Application of Natural Preservatives for Meat and Meat Products against Food-Borne Pathogens and Spoilage Bacteria: A Review
Abstract
:1. Introduction
2. The Application Technique of Natural Preservatives to Meat and Meat Products
3. Natural Preservatives from Plants and Their Application for Meat and Meat Products
3.1. Rosemary
3.2. Sage
3.3. Thyme
3.4. Oregano
3.5. Chestnut
3.6. Grapefruit Seed Extract (GSE)
3.7. Cinnamon
3.8. Turmeric
3.9. Plant-Derived Antimicrobial Peptides (AMPs)
4. Natural Preservatives from Animals and Their Application for Meat and Meat Products
4.1. Lysozyme
4.2. Ovotransferrin
4.3. Lactoferrin
4.4. Lactoperoxidase
4.5. Livestock Animal-Derived AMPs
5. Natural Preservatives from Microorganism and Their Application for Meat and Meat Products
5.1. Nisin
5.2. Pediocin
5.3. Sakacin
5.4. Bacteriocin-Like Inhibitory Substance (BLIS)
5.5. Other Microorganism Sources
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Lee, H.; Yoon, Y. Etiological agents implicated in foodborne illness worldwide. Food Sci. Anim. Resour. 2021, 41, 1–7. [Google Scholar] [CrossRef]
- World Health Organization. WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015; World Health Organization (WHO): Geneva, Switzerland, 2015; pp. 1–15. [Google Scholar]
- Bohrer, B.M. Nutrient density and nutritional value of meat products and non-meat foods high in protein. Trends Food Sci. Technol. 2017, 65, 103–112. [Google Scholar] [CrossRef]
- Zhou, G.; Xu, X.; Liu, Y. Preservation technologies for fresh meat–A review. Meat Sci. 2010, 86, 119–128. [Google Scholar] [CrossRef]
- Matthews, K.R.; Kniel, K.E.; Montville, T.J. Food Microbiology: An Introduction, 4th ed.; ASM Press: Washington, DC, USA, 2017. [Google Scholar]
- Ministry of Food and Drug Safety (MFDS). Food Additives Code. Available online: https://www.mfds.go.kr/eng/brd/m_15/view.do?seq=72432 (accessed on 12 October 2021).
- Shim, S.-M.; Seo, S.H.; Lee, Y.; Moon, G.-I.; Kim, M.-S.; Park, J.-H. Consumers’ knowledge and safety perceptions of food additives: Evaluation on the effectiveness of transmitting information on preservatives. Food Control 2011, 22, 1054–1060. [Google Scholar] [CrossRef]
- Piper, J.D.; Piper, P.W. Benzoate and sorbate salts: A systematic review of the potential hazards of these invaluable preservatives and the expanding spectrum of clinical uses for sodium benzoate. Compr. Rev. Food Sci. Food Saf. 2017, 16, 868–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaleshtori, F.S.; Arian, A.; Chaleshtori, R.S. Assessment of sodium benzoate and potassium sorbate preservatives in some products in Kashan, Iran with estimation of human health risk. Food Chem. Toxicol. 2018, 120, 634–638. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.-K.; Paik, H.-D. Status, Antimicrobial mechanism, and regulation of natural preservatives in livestock food systems. Korean J. Food Sci. Anim. Resour. 2016, 36, 547–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Agency for Research on Cancer (IARC) monographs on the evaluation of carcinogenic risks to humans. Ingested nitrate and nitrite, and cyanobacterial peptide toxins. IARC Monogr. Eval. Carcinog. Risks Hum. 2010, 94, 1–412. [Google Scholar]
- Crowe, W.; Elliott, C.T.; Green, B.D. A review of the in vivo evidence investigating the role of nitrite exposure from processed meat consumption in the development of colorectal cancer. Nutrients 2019, 11, 2673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marrone, R.; Smaldone, G.; Ambrosio, R.L.; Festa, R.; Ceruso, M.; Chianese, A.; Anastasio, A. Effect of beetroot (Beta vulgaris) extract on black angus burgers shelf life. Ital. J. Food Saf. 2021, 10, 9031. [Google Scholar]
- Yong, H.I.; Kim, T.K.; Choi, H.D.; Jang, H.W.; Jung, S.; Choi, Y.S. Clean label meat technology: Pre-converted nitrite as a natural curing. Food Sci. Anim. Resour. 2021, 41, 173–184. [Google Scholar] [CrossRef]
- Asioli, D.; Aschemann-Witzel, J.; Caputo, V.; Vecchio, R.; Annunziata, A.; Næs, T.; Varela, P. Making sense of the “clean label” trends: A review of consumer food choice behavior and discussion of industry implications. Food Res. Int. 2017, 99, 58–71. [Google Scholar] [CrossRef]
- Global Newswire. The “Clean Label Ingredient Market–Growth, Trends, and Forecast (2018–2023)”. Available online: https://www.researchandmarkets.com/research/wp8cd3/global_clean?w=12 (accessed on 12 October 2021).
