Topic Editors

Prof. Dr. Guohua Zhang
School of Sustainable Energy, China University of Geosciences, Wuhan, China
School of Engineering, China University of Geosciences, Wuhan, China
Dr. Xiaobo Zhang
School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China

Hydraulic Engineering and Modelling

Abstract submission deadline
30 September 2026
Manuscript submission deadline
30 November 2026
Viewed by
2385

Topic Information

Dear Colleagues,

Fractured rock masses, common in geological and hydraulic environments, often experience complex physical conditions such as geostress, high temperatures, osmotic pressure, and chemical interactions. These conditions lead to discontinuous, anisotropic, and nonlinear deformation and flow behavior, making the analysis of fractured systems both scientifically challenging and practically important. The coupled interactions among thermal, hydraulic, mechanical, and chemical (THMC) fields within such rock masses govern critical processes related to seepage, stability, and energy transfer. Understanding these multiphysics interactions is essential for improving the design and safety of caverns, tunnels, dams, underground reservoirs, and geothermal systems and for preventing geological hazards in complex subsurface projects.

We welcome original research and review articles on theoretical modeling, laboratory experimentation, and high-fidelity numerical simulations focused on nonlinear flow, fracture network connectivity, thermal–hydraulic–mechanical (THM) coupling, and AI-driven interpretation of rock mass behavior. Topics of interest include, but are not limited to, the following aspects:

  • Nonlinear and coupled multiphysics modeling of fractured media
  • Fluid flow and heat transport in complex fracture networks
  • Discrete fracture network (DFN) modeling and upscaling
  • AI and machine learning in geological interpretation and hydraulic behavior prediction
  • Seepage analysis and geotechnical safety in tunnels, reservoirs, and underground structures
  • Intelligent modeling of hydraulic properties under deformation (shear/normal loading)
  • Applications in geothermal reservoirs, underground compressed air storage, and hydro-engineering

By fostering interdisciplinary exchange across hydraulic engineering, geomechanics, and computational geoscience, this Topic aims to advance simulation techniques and sustainable practices in subsurface engineering and water resource management。

Prof. Dr. Guohua Zhang
Dr. Feng Xiong
Dr. Xiaobo Zhang
Topic Editors

Keywords

  • hydraulic engineering
  • fractured rock mechanics
  • multiphysics coupling (THMC)
  • nonlinear seepage flow
  • discrete fracture networks (DFN)

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Applied Sciences
applsci
2.5 5.5 2011 19.8 Days CHF 2400 Submit
Hydrology
hydrology
3.2 5.9 2014 15.7 Days CHF 1800 Submit
Journal of Marine Science and Engineering
jmse
2.8 5.0 2013 15.6 Days CHF 2600 Submit
Water
water
3.0 6.0 2009 19.1 Days CHF 2600 Submit
Eng
eng
2.4 3.2 2020 19.7 Days CHF 1400 Submit

Preprints.org is a multidisciplinary platform offering a preprint service designed to facilitate the early sharing of your research. It supports and empowers your research journey from the very beginning.

MDPI Topics is collaborating with Preprints.org and has established a direct connection between MDPI journals and the platform. Authors are encouraged to take advantage of this opportunity by posting their preprints at Preprints.org prior to publication:

  1. Share your research immediately: disseminate your ideas prior to publication and establish priority for your work.
  2. Safeguard your intellectual contribution: Protect your ideas with a time-stamped preprint that serves as proof of your research timeline.
  3. Boost visibility and impact: Increase the reach and influence of your research by making it accessible to a global audience.
  4. Gain early feedback: Receive valuable input and insights from peers before submitting to a journal.
  5. Ensure broad indexing: Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (5 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
22 pages, 6469 KiB  
Article
Construction-Induced Waterlogging Simulation in Pinglu Canal Using a Coupled SWMM-HEC-RAS Model: Implications for Inland Waterway Engineering
by Jingwen Li, Jiangdong Feng, Qingyang Wang and Yongtao Zhang
Water 2025, 17(16), 2415; https://doi.org/10.3390/w17162415 - 15 Aug 2025
Viewed by 302
Abstract
Focusing on the Lingshan section of Guangxi’s Pinglu Canal, this study addresses frequent waterlogging during construction under subtropical monsoon rainfall. Human disturbances alter hydrological processes, causing project delays and economic losses. We developed a coupled Storm Water Management Model (SWMM 1D hydrological) and [...] Read more.
Focusing on the Lingshan section of Guangxi’s Pinglu Canal, this study addresses frequent waterlogging during construction under subtropical monsoon rainfall. Human disturbances alter hydrological processes, causing project delays and economic losses. We developed a coupled Storm Water Management Model (SWMM 1D hydrological) and Hydrologic Engineering Center—River Analysis System 2D (HEC-RAS 2D hydrodynamic) model. High-resolution Unmanned Aerial Vehicle—Light Detection and Ranging (UAV-LiDAR) Digital Elevation Model (DEM) delineated sub-catchments, while the Green-Ampt model quantified soil conductivity decay. Synchronized runoff data drove high-resolution HEC-RAS 2D simulations of waterlogging evolution under design storms (1–100-year return periods) and a real event (10 May 2025). Key results: Water depth exhibits nonlinear growth with return period—slow at low intensities but accelerating beyond 50-year events, particularly at temporary road junctions where embankments impede flow. Additionally, intensive intermittent rainfall causes significant ponding at excavation pit-road intersections, and optimized drainage drastically shortens recession time. The study reveals a “rapid runoff generation–restricted convergence–prolonged ponding” mechanism under construction disturbance, validates the model’s capability for complex scenarios, and provides critical data for real-time waterlogging risk prediction and drainage optimization during the canal’s construction. Full article
(This article belongs to the Topic Hydraulic Engineering and Modelling)
Show Figures

