Topical Collection "Reviews on Food Microbiology, Foodborne Pathogens, and Probiotics"

A topical collection in Foods (ISSN 2304-8158). This collection belongs to the section "Food Microbiology".

Editor

Prof. Dr. Arun K. Bhunia
E-Mail Website
Guest Editor

Topical Collection Information

Dear Colleagues,

In-depth high-level review articles are sought from a well-recognized and well-established research community on topics from state-of-the-art knowledge to new advances and trends, including but not limited to the following:

  • Emerging or neglected foodborne viral, bacterial, and parasitic diseases;
  • Impact of food and food components on pathogen survival, transmission, and pathogenesis;
  • Biofilm formation and the role of small molecules on biofilm formation and inactivation;
  • Foodborne pathogens and microbial ecology in nontraditional protein sources, such as human food;
  • Probiotic microbes and their application in foodborne pathogen prevention, inactivation, and control.

We look forward to receiving your contribution to this Special Issue, which will host review papers providing valuable insights into all aspects of food microbiology, foodborne pathogens, and probiotics.

Prof. Dr. Arun K. Bhunia
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • food microbiology
  • foodborne pathogens
  • probiotics
  • biofilm
  • microbial ecology

Published Papers (7 papers)

2021

Jump to: 2020

Review
Bacterial Biofilms and Their Implications in Pathogenesis and Food Safety
Foods 2021, 10(9), 2117; https://doi.org/10.3390/foods10092117 - 08 Sep 2021
Cited by 11 | Viewed by 1504
Abstract
Biofilm formation is an integral part of the microbial life cycle in nature. In food processing environments, bacterial transmissions occur primarily through raw or undercooked foods and by cross-contamination during unsanitary food preparation practices. Foodborne pathogens form biofilms as a survival strategy in [...] Read more.
Biofilm formation is an integral part of the microbial life cycle in nature. In food processing environments, bacterial transmissions occur primarily through raw or undercooked foods and by cross-contamination during unsanitary food preparation practices. Foodborne pathogens form biofilms as a survival strategy in various unfavorable environments, which also become a frequent source of recurrent contamination and outbreaks of foodborne illness. Instead of focusing on bacterial biofilm formation and their pathogenicity individually, this review discusses on a molecular level how these two physiological processes are connected in several common foodborne pathogens such as Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica and Escherichia coli. In addition, biofilm formation by Pseudomonas aeruginosa is discussed because it aids the persistence of many foodborne pathogens forming polymicrobial biofilms on food contact surfaces, thus significantly elevating food safety and public health concerns. Furthermore, in-depth analyses of several bacterial molecules with dual functions in biofilm formation and pathogenicity are highlighted. Full article
Show Figures

Graphical abstract

Systematic Review
A Systematic Analysis of Research on Arcobacter: Public Health Implications from a Food–Environment Interphase Perspective
Foods 2021, 10(7), 1673; https://doi.org/10.3390/foods10071673 - 20 Jul 2021
Cited by 1 | Viewed by 892
Abstract
This review maps the global research landscape of the public health implications of Arcobacter from the food–environment interphase using content analytics and integrated science mapping. The search term “Arcobacter” was used to retrieve relevant articles published in Web of Science and Scopus between [...] Read more.
This review maps the global research landscape of the public health implications of Arcobacter from the food–environment interphase using content analytics and integrated science mapping. The search term “Arcobacter” was used to retrieve relevant articles published in Web of Science and Scopus between 1991 to 2019. The number of articles included in the review was 524, with 1304 authors, 172 journal sources, and a collaborative index of 2.55. The annual growth rate of the publications was 9.74%. The most contributing author in the field was Houf K., with 40 publications, 26 h-index, and 2020 total citations. The most productive country was the USA (13.33%). The majority of the articles were published in English (96%) and in the Journal of Food Protection (8.02%). The highest research outputs were in the field of Microbiology (264). The frequently occurred keywords were Arcobacter, poultry, shellfish, cattle, and chicken. This study revealed a fair increase in the growth rate of Arcobacter-related research—especially in the area of isolation and detection of the pathogen in foods and food environments, as well as the pathogenesis and genetic diversity of the pathogen. Research themes in the area of prevalence and epidemiology seem to be underexplored. Full article
Show Figures