- Olszewska, M.A.; Gędas, A.; Simões, M. Antimicrobial polyphenol-rich extracts: Applications and limitations in the food industry. Food Res. Int. 2020, 134, 109214. [Google Scholar] [CrossRef]
- Lee, J.-S.; Choi, Y.S.; Lee, H.G. Synergistic antimicrobial properties of nanoencapsulated clove oil and thymol against oral bacteria. Food Sci. Biotechnol. 2020, 29, 1597–1604. [Google Scholar] [CrossRef]
- Park, S.; Mun, S.; Kim, Y.-R. Influences of added surfactants on the water solubility and antibacterial activity of rosemary extract. Food Sci. Biotechnol. 2020, 29, 1373–1380. [Google Scholar] [CrossRef]
- Choe, E. Roles and action mechanisms of herbs added to the emulsion on its lipid oxidation. Food Sci. Biotechnol. 2020, 29, 1165–1179. [Google Scholar] [CrossRef]
- Cao, Q.; Yan, J.; Sun, Z.; Gong, L.; Wu, H.; Tan, S.; Lei, Y.; Jiang, B.; Wang, Y. Simultaneous optimization of ultrasound-assisted extraction for total flavonoid content and antioxidant activity of the tender stem of Triarrhena lutarioriparia using response surface methodology. Food Sci. Biotechnol. 2021, 30, 37–45. [Google Scholar] [CrossRef]
- Ming, Y.; Chen, L.; Khan, A.; Wang, H.; Wang, C. Effects of tea polyphenols on physicochemical and antioxidative properties of whey protein coating. Food Sci. Biotechnol. 2020, 29, 1655–1663. [Google Scholar] [CrossRef]
- Coutinho de Oliveira, T.L.; Malfitano de Carvalho, S.; de Araújo Soares, R.; Andrade, M.A.; Cardoso, M.d.G.; Ramos, E.M.; Piccoli, R.H. Antioxidant effects of Satureja montana L. essential oil on TBARS and color of mortadella-type sausages formulated with different levels of sodium nitrite. LWT 2012, 45, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Motavaf, F.; Mirvaghefi, A.; Farahmand, H.; Hosseini, S.V. Effect of Zataria multiflora essential oil and potassium sorbate on inoculated Listeria monocytogenes, microbial and chemical quality of raw trout fillet during refrigerator storage. Food Sci. Nutr. 2021, 9, 3015–3025. [Google Scholar] [CrossRef]
- De Oliveira, T.L.; de Araujo Soares, R.; Ramos, E.M.; das Gracas Cardoso, M.; Alves, E.; Piccoli, R.H. Antimicrobial activity of Satureja montana L. essential oil against Clostridium perfringens type A inoculated in mortadella-type sausages formulated with different levels of sodium nitrite. Int. J. Food Microbiol. 2011, 144, 546–555. [Google Scholar] [CrossRef] [Green Version]
- Sojic, B.; Pavlic, B.; Ikonic, P.; Tomovic, V.; Ikonic, B.; Zekovic, Z.; Kocic-Tanackov, S.; Jokanovic, M.; Skaljac, S.; Ivic, M. Coriander essential oil as natural food additive improves quality and safety of cooked pork sausages with different nitrite levels. Meat Sci. 2019, 157, 107879. [Google Scholar] [CrossRef]
- Ben-Fadhel, Y.; Cingolani, M.C.; Li, L.; Chazot, G.; Salmieri, S.; Horak, C.; Lacroix, M. Effect of γ-irradiation and the use of combined treatments with edible bioactive coating on carrot preservation. Food Packag. Shelf Life 2021, 28, 100635. [Google Scholar] [CrossRef]
- World Health Organization. High-Dose Irradiation: Wholesomeness of Food Irradiatied with Doses above 10 kGy; World Health Organization: Geneva, Switzerland, 1999. [Google Scholar]
- Pedreschi, F.; Mariotti-Celis, M.S. Irradiation kills microbes: Can it do anything harmful to the food? In Genetically Modified and Irradiated Food; Academic Press: Cambridge, MA, USA, 2020; pp. 233–242. [Google Scholar]
- Akhter, R.; Masoodi, F.; Wani, T.A.; Rather, S.A.; Hussain, P.R. Synergistic effect of low dose γ-irradiation, natural antimicrobial and antioxidant agents on quality of meat emulsions. Radiat. Phys. Chem. 2021, 189, 109724. [Google Scholar] [CrossRef]
- Abdeldaiem, M. Using of combined treatment between edible coatings containing ethanolic extract of papaya (carica papaya L.) leaves and gamma irradiation for extending shelf-life of minced chicken meat. Am. J. Food Technol. 2014, 2, 6–16. [Google Scholar]
- Balasubramaniam, V.; Martinez-Monteagudo, S.I.; Gupta, R. Principles and application of high pressure–based technologies in the food industry. Annu. Rev. Food Sci. 2015, 6, 435–462. [Google Scholar] [CrossRef]
- Chuang, S.; Sheen, S. High pressure processing of raw meat with essential oils-microbial survival, meat quality, and models: A review. Food Control 2021, 132, 108529. [Google Scholar] [CrossRef]
- Martillanes, S.; Rocha-Pimienta, J.; Llera-Oyola, J.; Gil, M.V.; Ayuso-Yuste, M.C.; García-Parra, J.; Delgado-Adámez, J. Control of Listeria monocytogenes in sliced dry-cured Iberian ham by high pressure processing in combination with an eco-friendly packaging based on chitosan, nisin and phytochemicals from rice bran. Food Control 2021, 124, 107933. [Google Scholar] [CrossRef]
- Smaoui, S.; Hlima, H.B.; Braïek, O.B.; Ennouri, K.; Mellouli, L.; Khaneghah, A.M. Recent advancements in encapsulation of bioactive compounds as a promising technique for meat preservation. Meat Sci. 2021, 181, 108585. [Google Scholar] [CrossRef]
- Maes, C.; Bouquillon, S.; Fauconnier, M.-L. Encapsulation of essential oils for the development of biosourced pesticides with controlled release: A review. Molecules 2019, 24, 2539. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Li, C.; Cui, H.; Lin, L. Encapsulation strategies to enhance the antibacterial properties of essential oils in food system. Food Control 2020, 123, 107856. [Google Scholar] [CrossRef]
- Fang, Z.; Zhao, Y.; Warner, R.D.; Johnson, S.K. Active and intelligent packaging in meat industry. Trends Food Sci. Technol. 2017, 61, 60–71. [Google Scholar] [CrossRef]
- European Commission. EU Guidance to the Commission Regulation (EC) No 450/2009 of 29 May 2009 on Active and Intelligent Materials and Articles Intended to Come into the Contact with Food. Available online: https://ec.europa.eu/food/safety/chemical_safety/food_contact_materials_en (accessed on 12 October 2021).