Figure 1

17 pages, 3791 KiB  
Article
Loading Response of Segment Lining with Pea-Gravel Grouting Defects for TBM Tunnel in Transition Zones of Surrounding Rocks
by Qixing Che, Changyong Li, Xiangfeng Wang, Zhixiao Zhang, Yintao He and Shunbo Zhao
Eng 2025, 6(7), 166; https://doi.org/10.3390/eng6070166 - 21 Jul 2025
Viewed by 307
Abstract
Pea-gravel grouting, which fills the gap between the lining of tunnels and the surrounding rock, is crucial for the structural stability and waterproofing of water delivery TBM tunnels. However, it is prone to defects due to complex construction conditions and geological factors. To [...] Read more.
Pea-gravel grouting, which fills the gap between the lining of tunnels and the surrounding rock, is crucial for the structural stability and waterproofing of water delivery TBM tunnels. However, it is prone to defects due to complex construction conditions and geological factors. To provide practical insights for engineers to evaluate grouting quality and take appropriate remedial action during TBM tunnel construction, this paper assesses four types of pea-gravel grouting defects, including local cavities, less density, rich rock powder and rich cement slurry. Detailed numerical simulation models comprising segment lining, pea-gravel grouting and surrounding rock were built using the 3D finite element method to analyze the displacement and stress of the segments at the transition zone between different classes of surrounding rocks, labeled V–IV, V–III and IV–III. The results indicate that a local cavity defect has the greatest impact on the loading response of segment lining, followed by less density, rich rock powder and rich cement slurry defects. Their impact will weaken with better self-support of the surrounding rocks in the order of V–IV, V–III and IV–III. The tensile stress of segment lining is within the limit of concrete cracking for combinations of all four defects when the surrounding rock is of the class IV–III, and it is within this limit for two-defect combinations when the surrounding rock is of classes V–III and V–IV. When three defects or all four defects are present in the pea-gravel grouting, the possibility of segment concrete cracking increases from the transition zone of class V–III surrounding rock to the transition zone of class V–IV surrounding rock. Full article
(This article belongs to the Topic Hydraulic Engineering and Modelling)
Show Figures

Figure 1

31 pages, 9878 KiB  
Article
Shallow Sliding Failure of Slope Induced by Rainfall in Highly Expansive Soils Based on Model Test
by Shuangping Li, Bin Zhang, Shanxiong Chen, Zuqiang Liu, Junxing Zheng, Min Zhao and Lin Gao
Water 2025, 17(14), 2144; https://doi.org/10.3390/w17142144 - 18 Jul 2025
Viewed by 327
Abstract
Expansive soils, characterized by the presence of surface and subsurface cracks, over-consolidation, and swell-shrink properties, present significant challenges to slope stability in geotechnical engineering. Despite extensive research, preventing geohazards associated with expansive soils remains unresolved. This study investigates shallow sliding failures in slopes [...] Read more.
Expansive soils, characterized by the presence of surface and subsurface cracks, over-consolidation, and swell-shrink properties, present significant challenges to slope stability in geotechnical engineering. Despite extensive research, preventing geohazards associated with expansive soils remains unresolved. This study investigates shallow sliding failures in slopes of highly expansive soils induced by rainfall, using model tests to explore deformation and mechanical behavior under cyclic wetting and drying conditions, focusing on the interaction between soil properties and environmental factors. Model tests were conducted in a wedge-shaped box filled with Nanyang expansive clay from Henan, China, which is classified as high-plasticity clay (CH) according to the Unified Soil Classification System (USCS). The soil was compacted in four layers to maintain a 1:2 slope ratio (i.e., 1 vertical to 2 horizontal), which reflects typical expansive soil slope configurations observed in the field. Monitoring devices, including moisture sensors, pressure transducers, and displacement sensors, recorded changes in soil moisture, stress, and deformation. A static treatment phase allowed natural crack development to simulate real-world conditions. Key findings revealed that shear failure propagated along pre-existing cracks and weak structural discontinuities, supporting the progressive failure theory in shallow sliding. Cracks significantly influenced water infiltration, creating localized stress concentrations and deformation. Atmospheric conditions and wet-dry cycles were crucial, as increased moisture content reduced soil suction and weakened the slope’s strength. These results enhance understanding of expansive soil slope failure mechanisms and provide a theoretical foundation for developing improved stabilization techniques. Full article
(This article belongs to the Topic Hydraulic Engineering and Modelling)
Show Figures

