- Article
Between-Limb Asymmetry Assessment During a Double-Leg Drop Jump Task After Anterior Cruciate Ligament Reconstruction—A Musculoskeletal Modelling Approach
- Rodrigo B. Mateus,
- Sílvia Cabral and
- Chris Richter
- + 1 author
Approximately two-thirds of athletes who are submitted to Anterior Cruciate Ligament Reconstruction (ACLR) never return to their preinjury level of performance, potentially due to muscle strength deficiencies or altered loading patterns during landing or jumping tasks. This study aimed to estimate individual muscle forces during a double-leg drop jump task, and assess sagittal plane between-limb asymmetries in muscle forces and ground reaction forces using a musculoskeletal modelling approach, in athletes who underwent ACLR. Thirty male field-sport athletes (age: 18–35 years; mass: 84.3 ± 12.3 kg; height: 180.2 ± 8.4 cm) post-ACLR (39.8 ± 3.9 weeks) using patellar or quadriceps tendon grafts were tested. Scaled musculoskeletal models were implemented in OpenSim, and muscle forces were estimated using the Computed Muscle Control optimization method. The contralateral limb exhibited greater vertical ground reaction forces across most of the rebound phase (d = 2.01). Compared with the contralateral limb, the ACLR limb showed reduced quadriceps (d = 1.72), soleus (d = 0.95), and gluteus maximus (d = 0.83) forces, indicating deficits in knee extensor, plantarflexor, and hip extensor neuromuscular function. Smaller asymmetries were found for the gluteus medius (d = 0.60) and hamstrings (d = 0.72), while other muscles showed symmetrical activation patterns. These results reveal persistent between-limb asymmetries in muscle recruitment and loading up to nine months post-ACLR, emphasizing the importance of targeted rehabilitation to restore symmetrical neuromuscular control during explosive movements.
20 November 2025