- Barcenilla, C.; Ducic, M.; López, M.; Prieto, M.; Álvarez-Ordóñez, A. Application of lactic acid bacteria for the biopreservation of meat products: A systematic review. Meat Sci. 2021, 183, 108661. [Google Scholar] [CrossRef] [PubMed]
- Luong, N.-D.M.; Coroller, L.; Zagorec, M.; Membré, J.-M.; Guillou, S. Spoilage of chilled fresh meat products during storage: A quantitative analysis of literature data. Microorganisms 2020, 8, 1198. [Google Scholar] [CrossRef] [PubMed]
- Beya, M.M.; Netzel, M.E.; Sultanbawa, Y.; Smyth, H.; Hoffman, L.C. Plant-based phenolic molecules as natural preservatives in comminuted meats: A review. Antioxidants 2021, 10, 263. [Google Scholar] [CrossRef]
- Soyer, F.; Keman, D.; Eroglu, E.; Ture, H. Synergistic antimicrobial effects of activated lactoferrin and rosemary extract in vitro and potential application in meat storage. J. Food Sci. Technol. 2020, 57, 4395–4403. [Google Scholar] [CrossRef]
- Stojanović-Radić, Z.; Pejčić, M.; Joković, N.; Jokanović, M.; Ivić, M.; Šojić, B.; Škaljac, S.; Stojanović, P.; Mihajilov-Krstev, T. Inhibition of Salmonella Enteritidis growth and storage stability in chicken meat treated with basil and rosemary essential oils alone or in combination. Food Control 2018, 90, 332–343. [Google Scholar] [CrossRef]
- Kahraman, T.; Issa, G.; Bingol, E.B.; Kahraman, B.B.; Dumen, E. Effect of rosemary essential oil and modified-atmosphere packaging (MAP) on meat quality and survival of pathogens in poultry fillets. Braz. J. Microbiol. 2015, 46, 591–599. [Google Scholar] [CrossRef]
- Cegielka, A.; Hac-Szymanczuk, E.; Piwowarek, K.; Dasiewicz, K.; Slowinski, M.; Wronska, K. The use of bioactive properties of sage preparations to improve the storage stability of low-pressure mechanically separated meat from chickens. Poult. Sci. 2019, 98, 5045–5053. [Google Scholar] [CrossRef]
- Moura-Alves, M.; Gouveia, A.R.; de Almeida, J.M.M.M.; Monteiro-Silva, F.; Silva, J.A.; Saraiva, C. Behavior of Listeria monocytogenes in beef Sous vide cooking with Salvia officinalis L. essential oil, during storage at different temperatures. LWT 2020, 132, 109896. [Google Scholar] [CrossRef]
- Lages, L.Z.; Radünz, M.; Gonçalves, B.T.; Silva da Rosa, R.; Fouchy, M.V.; de Cássia dos Santos da Conceição, R.; Gularte, M.A.; Barboza Mendonça, C.R.; Gandra, E.A. Microbiological and sensory evaluation of meat sausage using thyme (Thymus vulgaris, L.) essential oil and powdered beet juice (Beta vulgaris L., Early Wonder cultivar). LWT 2021, 148, 109896. [Google Scholar] [CrossRef]
- Kiprotich, S.; Mendonca, A.; Dickson, J.; Shaw, A.; Thomas-Popo, E.; White, S.; Moutiq, R.; Ibrahim, S.A. Thyme oil enhances the inactivation of Salmonella enterica on raw chicken breast meat during marination in lemon juice with added Yucca schidigera extract. Front. Nutr. 2020, 7, 619023. [Google Scholar] [CrossRef]
- Radunz, M.; Dos Santos Hackbart, H.C.; Camargo, T.M.; Nunes, C.F.P.; de Barros, F.A.P.; Dal Magro, J.; Filho, P.J.S.; Gandra, E.A.; Radunz, A.L.; da Rosa Zavareze, E. Antimicrobial potential of spray drying encapsulated thyme (Thymus vulgaris) essential oil on the conservation of hamburger-like meat products. Int. J. Food Microbiol. 2020, 330, 108696. [Google Scholar] [CrossRef] [PubMed]
- Shange, N.; Makasi, T.; Gouws, P.; Hoffman, L.C. Preservation of previously frozen black wildebeest meat (Connochaetes gnou) using oregano (Oreganum vulgare) essential oil. Meat Sci. 2019, 148, 88–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulankova, R.; Borilova, G.; Steinhauserova, I. Combined antimicrobial effect of oregano essential oil and caprylic acid in minced beef. Meat Sci. 2013, 95, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, H.; Frankova, A.; Sykora, T.; Kloucek, P.; Kourimska, L.; Kucerova, I.; Banout, J. The effect of oregano essential oil on microbial load and sensory attributes of dried meat. J. Sci. Food Agric. 2017, 97, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.-K.; Jung, B.S.; Na, D.S.; Yu, H.H.; Kim, J.-S.; Paik, H.-D. The impact of antimicrobial effect of chestnut inner shell extracts against Campylobacter jejuni in chicken meat. LWT 2016, 65, 746–750. [Google Scholar] [CrossRef]
- Zamuz, S.; Lopez-Pedrouso, M.; Barba, F.J.; Lorenzo, J.M.; Dominguez, H.; Franco, D. Application of hull, bur and leaf chestnut extracts on the shelf-life of beef patties stored under MAP: Evaluation of their impact on physicochemical properties, lipid oxidation, antioxidant, and antimicrobial potential. Food Res. Int. 2018, 112, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Juneja, V.K.; Fan, X.; Peña-Ramos, A.; Diaz-Cinco, M.; Pacheco-Aguilar, R. The effect of grapefruit extract and temperature abuse on growth of Clostridium perfringens from spore inocula in marinated, sous-vide chicken products. Innov. Food Sci. Emerg. Technol. 2006, 7, 100–106. [Google Scholar] [CrossRef]
- Yu, H.H.; Kim, Y.J.; Park, Y.J.; Shin, D.-M.; Choi, Y.-S.; Lee, N.-K.; Paik, H.-D. Application of mixed natural preservatives to improve the quality of vacuum skin packaged beef during refrigerated storage. Meat Sci. 2020, 169, 108219. [Google Scholar] [CrossRef]
- Khaleque, M.A.; Keya, C.A.; Hasan, K.N.; Hoque, M.M.; Inatsu, Y.; Bari, M.L. Use of cloves and cinnamon essential oil to inactivate Listeria monocytogenes in ground beef at freezing and refrigeration temperatures. LWT 2016, 74, 219–223. [Google Scholar] [CrossRef]