Figure 1

29 pages, 4280 KiB  
Article
Pore Structure and Fractal Characteristics of Coal Rocks Under Variable Moisture Content Increment Cycles Using LF-NMR Techniques
by Hongxin Xie, Yanpeng Zhao, Daoxia Qin, Hui Liu, Yaxin Xing, Zhiguo Cao, Yong Zhang, Liqiang Yu and Zetian Zhang
Water 2025, 17(13), 1884; https://doi.org/10.3390/w17131884 - 25 Jun 2025
Viewed by 704
Abstract
The spatiotemporal heterogeneity of moisture distribution causes the coal pillar dams in underground water reservoirs to undergo long-term dry–wet cycles (DWCs) under varying moisture content increments (MCIs). Accurately measuring the pore damage and fractal dimensions (Df) of coal rock by [...] Read more.
The spatiotemporal heterogeneity of moisture distribution causes the coal pillar dams in underground water reservoirs to undergo long-term dry–wet cycles (DWCs) under varying moisture content increments (MCIs). Accurately measuring the pore damage and fractal dimensions (Df) of coal rock by different MCIs under DWCs is a prerequisite for in-depth disclosure of the strength deterioration mechanism of underground reservoir coal pillar dams. This study employed low-field nuclear magnetic resonance (LF-NMR) to quantitatively characterize the pore structural evolution and fractal dimension with different MCI variations (Δw = 4%, 6%, 8%) after one to five DWCs. The results indicate that increasing MCIs at constant DWC numbers (NDWC) induces significant increases in pore spectrum area, adsorption pore area, and seepage pore area. MRI visualization demonstrates a progressive migration of NMR signals from sample peripheries to internal regions, reflecting enhanced moisture infiltration with higher MCIs. Total porosity increases monotonically with MCIs across all tested cycles. Permeability, T2 cutoff (T2C), and Df of free pores exhibit distinct response patterns. A porosity-based damage model further reveals that the promoting effect of cycle numbers on pore development and expansion outweighs that of MCIs at NDWC = 5. This pore-scale analysis provides essential insights into the strength degradation mechanisms of coal pillar dams under hydro-mechanical coupling conditions. Full article
(This article belongs to the Topic Hydraulic Engineering and Modelling)
Show Figures

Figure 1

22 pages, 6482 KiB  
Article
Similar Physical Model Experimental Investigation of Landslide-Induced Impulse Waves Under Varying Water Depths in Mountain Reservoirs
by Xingjian Zhou, Hangsheng Ma and Yizhe Wu
Water 2025, 17(12), 1752; https://doi.org/10.3390/w17121752 - 11 Jun 2025
Viewed by 491
Abstract
Landslide-induced impulse waves (LIIWs) are significant natural hazards, frequently occurring in mountain reservoirs, which threaten the safety of waterways and dam project. To predict the impact of impulse waves induced by Rongsong (RS) potential landslide on the dam, during the layered construction period [...] Read more.
Landslide-induced impulse waves (LIIWs) are significant natural hazards, frequently occurring in mountain reservoirs, which threaten the safety of waterways and dam project. To predict the impact of impulse waves induced by Rongsong (RS) potential landslide on the dam, during the layered construction period and maximum water level operation period of Rumei (RM) Dam (unbuilt), a large-scale three-dimensional similar physical model with a similarity scale of 200:1 (prototype length to model length) was established. The experiments set five water levels during the dam’s layered construction period and recorded and analyzed the generation and propagation laws of LIIWs. The findings indicate that, for partially granular submerged landslides, no splashing waves are generated, and the waveform of the first wave remains intact. The amplitude of the first wave exhibits stable attenuation while the third one reaches the largest. After the first three columns of impulse waves, water on the dam surface oscillates between the two banks. This study specifically discusses the impact of different water depths on LIIWs. The results show that the wave height increases as the water depth decreases. Two empirical formulas to calculate the wave attenuation at the generation area and to calculate the maximum vertical run-up height on the dam surface were derived, showing strong agreement between the empirical formulas and experimental values. Based on the model experiment results, the wave height data in front of the RM dam during the construction and operation periods of the RM reservoir were predicted, and engineering suggestions were given for the safety height of the cofferdam during the construction and security measures to prevent LIIW overflow the dam top during the operation periods of the RM dam. Full article
(This article belongs to the Topic Hydraulic Engineering and Modelling)
Show Figures

Figure 1

Back to TopTop