentially toxic trace elements (µg/Kg, dw) | ||||
Cr | 41.50 ± 5.13 a | 20.14 ± 1.44 b | 15.41 ± 2.62 c | 11.92 ± 1.03 c |
Ni | 47.14 ± 5.59 a | 55.46 ± 3.10 a | 34.79 ± 1.99 b | 33.28 ± 1.41 b |
As | <LOD | <LOD | <LOD | 24.15 ± 1.40 |
Cd | 25.62 ± 2.13 | <LOD | <LOD | <LOD |
Pb | 22.37 ± 1.81 a | 23.72 ± 2.04 a | 13.77 ± 3.02 b | 11.28 ± 2.76 b |
Sugar | Cladode | Prickly Pear | ||
---|---|---|---|---|
Pulp | Peel | Seed | ||
Glucose | 8.75 ± 2.16 a | 42.57 ± 13.88 b | 21.79 ± 4.94 c | 19.37 ± 4.25 d |
Galactose | 9.76 ± 1.13 a | 2.34 ± 0.51 b | 15.67 ± 3.21 c | 0.56 ± 0.03 d |
Xylose | 7.78 ± 0.91 a | 6.78 ± 1.79 a | 5.48 ± 0.72 a | 22.29 ± 3.87 b |
Arabinose | 13.78 ± 3.81 a | 13.56 ± 3.31 a | 4.22 ± 1.05 b | 2.27 ± 0.29 c |
Mannose | 1.92 ± 0.45 a | 4.75 ± 1.73 b | 6.96 ± 1.78 b | 1.34 ± 0.38 a |
Total Polyphenols | Cladode | Prickly Pear | ||
---|---|---|---|---|
Pulp | Peel | Seeds | ||
4235.27 ± 68.15 a | 2581.68 ± 45.21 b | 4785.36 ± 73.16 c | 108.36 ± 10.15 d |
Polyphenol | λmax (nm) | [M − H] (m/z) | Cladode | Prickly Pear | ||
---|---|---|---|---|---|---|
Pulp | Peel | Seeds | ||||
Gallic acid | 214,270 | 169 | 33.27 ± 3.55 a | 11.68 ± 1.40 b | 65.50 ± 2.76 c | <LOD |
Protocatechuic acid | 218,260,295 | 153 | 50.61 ± 4.47 a | 21.89 ± 2.21 b | 9.61 ± 1.19 c | <LOD |
4-hy droxybenzoic acid | 255 | 137 | 9.44 ± 1.26 a | 16.77 ± 1.56 b | 484.95 ± 8.73 c | 1.37 ± 0.11 d |
Vanillic acid | 220,260,295 | 167 | 84.15 ± 10.14 a | 111.77 ± 17.13 a | 24.86 ± 3.57 b | <LOD |
Syringic acid | 220,275 | 197 | 166.22 ± 18.99 a | 3.23 ± 0.62 b | 59.49 ± 4.09 c | 3.78 ± 0.75 b |
Cinnamic acid | 321 | 147 | 42.42 ± 3.10 a | 124.33 ± 8.78 b | 318.95 ± 11.99 c | <LOD |
Chlorogenic acid | 324 | 353 | 179.22 ± 22.49 a | 203.86 ± 23.36 a | 28.84 ± 4.33 b | <LOD |
Caffeic acid | 210,272,328 | 179 | 23.50 ± 5.09 a | 10.64 ± 2.38 b | 98.88 ± 2.97 c | <LOD |
p-coumaric acid | 225,310 | 163 | 498.16 ± 58.38 a | 4.00 ± 0.93 b | 57.79 ± 2.22 c | <LOD |
Ferulic acid | 230,320 | 193 | 69.92 ± 9.23 a | 251.16 ± 7.46 b | 127.67 ± 5.82 c | 12.53 ± 3.22 d |
Sinapic acid | 235,322 | 223 | 20.21 ± 2.04 a | 85.71 ± 5.27 b | 46.17 ± 3.39 c | <LOD |
Total phenolic acids | - | - | 1177.12 ± 41.89 a | 845.01 ± 46.78 b | 1322.68 ± 27.22 c | 17.68 ± 5.22 d |
Rutin | 257,354 | 609 | 500.05 ± 33.39 a | 260.45 ± 10.15 b | 818.94 ± 44.86 c | 20.37 ± 5.87 d |
Isorhamnetin 3-O-glucoside | 250,342 | 477 | 149.71 ± 10.13 a | 184.14 ± 14.91 b | 223.66 ± 14.44 c | <LOD |
Kaempferol-3-O-rutinoside | 266,300,346 | 593 | 253.46 ± 48.05 a | 171.52 ± 12.78 b | 159.22 ± 27.65 b | <LOD |
Kaempferol-3-O-glucoside | 262,362 | 447 | 479.77 ± 31.90 a | 132.11 ± 9.62 a | 512.44 ± 42.58 c | <LOD |
Isorhamnetin-3-O-rutinoside | 250,270,342 | 623 | 703.33 ± 28.45 a | 271.39 ± 25.59 b | 254.51 ± 31.03 b | <LOD |
Quercetin | 205,254,370 | 301 | 48.77 ± 7.70 a | 63.60 ± 8.24 b | 605.28 ± 22.71 c | 32.33 ± 11.09 d |
Luteolin | 365 | 285 | 49.29 ± 2.83 a | 71.72 ± 5.27 b | 80.12 ± 6.71 b | <LOD |
Apigenin | 268,334 | 269 | 167.06 ± 14.54 a | 59.95 ± 6.51 b | 60.89 ± 2.02 b | <LOD |
Kaempferol | 266,368 | 285 | 309.38 ± 50.83 a | 105.83 ± 10.62 b | 270.26 ± 14.19 c | <LOD |
Total flavonoids | - | - | 2660.84 ± 68.48 a | 1320.68 ± 38.30 b | 2985.30 ± 30.10 c | 52.70 ± 7.36 d |
Total polyphenols | - | - | 3837.96 ± 110.37 a | 2165.69 ± 8.41 b | 4307.98 ± 17.12 c | 70.38 ± 14.37 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albergamo, A.; Potortí, A.G.; Di Bella, G.; Amor, N.B.; Lo Vecchio, G.; Nava, V.; Rando, R.; Ben Mansour, H.; Lo Turco, V. Chemical Characterization of Different Products from the Tunisian Opuntia ficus-indica (L.) Mill. Foods 2022, 11, 155. https://doi.org/10.3390/foods11020155
Albergamo A, Potortí AG, Di Bella G, Amor NB, Lo Vecchio G, Nava V, Rando R, Ben Mansour H, Lo Turco V. Chemical Characterization of Different Products from the Tunisian Opuntia ficus-indica (L.) Mill. Foods. 2022; 11(2):155. https://doi.org/10.3390/foods11020155
Chicago/Turabian StyleAlbergamo, Ambrogina, Angela Giorgia Potortí, Giuseppa Di Bella, Nawres Ben Amor, Giovanna Lo Vecchio, Vincenzo Nava, Rossana Rando, Hedi Ben Mansour, and Vincenzo Lo Turco. 2022. "Chemical Characterization of Different Products from the Tunisian Opuntia ficus-indica (L.) Mill." Foods 11, no. 2: 155. https://doi.org/10.3390/foods11020155