- Chen, X.; Chen, W.; Lu, X.; Mao, Y.; Luo, X.; Liu, G.; Zhu, L.; Zhang, Y. Effect of chitosan coating incorporated with oregano or cinnamon essential oil on the bacterial diversity and shelf life of roast duck in modified atmosphere packaging. Food Res. Int. 2021, 147, 110491. [Google Scholar] [CrossRef]
- Lourenço, T.; Mendonça, E.; Nalevaiko, P.; Melo, R.; Silva, P.; Rossi, D. Antimicrobial effect of turmeric (Curcuma longa) on chicken breast meat contamination. Braz. J. Poult. Sci. 2013, 15, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Arshad, M.S.; Amjad, Z.; Yasin, M.; Saeed, F.; Imran, A.; Sohaib, M.; Anjum, F.M.; Hussain, S. Quality and stability evaluation of chicken meat treated with gamma irradiation and turmeric powder. Int. J. Food Prop. 2019, 22, 154–172. [Google Scholar] [CrossRef] [Green Version]
- Tosati, J.V.; Messias, V.C.; Carvalho, P.I.N.; Rodrigues Pollonio, M.A.; Meireles, M.A.A.; Monteiro, A.R. Antimicrobial effect of edible coating blend based on turmeric starch residue and gelatin applied onto fresh frankfurter sausage. Food Bioproc. Technol. 2017, 10, 2165–2175. [Google Scholar] [CrossRef]
- Heymich, M.L.; Srirangan, S.; Pischetsrieder, M. Stability and activity of the antimicrobial peptide Leg1 in solution and on meat and its optimized generation from chickpea storage protein. Foods 2021, 10, 1192. [Google Scholar] [CrossRef] [PubMed]
- El-Saadony, M.T.; Abd El-Hack, M.E.; Swelum, A.A.; Al-Sultan, S.I.; El-Ghareeb, W.R.; Hussein, E.O.S.; Ba-Awadh, H.A.; Akl, B.A.; Nader, M.M. Enhancing quality and safety of raw buffalo meat using the bioactive peptides of pea and red kidney bean under refrigeration conditions. Ital. J. Anim. Sci. 2021, 20, 762–776. [Google Scholar] [CrossRef]
- Sedighi, R.; Zhao, Y.; Yerke, A.; Sang, S. Preventive and protective properties of rosemary (Rosmarinus officinalis L.) in obesity and diabetes mellitus of metabolic disorders: A brief review. Curr. Opin. Food Sci. 2015, 2, 58–70. [Google Scholar] [CrossRef]
- Selmi, S.; Rtibi, K.; Grami, D.; Sebai, H.; Marzouki, L. Rosemary (Rosmarinus officinalis) essential oil components exhibit anti-hyperglycemic, anti-hyperlipidemic and antioxidant effects in experimental diabetes. Pathophysiology 2017, 24, 297–303. [Google Scholar] [CrossRef]
- Anastasio, A.; Marrone, R.; Chirollo, C.; Smaldone, G.; Attouchi, M.; Adamo, P.; Sadok, S.; Pepe, T. Swordfish steaks vacuum-packed with Rosmarinus officinalis. Ital. J. Food Sci. 2014, 26, 390–397. [Google Scholar]
- Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef]
- Jaspal, M.H.; Ijaz, M.; Haq, H.A.u.; Yar, M.K.; Asghar, B.; Manzoor, A.; Badar, I.H.; Ullah, S.; Islam, M.S.; Hussain, J. Effect of oregano essential oil or lactic acid treatments combined with air and modified atmosphere packaging on the quality and storage properties of chicken breast meat. LWT 2021, 146, 111459. [Google Scholar] [CrossRef]
- Massantini, R.; Moscetti, R.; Frangipane, M.T. Evaluating progress of chestnut quality: A review of recent developments. Trends Food Sci. Technol. 2021, 113, 245–254. [Google Scholar] [CrossRef]
- Yu, H.H.; Song, M.W.; Song, Y.J.; Lee, N.K.; Paik, H.D. Antibacterial effect of a mixed natural preservative against Listeria monocytogenes on lettuce and raw pork loin. J. Food Prot. 2019, 82, 2001–2006. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Kim, J.-H.; Oh, S.-W. Grapefruit seed extract as a natural food antimicrobial: A review. Food Bioproc. Technol. 2021, 14, 626–633. [Google Scholar] [CrossRef]
- Vasconcelos, N.; Croda, J.; Simionatto, S. Antibacterial mechanisms of cinnamon and its constituents: A review. Microb. Pathog. 2018, 120, 198–203. [Google Scholar] [CrossRef]
- Rolfe, V.; Mackonochie, M.; Mills, S.; McLennan, E. Turmeric/curcumin and health outcomes: A meta-review of systematic reviews. Eur. J. Integr. Med. 2020, 101252. [Google Scholar] [CrossRef]
- Kotra, V.S.R.; Satyabanta, L.; Goswami, T.K. A critical review of analytical methods for determination of curcuminoids in turmeric. J. Food Sci. Technol. 2019, 56, 5153–5166. [Google Scholar] [CrossRef]
- Shwaiki, L.N.; Lynch, K.M.; Arendt, E.K. Future of antimicrobial peptides derived from plants in food application—A focus on synthetic peptides. Trends Food Sci. Technol. 2021, 112, 312–324. [Google Scholar] [CrossRef]
- Yuan, S.; Yin, J.; Jiang, W.; Liang, B.; Pehkonen, S.; Choong, C. Enhancing antibacterial activity of surface-grafted chitosan with immobilized lysozyme on bioinspired stainless steel substrates. Colloids Surf. B 2013, 106, 11–21. [Google Scholar] [CrossRef]
- Lazzaro, B.P.; Zasloff, M.; Rolff, J. Antimicrobial peptides: Application informed by evolution. Science 2020, 368, 6490. [Google Scholar] [CrossRef] [PubMed]
- Farnaud, S.; Evans, R.W. Lactoferrin—A multifunctional protein with antimicrobial properties. Mol. Immunol. 2003, 40, 395–405. [Google Scholar] [CrossRef]
- Eslamloo, K.; Falahatkar, B.; Yokoyama, S. Effects of dietary bovine lactoferrin on growth, physiological performance, iron metabolism and non-specific immune responses of Siberian sturgeon Acipenser baeri. Fish Shellfish Immunol. 2012, 32, 976–985. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, M.; Farshidi, M.; Ehsani, A. Effects of lactoperoxidase system-alginate coating on chemical, microbial, and sensory properties of chicken breast fillets during cold storage. J. Food Saf. 2018, 38, e12449. [Google Scholar] [CrossRef]