Figure 1

Review
Mycotoxins Affecting Animals, Foods, Humans, and Plants: Types, Occurrence, Toxicities, Action Mechanisms, Prevention, and Detoxification Strategies—A Revisit
Foods 2021, 10(6), 1279; https://doi.org/10.3390/foods10061279 - 03 Jun 2021
Cited by 14 | Viewed by 3588
Abstract
Mycotoxins are produced by fungi and are known to be toxic to humans and animals. Common mycotoxins include aflatoxins, ochratoxins, zearalenone, patulin, sterigmatocystin, citrinin, ergot alkaloids, deoxynivalenol, fumonisins, trichothecenes, Alternaria toxins, tremorgenic mycotoxins, fusarins, 3-nitropropionic acid, cyclochlorotine, sporidesmin, etc. These mycotoxins can pose [...] Read more.
Mycotoxins are produced by fungi and are known to be toxic to humans and animals. Common mycotoxins include aflatoxins, ochratoxins, zearalenone, patulin, sterigmatocystin, citrinin, ergot alkaloids, deoxynivalenol, fumonisins, trichothecenes, Alternaria toxins, tremorgenic mycotoxins, fusarins, 3-nitropropionic acid, cyclochlorotine, sporidesmin, etc. These mycotoxins can pose several health risks to both animals and humans, including death. As several mycotoxins simultaneously occur in nature, especially in foods and feeds, the detoxification and/or total removal of mycotoxins remains challenging. Moreover, given that the volume of scientific literature regarding mycotoxins is steadily on the rise, there is need for continuous synthesis of the body of knowledge. To supplement existing information, knowledge of mycotoxins affecting animals, foods, humans, and plants, with more focus on types, toxicity, and prevention measures, including strategies employed in detoxification and removal, were revisited in this work. Our synthesis revealed that mycotoxin decontamination, control, and detoxification strategies cut across pre-and post-harvest preventive measures. In particular, pre-harvest measures can include good agricultural practices, fertilization/irrigation, crop rotation, using resistant varieties of crops, avoiding insect damage, early harvesting, maintaining adequate humidity, and removing debris from the preceding harvests. On the other hand, post-harvest measures can include processing, chemical, biological, and physical measures. Additionally, chemical-based methods and other emerging strategies for mycotoxin detoxification can involve the usage of chitosan, ozone, nanoparticles, and plant extracts. Full article
Show Figures

Figure 1

Review
Kefir and Its Biological Activities
Foods 2021, 10(6), 1210; https://doi.org/10.3390/foods10061210 - 27 May 2021
Cited by 25 | Viewed by 3922
Abstract
Kefir is a fermented beverage with renowned probiotics that coexist in symbiotic association with other microorganisms in kefir grains. This beverage consumption is associated with a wide array of nutraceutical benefits, including anti-inflammatory, anti-oxidative, anti-cancer, anti-microbial, anti-diabetic, anti-hypertensive, and anti-hypercholesterolemic effects. Moreover, kefir [...] Read more.
Kefir is a fermented beverage with renowned probiotics that coexist in symbiotic association with other microorganisms in kefir grains. This beverage consumption is associated with a wide array of nutraceutical benefits, including anti-inflammatory, anti-oxidative, anti-cancer, anti-microbial, anti-diabetic, anti-hypertensive, and anti-hypercholesterolemic effects. Moreover, kefir can be adapted into different substrates which allow the production of new functional beverages to provide product diversification. Being safe and inexpensive, there is an immense global interest in kefir’s nutritional potential. Due to their promising benefits, kefir and kefir-like products have a great prospect for commercialization. This manuscript reviews the therapeutic aspects of kefir to date, and potential applications of kefir products in the health and food industries, along with the limitations. The literature reviewed here demonstrates that there is a growing demand for kefir as a functional food owing to a number of health-promoting properties. Full article
Show Figures