- Cegielska-Radziejewska, R.; Szablewski, T.; Radziejewska-Kubzdela, E.; Tomczyk, Ł.; Biadała, A.; Leśnierowski, G. The effect of modified lysozyme treatment on the microflora, physicochemical and sensory characteristics of pork packaged in preservative gas atmospheres. Coatings 2021, 11, 488. [Google Scholar] [CrossRef]
- Mastromatteo, M.; Lucera, A.; Sinigaglia, M.; Corbo, M.R. Synergic antimicrobial activity of lysozyme, nisin, and EDTA against Listeria monocytogenes in ostrich meat patties. J. Food Sci. 2010, 75, M422–M429. [Google Scholar] [CrossRef]
- Rao, M.S.; Chander, R.; Sharma, A. Synergistic effect of chitooligosaccharides and lysozyme for meat preservation. LWT 2008, 41, 1995–2001. [Google Scholar] [CrossRef]
- Seol, K.H.; Lim, D.G.; Jang, A.; Jo, C.; Lee, M. Antimicrobial effect of kappa-carrageenan-based edible film containing ovotransferrin in fresh chicken breast stored at 5 degrees C. Meat Sci. 2009, 83, 479–483. [Google Scholar] [CrossRef]
- Ko, K.Y.; Mendonca, A.F.; Ahn, D.U. Influence of zinc, sodium bicarbonate, and citric acid on the antibacterial activity of ovotransferrin against Escherichia coli O157:H7 and Listeria monocytogenes in model systems and ham. Poult. Sci. 2008, 87, 2660–2670. [Google Scholar] [CrossRef]
- Del Olmo, A.; Calzada, J.; Nuñez, M. Effect of lactoferrin and its derivatives, high hydrostatic pressure, and their combinations, on Escherichia coli O157:H7 and Pseudomonas fluorescens in chicken filets. Innov. Food Sci. Emerg. Technol. 2012, 13, 51–56. [Google Scholar] [CrossRef]
- De Alba, M.; Bravo, D.; Medina, M. Inactivation of Listeria monocytogenes and Salmonella Enteritidis in dry-cured ham by combined treatments of high pressure and the lactoperoxidase system or lactoferrin. Innov. Food Sci. Emerg. Technol. 2015, 31, 54–59. [Google Scholar] [CrossRef]
- Elliot, R.M.; McLay, J.C.; Kennedy, M.J.; Simmonds, R.S. Inhibition of foodborne bacteria by the lactoperoxidase system in a beef cube system. Int. J. Food Microbiol. 2004, 91, 73–81. [Google Scholar] [CrossRef]
- Przybylski, R.; Firdaous, L.; Chataigne, G.; Dhulster, P.; Nedjar, N. Production of an antimicrobial peptide derived from slaughterhouse by-product and its potential application on meat as preservative. Food Chem. 2016, 211, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.-S. Effect of antimicrobial proteins from porcine leukocytes on Staphylococcus aureus and Escherichia coli in comminuted meats. Meat Sci. 2003, 65, 615–621. [Google Scholar] [CrossRef]
- Wu, T.; Wu, C.; Fu, S.; Wang, L.; Yuan, C.; Chen, S.; Hu, Y. Integration of lysozyme into chitosan nanoparticles for improving antibacterial activity. Carbohydr. Polym. 2017, 155, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Guo, Y.; Fu, X.; Jin, Y. Identification and antimicrobial mechanisms of a novel peptide derived from egg white ovotransferrin hydrolysates. LWT 2020, 131, 109720. [Google Scholar] [CrossRef]
- Moon, S.H.; Paik, H.D.; White, S.; Daraba, A.; Mendonca, A.F.; Ahn, D.U. Influence of nisin and selected meat additives on the antimicrobial effect of ovotransferrin against Listeria monocytogenes. Poult. Sci. 2011, 90, 2584–2591. [Google Scholar] [CrossRef] [PubMed]
- Giansanti, F.; Panella, G.; Leboffe, L.; Antonini, G. Lactoferrin from milk: Nutraceutical and pharmacological properties. Pharmaceuticals 2016, 9, 61. [Google Scholar] [CrossRef] [Green Version]
- Mei, J.; Ma, X.; Xie, J. Review on natural preservatives for extending fish shelf life. Foods 2019, 8, 490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gogliettino, M.; Balestrieri, M.; Ambrosio, R.L.; Anastasio, A.; Smaldone, G.; Proroga, Y.T.; Moretta, R.; Rea, I.; De Stefano, L.; Agrillo, B. Extending the shelf-life of meat and dairy products via PET-modified packaging activated with the antimicrobial peptide MTP1. Front. Microbiol. 2020, 10, 2963. [Google Scholar] [CrossRef]
- Borrajo, P.; Pateiro, M.; Barba, F.J.; Mora, L.; Franco, D.; Toldrá, F.; Lorenzo, J.M. Antioxidant and antimicrobial activity of peptides extracted from meat by-products: A review. Food Anal. Methods 2019, 12, 2401–2415. [Google Scholar] [CrossRef]
- Galvez, A.; Abriouel, H.; Benomar, N.; Lucas, R. Microbial antagonists to food-borne pathogens and biocontrol. Curr. Opin. Biotechnol. 2010, 21, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.-K.; Paik, H.-D. Prophylactic effects of probiotics on respiratory viruses including COVID-19: A review. Food Sci. Biotechnol. 2021, 30, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Woraprayote, W.; Malila, Y.; Sorapukdee, S.; Swetwiwathana, A.; Benjakul, S.; Visessanguan, W. Bacteriocins from lactic acid bacteria and their applications in meat and meat products. Meat Sci. 2016, 120, 118–132. [Google Scholar] [CrossRef]
- Parada, J.L.; Caron, C.R.; Medeiros, A.B.P.; Soccol, C.R. Bacteriocins from lactic acid bacteria: Purification, properties and use as biopreservatives. Braz. Arch. Biol. Technol. 2007, 50, 512–542. [Google Scholar] [CrossRef] [Green Version]
- Kumariya, R.; Garsa, A.K.; Rajput, Y.S.; Sood, S.K.; Akhtar, N.; Patel, S. Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb. Pathog. 2019, 128, 171–177. [Google Scholar] [CrossRef]
- Shahnawaz, M.; Soto, C. Microcin amyloid fibrils A are reservoir of toxic oligomeric species. J. Biol. Chem. 2012, 287, 11665–11676. [Google Scholar] [CrossRef] [Green Version]
- Montville, T.J.; Bruno, M.E.C. Evidence that dissipation of proton motive force is a common mechanism of action for bacteriocins and other antimicrobial proteins. Int. J. Food Microbiol. 1994, 24, 53–74. [Google Scholar] [CrossRef]
- Lee, D.; Heinz, V.; Knorr, D. Effects of combination treatments of nisin and high-intensity ultrasound with high pressure on the microbial inactivation in liquid whole egg. Innov. Food Sci. Emerg. Technol. 2003, 4, 387–393. [Google Scholar] [CrossRef]
- Lee, N.K.; Kim, H.W.; Lee, J.Y.; Ahn, D.U.; Kim, C.J.; Paik, H.D. Antimicrobial effect of nisin against Bacillus cereus in beef jerky during storage. Korean J. Food Sci. Anim. Resour. 2015, 35, 272–276. [Google Scholar] [CrossRef] [Green Version]
- Dong, A.; Malo, A.; Leong, M.; Ho, V.T.T.; Turner, M.S. Control of Listeria monocytogenes on ready-to-eat ham and fresh cut iceberg lettuce using a nisin containing Lactococcus lactis fermentate. Food Control 2021, 119, 107420. [Google Scholar] [CrossRef]
- Nieto-Lozano, J.C.; Reguera-Useros, J.I.; Peláez-Martínez, M.d.C.; Sacristán-Pérez-Minayo, G.; Gutiérrez-Fernández, Á.J.; de la Torre, A.H. The effect of the pediocin PA-1 produced by Pediococcus acidilactici against Listeria monocytogenes and Clostridium perfringens in Spanish dry-fermented sausages and frankfurters. Food Control 2010, 21, 679–685. [Google Scholar] [CrossRef]
- Castro, S.; Silva, J.; Casquete, R.; Queirós, R.; Saraiva, J.; Teixeira, P. Combined effect of pediocin bacHA-6111-2 and high hydrostatic pressure to control Listeria innocua in fermented meat sausage. Int. Food Res. J. 2018, 25, 553–560. [Google Scholar]
- Kumar, Y.; Kaur, K.; Shahi, A.K.; Kairam, N.; Tyagi, S.K. Antilisterial, antimicrobial and antioxidant effects of pediocin and Murraya koenigii berry extract in refrigerated goat meat emulsion. LWT 2017, 79, 135–144. [Google Scholar] [CrossRef]
- Dortu, C.; Huch, M.; Holzapfel, W.H.; Franz, C.M.; Thonart, P. Anti-listerial activity of bacteriocin-producing Lactobacillus curvatus CWBI-B28 and Lactobacillus sakei CWBI-B1365 on raw beef and poultry meat. Lett. Appl. Microbiol. 2008, 47, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Rivas, F.P.; Castro, M.P.; Vallejo, M.; Marguet, E.; Campos, C.A. Sakacin Q produced by Lactobacillus curvatus ACU-1: Functionality characterization and antilisterial activity on cooked meat surface. Meat Sci. 2014, 97, 475–479. [Google Scholar] [CrossRef]
- De Azevedo, P.O.S.; Mendonca, C.M.N.; Seibert, L.; Dominguez, J.M.; Converti, A.; Gierus, M.; Oliveira, R.P.S. Bacteriocin-like inhibitory substance of Pediococcus pentosaceus as a biopreservative for Listeria sp. control in ready-to-eat pork ham. Braz. J. Microbiol. 2020, 51, 949–956. [Google Scholar] [CrossRef]
- Stimbirys, A.; Bartkiene, E.; Siugzdaite, J.; Augeniene, D.; Vidmantiene, D.; Juodeikiene, G.; Maruska, A.; Stankevicius, M.; Cizeikiene, D. Safety and quality parameters of ready-to-cook minced pork meat products supplemented with Helianthus tuberosus L. tubers fermented by BLIS producing lactic acid bacteria. J. Food Sci. Technol. 2015, 52, 4306–4314. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Park, S.W.; Lee, H.B.; Kang, S.S. Bacteriocin-like inhibitory substance (BLIS) activity of Enterococcus faecium DB1 against biofilm formation by Clostridium perfringens. Probiotics Antimicrob. Proteins 2021, 13, 1452–1457. [Google Scholar] [CrossRef]
- Meng, D.-M.; Sun, S.-N.; Shi, L.-Y.; Cheng, L.; Fan, Z.-C. Application of antimicrobial peptide mytichitin-CB in pork preservation during cold storage. Food Control 2021, 125, 108041. [Google Scholar] [CrossRef]
- Meng, D.-M.; Sun, X.-Q.; Sun, S.-N.; Li, W.-J.; Lv, Y.-J.; Fan, Z.-C. The potential of antimicrobial peptide Hispidalin application in pork preservation during cold storage. J. Food Process. Preserv. 2020, 44, e14443. [Google Scholar] [CrossRef]
- Müller-Auffermann, K.; Grijalva, F.; Jacob, F.; Hutzler, M. Nisin and its usage in breweries: A review and discussion. J. Inst. Brew. 2015, 121, 309–319. [Google Scholar] [CrossRef]
- Papagianni, M.; Anastasiadou, S. Pediocins: The bacteriocins of Pediococci. Sources, production, properties and applications. Microb. Cell Factories 2009, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- Papagianni, M. Ribosomally synthesized peptides with antimicrobial properties: Biosynthesis, structure, function, and applications. Biotechnol. Adv. 2003, 21, 465–499. [Google Scholar] [CrossRef]
- Xu, M.M.; Kaur, M.; Pillidge, C.J.; Torley, P.J. Microbial biopreservatives for controlling the spoilage of beef and lamb meat: Their application and effects on meat quality. Crit. Rev. Food Sci. Nutr. 2021, 1–35. [Google Scholar] [CrossRef]
- Delves-Broughton, J. Natural antimicrobials as additives and ingredients for the preservation of foods and beverages. In Natural Food Additives, Ingredients and Flavourings, 1st ed.; Baines, D., Seal, R., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition: Cambridge, UK, 2012; pp. 127–161. [Google Scholar]
- De Azevedo, P.O.d.S.; Converti, A.; Gierus, M.; de Souza Oliveira, R.P. Antimicrobial activity of bacteriocin-like inhibitory substance produced by Pediococcus pentosaceus: From shake flasks to bioreactor. Mol. Biol. Rep. 2019, 46, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.-l.; Huang, W.; Zhou, S.-q.; Wang, X.-c.; Liu, H.-h.; Fan, M.-h.; Wang, R.-x.; Gao, P.; Liao, Z. Characterization of a novel antimicrobial peptide with chiting-biding domain from Mytilus coruscus. Fish Shellfish Immunol. 2014, 41, 362–370. [Google Scholar] [CrossRef]