Graphical abstract

2020

Jump to: 2021

Review
Potential Risk of Three Zoonotic Protozoa (Cryptosporidium spp., Giardia duodenalis, and Toxoplasma gondii) Transmission from Fish Consumption
Foods 2020, 9(12), 1913; https://doi.org/10.3390/foods9121913 - 21 Dec 2020
Cited by 7 | Viewed by 1557
Abstract
In recent decades, worldwide fish consumption has increased notably worldwide. Despite the health benefits of fish consumption, it also can suppose a risk because of fishborne diseases, including parasitic infections. Global changes are leading to the emergence of parasites in new locations and [...] Read more.
In recent decades, worldwide fish consumption has increased notably worldwide. Despite the health benefits of fish consumption, it also can suppose a risk because of fishborne diseases, including parasitic infections. Global changes are leading to the emergence of parasites in new locations and to the appearance of new sources of transmission. That is the case of the zoonotic protozoa Cryptosporidium spp., Giardia duodenalis, and Toxoplasma gondii; all of them reach aquatic environments and have been found in shellfish. Similarly, these protozoa can be present in other aquatic animals, such as fish. The present review gives an overview on these three zoonotic protozoa in order to understand their potential presence in fish and to comprehensively revise all the evidences of fish as a new potential source of Cryptosporidium spp., Giardia duodenalis, and Toxoplasma gondii transmission. All of them have been found in both marine and freshwater fishes. Until now, it has not been possible to demonstrate that fish are natural hosts for these protozoa; otherwise, they would merely act as mechanical transporters. Nevertheless, even if fish only accumulate and transport these protozoa, they could be a “new” source of infection for people. Full article
Review
Cyclospora Cayetanensis—Major Outbreaks from Ready to Eat Fresh Fruits and Vegetables
Foods 2020, 9(11), 1703; https://doi.org/10.3390/foods9111703 - 20 Nov 2020
Cited by 11 | Viewed by 1264
Abstract
Cyclospora cayetanensis is a coccidian protozoan that causes cyclosporiasis, a severe gastroenteric disease, especially for immunocompromised patients, children, and the elderly. The parasite is considered as an emerging organism and a major contributor of gastroenteritis worldwide. Although the global prevalence of cyclosporiasis morbidity [...] Read more.
Cyclospora cayetanensis is a coccidian protozoan that causes cyclosporiasis, a severe gastroenteric disease, especially for immunocompromised patients, children, and the elderly. The parasite is considered as an emerging organism and a major contributor of gastroenteritis worldwide. Although the global prevalence of cyclosporiasis morbidity and mortality has not been assessed, global concern has arisen since diarrheal illness and gastroenteritis significantly affect both developing countries and industrialized nations. In the last two decades, an increasing number of foodborne outbreaks has been associated with the consumption of fresh produce that is difficult to clean thoroughly and is consumed without processing. Investigations of these outbreaks have revealed the necessity to increase the awareness in clinicians of this infection, since this protozoan is often ignored by surveillance systems, and to establish control measures to reduce contamination of fresh produce. In this review, the major cyclosporiasis outbreaks linked to the consumption of ready to eat fresh fruits and vegetables are presented. Full article
Show Figures

Figure 1

Review
Effects of Probiotic Supplementation on Dyslipidemia in Type 2 Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trials
Foods 2020, 9(11), 1540; https://doi.org/10.3390/foods9111540 - 26 Oct 2020
Cited by 15 | Viewed by 1284
Abstract
The effectiveness of probiotic consumption in controlling dyslipidemia in type 2 diabetes mellitus (T2DM) has been unclear. We reviewed relevant randomized controlled trials (RCTs) to clarify the effect of probiotic intake on dyslipidemia in T2DM patients. The Web of Science, Scopus, PubMed and [...] Read more.
The effectiveness of probiotic consumption in controlling dyslipidemia in type 2 diabetes mellitus (T2DM) has been unclear. We reviewed relevant randomized controlled trials (RCTs) to clarify the effect of probiotic intake on dyslipidemia in T2DM patients. The Web of Science, Scopus, PubMed and Cochrane Library databases were used for searching relevant RCTs published up to October 2020. The total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) concentrations were selected as the primary indicators for dyslipidemia. The results of 13 eligible RCTs showed that probiotic intake could significantly reduce TC (SMD: −0.23, 95% CI: (−0.37, −0.10)) and TG (SMD: −0.27, 95% CI: (−0.44, −0.11)) levels, but did not regulate LDL-C or HDL-C concentrations. Subgroup analysis showed that multispecies probiotics (≥two species), but not single-species probiotics, significantly decreased TC and TG concentrations. Furthermore, powder, but not liquid, probiotics could reduce TC and TG concentrations. This meta-analysis demonstrated that probiotic supplementation is helpful in reducing TC and TG concentrations in T2DM patients. However, more well-controlled trials are needed to clarify the benefits of probiotics on dyslipidemia in T2DM patients. Full article
Show Figures

Graphical abstract

Back to TopTop