- Meng, D.-M.; Li, W.-J.; Shi, L.-Y.; Lv, Y.-J.; Sun, X.-Q.; Hu, J.-C.; Fan, Z.-C. Expression, purification and characterization of a recombinant antimicrobial peptide Hispidalin in Pichia pastoris. Protein Expr. Purif. 2019, 160, 19–27. [Google Scholar] [CrossRef] [PubMed]
Sources | Forms | Addition Conditions | Meat and Meat Products | Storage Conditions | Target Microorganisms | Antimicrobial Activities | References |
---|---|---|---|---|---|---|---|
Rosemary | Ethanol extract | 45% | Beef | 4 °C for 9 d | Listeria monocytogenes | 2 log CFU/g | [43] |
Essential oil | 5 mg/mL | Chicken | 18 °C for 24 h | Salmonella Enteritidis Coliform Total viable counts Lactic acid bacteria Anaerobic bacteria | 1 log CFU/g 1.75 log CFU/g 0.87 log CFU/g 1.05 log CFU/g 1.28 log CFU/g | [44] | |
Essential oil | 0.2% with modified atmosphere packaging | Poultry fillet | 4 °C for 1 d | Listeria monocytogenes | 0.1 log CFU/g | [45] | |
Sage | Essential oil | 0.1% | Mechanically separated chicken meat | −18 °C for 9 months | Total viable counts Psychrotrophic bacteria Enterobacteriaceae Coliform Enterococcus spp. | 0.5 log CFU/g 0.2 log CFU/g 0.9 log CFU/g 1.5 log CFU/g 1.6 log CFU/g | [46] |
Essential oil | 0.625% | Sous-vide cook-chill beef | 2 °C for 28 d 8 °C for 28 d | Listeria monocytogenes | 1 log CFU/g 1 log CFU/g | [47] | |
Thyme | Essential oil | 0.95% with 1% powdered beet juice | Meat sausage | 4 °C for 15 d | Staphylococcus spp. Aerobic mesophilic bacteria | 2.69 log CFU/g 4.41 log CFU/g | [48] |
Essential oil | 1% with lemon juice and 0.5% Yucca schidigera extract | Raw chicken breast | immersed at 22 °C for 8 h | Salmonella enteritica | 3–4 log CFU/g | [49] | |
Essential oil | 1% encapculated with casein and maltodextrin | Hamburger-like meat products | 4 °C for 14 d | Escherichia coli | 23 MPN/g | [50] | |
Oregano | Essential oil | Addition 1% | Black wildebeest muscle | 2.6 ± 0.6 °C for 3 d | Total viable counts Lactic acid bacteria | 1.4 log CFU/g | [51] |
Essential oil | 0.2% with 0.5% caprylic acid and 0.1% of citric acid | Minced beef | 3 °C for 10 d | Lactic acid bacteria Psychrotrophic bacteria Listeria monocytogenes | 1.5 log CFU/g 2.5 log CFU/g 2.5 log CFU/g | [52] | |
Essential oil | 3 mL for filter paper | Beef | dried at 55 °C for 6 h | Salmonella Enteritidis Escherichia coli | 4.79 log CFU/g 4.68 log CFU/g | [53] | |
Chestnut | Inner shell extract | 1 mg/mL | Chicken | 4 °C for 4 d | Campylobacter jejuni | 3 log CFU/g | [54] |
Leaf extract | 1000 mg/kg | Beef patties | 2 ± 1 °C for 18 d | Lactic acid bacteria Pseudomonas spp. | 0.37 log CFU/g 0.33 log CFU/g | [55] | |
Grapefruit seed extract | Commercial product (Citricidal®) | 200 ppm | Chicken | 19 and 25 °C for 9.5 h | Clostridium perfringens | Bacteriostatic effect | [56] |
Commercial product (DF-100) | Active film of GSE (80 mg/m2) with cinnamaldehyde (200 mg/m2) and nisin (60 mg/m2) | Beef | 4 °C for 28 d | Psychrotrophic bacteria Anaerobic bacteria Listeria monocytogenes Staphylococcus aureus Campylobacter jejuni | 1–2 log CFU/g 1–2 log CFU/g 4.7 log CFU/g 0.81 log CFU/g 3.1 log CFU/g | [57] | |
Cinnamon | Essential oil | 5.0% | Ground beef | –18 °C for 60 d 0 and 8 °C for 7 d | Listeria monocytogenes | 3.5–4.0 log CFU/g 3.5–4.0 log CFU/g | [58] |
Essential oil | 0.6% with chitosan edible coating under modified atmosphere packaging | Roast duck slice | 2 ± 2 °C for 14 d 2 ± 2 °C for 14 d 2 ± 2 °C for 7 d | Total viable count Enterobacteriaceae Lactic acid bacteria | 1 log CFU/g 1 log CFU/g 0.75 log CFU/g | [59] | |
Turmeric | Powder | 1% | Chicken breast meat | 4 °C for 48 h | Escherichia coli | 0.2 log CFU/g | [60] |
Powder | 3% with 2 kGy of gamma irradiation | Chicken meat | 4 °C for 14 d | Total viable counts Coliform | Bactericidal effect | [61] | |
Residue using supercritical fluid extraction and pressurized liquid extraction | 5% with edible coating using starch and bovine gelatin | Frankfurter sausage | 5 °C for 20 d | Total viable counts Lactic acid bacteria Psychrotrophic bacteria | 2.21 log CFU/g 1.01 log CFU/g 1.65 log CFU/g | [62] | |
Plant-derived antimicrobial peptides | Leg1 from Chickpea legumin | 125 µM 15.6 µM | Raw pork | 37 °C for 16 h | Escherichia coli Bacillus subtilis | Bactericidal effect | [63] |
11SGP from Pea | 400 µg/g | Raw buffalo meat | 4 °C for 15 d | Total viable counts Psychrophilic bacteria | 1.60 log CFU/g 1.10 log CFU/g | [64] | |
RBAH from Red kidney bean | 400 µg/g | Raw buffalo meat | 4 °C for 15 d | Total viable counts Psychrophilic bacteria | 1.94 log CFU/g 1.47 log CFU/g | [64] |
Sources | Addition Conditions | Meat and Meat Products | Storage Conditions | Target Microorganisms | Antimicrobial Activities | References |
---|---|---|---|---|---|---|
Lysozyme | 5% with modified atmosphere packaging | Pork meat | 4 °C for 28 d | Total viable counts | 4.59 log CFU/cm2 | [82] |
250 ppm with nisin (250 ppm) and EDTA (20 mM) in vacuum packaging | Ostrich meat patties | 4 °C for 8 d 4 °C for 8 d 4 °C for 1 d | Listeria monocytogenes Lactic acid bacteria Total viable counts | 4 log CFU/g 1 log CFU/g 2 log CFU/g | [83] | |
Combination with chitooligosaccharide | Lamb meat | ambient temperature for 4 h | Escherichia coli Pseudomonas fluorescens Bacillus cereus Staphylococcus aureus | 3–4 log CFU/g 3–4 log CFU/g 3–4 log CFU/g 2 log CFU/g | [84] | |
Ovotransferrin | 25 mg with 5 mM EDTA in κ-carrageenan-based film | Chicken breast | 5 °C for 7 d | Total viable counts Escherichia coli | 1.8 log CFU/g 2.7 log CFU/g | [85] |
25 mg/mL of ovotransferrin with 0.5% citric acid | Ham | 4 °C for 8 d | Listeria monocytogenes | Bacteriostatic effect | [86] | |
Lactoferrin | 3% and 5% 2.5% 0.5% | Ground beef | 10 °C for 9 d | Escherichia coli O157:H7 Salmonella Enteritidis Listeria monocytogenes | 2 log CFU/g 0.8 log CFU/g 2 log CFU/g | [43] |
0.5 mg/g with high pressure treatments | Chicken fillet | 5 °C for 9 d | Pseudomonas fluorescens Escherichia coli O157:H7 | 2.3 log CFU/g 0.5 log CFU/g | [87] | |
Lactoperoxidase | 6% with alginate coating | Chicken breast fillets | 4 °C for 16 d | Enterobacteriaceae Pseudomonas aeruginosa Total viable counts | 5 log CFU/g 4 log CFU/g 2.5 log CFU/g | [81] |
40 mg/mL with high pressure processing | Dry cured ham | 8 °C for 60 d | Salmonella Enteritidis Listeria monocytogenes | 3–4 log CFU/g 0.86 log CFU/g | [88] | |
Dipping into antibacterial solution (0.2 mg glucose, 0.1 mg sodium thiocyanate, 1.9 U lactoperoxidase, and 0.38 U glucose oxidase) | Beef | chilling regime (−1 to 12 °C) for 42 d | Staphylococcus aureus Salmonella Typhimurium Listeria monocytogenes Escherichia coli O157:H7 Pseudomonas aeruginosa Yersinia enterocolitica | 1.7 log CFU/g 1.6 log CFU/g 1.8 log CFU/g 0.2 log CFU/g 0.9 log CFU/g 3.9 log CFU/g | [89] | |
Livestock animal-derived antimicrobial peptide | 0.5% of α137–141 from bovine cruor | Beef | 4 °C for 14 d | Total viable counts Coliform | Bacteriostatic effect | [90] |
160 μg/g of AMPs isolated porcine leukocyte | Boneless ham | 15 °C for 6 h | Staphylococcus aureus Escherichia coli | 3.9 log CFU/g 3.3 log CFU/g | [91] | |
160 μg/g of AMPs isolated porcine leukocyte | Sausage mince | 15 °C for 24 h | Staphylococcus aureus Escherichia coli | Bactericidal effect | [91] |
Souces | Addition Condtions | Meat and Meat Products | Storage Conditions | Target Microorganisms | Antimicrobial Activities | References |
---|---|---|---|---|---|---|
Nisin | 100 IU/g 500 IU/g | Beef jerky | 25 °C for 3 d 25 °C for 21 d | Bacillus cereus | Bacteriostatic effect | [107] |
Nisin-containing fermentate from L. lactis | RTE sliced ham | 4 °C for 10 d | Listeria monocytogenes | 3 log CFU/g | [108] | |
5–6 ppm with cinnamaldehyde (15–20 ppm) and grapefruit seed extract (6–8 ppm) | Raw pork loin | 4 °C for 12 h | Listeria monocytogenes | 3 log CFU/g | [71] | |
Pediocin | 5000 bacteriocin units/mL of the pediocin PA-1 | Frankfurter | 4 °C for 60 d 15 °C for 30 d | Listeria monocytogenes | 2 log CFU/g 0.6 log CFU/g | [109] |
5000 bacteriocin units/mL of the pediocin PA-1 | Frankfurter | 10 °C for 60 d 15 °C for 30 d | Clostridium perfringens | 2 log CFU/g 0.8 log CFU/g | [109] | |
Inoculation of pediocin-producing P. pentosaceus | Spanish dry-fermented sausages | 4 °C for 30 d | Listeria monocytogenes | 2 log CFU/g | [109] | |
320 AU/g with high pressure processing | Portuguese fermented meat sausage | 4 °C for 3 d | Listeria innocua | 2 log CFU/g | [110] | |
0.83% with 10% Murraya koenigii berries extract | Raw goat meat emulsion | 4 °C for 9 d | Listeria innocua Total viable counts Psychrophilic count | 4.1 log CFU/g 2.2 log CFU/g 1.6 log CFU/g | [111] | |
Sakacin | Inoculation of sakacin producing L. sakei | Beef | 5 °C for 14 d | Listeria monocytogenes | 2 log CFU/g | [112] |
Inoculation of sakacin producing L. curvatus | Beef | 5 °C for 7 d | Listeria monocytogenes | Bactericidal effect | [112] | |
3200 AU/mL cell-free supernatant of L. curvatus | Meat surface | 4–5 °C for 14 d | Listeria innocua | Bactericidal effect | [113] | |
Bacteriocin-like inhibitory substance | Innoculation of BLIS producing Pediococcus pentosaceus | RTE pork ham | 4 °C for 2 d | Listeria seeligeri | 0.74 log CFU/g | [114] |
5% of fermented plant using BLIS producing strains | RTC minced pork | 18 °C for 12 h | Escherichia coli Enterococcus faecalis Staphylococcus aureus Streptococcus spp. | 5.53 log CFU/g 4.37 log CFU/g 4.86 log CFU/g 3.84 log CFU/g | [115] | |
5 mg/mL of BLIS obtained from E. faecium | Chicken surface | 4 °C for 72 h | Clostridium perfringens | 1 log CFU/g | [116] | |
Mytichitin-CB | 6 mg/L of mytichitin-CB peptide expressed by Pichia pastorisi | Pork | 4 °C for 5 d 4 °C for 8 d 4 °C for 8 d | Total viable counts Staphylococcus spp. Escherichia coli | 1–2 log CFU/g 1–2 log CFU/g 1–2 log CFU/g | [117] |
Hispidalin | 100 μg/mL of hispidalin expressed by P. pastorisi | Pork | 4 °C for 7 d | Total viable counts | 1 log CFU/g | [118] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.H.; Chin, Y.-W.; Paik, H.-D. Application of Natural Preservatives for Meat and Meat Products against Food-Borne Pathogens and Spoilage Bacteria: A Review. Foods 2021, 10, 2418. https://doi.org/10.3390/foods10102418
Yu HH, Chin Y-W, Paik H-D. Application of Natural Preservatives for Meat and Meat Products against Food-Borne Pathogens and Spoilage Bacteria: A Review. Foods. 2021; 10(10):2418. https://doi.org/10.3390/foods10102418
Chicago/Turabian StyleYu, Hwan Hee, Young-Wook Chin, and Hyun-Dong Paik. 2021. "Application of Natural Preservatives for Meat and Meat Products against Food-Borne Pathogens and Spoilage Bacteria: A Review" Foods 10, no. 10: 2418. https://doi.org/10.3390/foods10102418
APA StyleYu, H. H., Chin, Y. -W., & Paik, H. -D. (2021). Application of Natural Preservatives for Meat and Meat Products against Food-Borne Pathogens and Spoilage Bacteria: A Review. Foods, 10(10), 2418. https://doi.org/10.3390/foods10102418