The Effect of In Vitro Gastrointestinal Digestion on the Biological Activity of a Sea Cucumber (Holothuria forskali) Hydrolysate Encapsulated in Chitosan Nanoparticles and Rapeseed Lecithin Liposomes
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Raw Material
Proximate Analysis
2.3. Obtainment and Characterization of Extracts
2.3.1. Preparation of Extracts
Aqueous Extraction
Ethanol–Water Extraction
Preparation of Hydrolysates
2.3.2. Biological Properties
Antioxidant Activity
ACE-Inhibitory Activity
Antimicrobial Activity
2.4. Encapsulation in Nanostructures
2.4.1. Preparation of Chitosan Nanoparticles and Rapeseed Lecithin Liposomes
2.4.2. Characterization of Nanostructures
2.4.3. Encapsulation Efficiency
2.4.4. In Vitro Gastrointestinal Digestion
2.4.5. Mucin Interaction
2.5. Statistical Analyses
3. Results and Discussion
3.1. Proximate Composition of Holothurians
3.2. Biological Activities of Extracts
3.2.1. Antioxidant Activity
3.2.2. ACE-Inhibitory Capacity
3.2.3. Antimicrobial Activity
3.3. Characterization of Hydrolysate Reconstituted in Water from Eviscerated Sea Cucumber
3.4. Encapsulation of Hydrolysate in Two Nanosystems: Chitosan Nanoparticles and Liposomes
3.5. Antioxidant and ACE-Inhibitory Activities of Nanostructures Before and After Simulated Digestion
3.6. Physical Properties of In Vitro GID Digests
3.7. Study of Interaction Between Mucin and Digests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN. 2023. Available online: http://www.un.org>global-issues>ageing (accessed on 4 February 2025).
- Bordbar, S.; Anwar, F.; Saari, N. High-Value Components and Bioactives from Sea Cucumbers for Functional Foods—A Review. Mar. Drugs 2011, 9, 1761–1805. [Google Scholar] [CrossRef]
- Ismail, S.-E.; Hussein, N.A.; Rashad, M.M.; El-Sikaily, A.M.; Hassanin, A.E.-L.A.; Fakharany, E.M.E. Sea cucumber sulphated polysaccharides extract potentiates the anticancer effect of 5- fluorouracil on hepatocellular carcinoma cells. Sci. Rep. 2025, 15, 20255. [Google Scholar] [CrossRef]
- Hossain, A.; Dave, D.; Shahidi, F. Northern Sea Cucumber (Cucumaria frondosa): A Potential Candidate for Functional Food, Nutraceutical, and Pharmaceutical Sector. Mar. Drugs 2020, 18, 274. [Google Scholar] [CrossRef]
- Resoles, J.J.A.; Yu, E.T. The neuropeptidomes of the sea cucumbers Stichopus cf. horrens and Holothuria scabra. Sci. Rep. 2025, 15, 7032. [Google Scholar] [CrossRef]
- Shahbaz, M.; Akram, A.; Raja, N.I.; Mukhtar, T.; Mehak, A.; Fatima, N.; Ajmal, M.; Ali, K.; Mustafa, N.; Abasi, F. Antifungal activity of green synthesized selenium nanoparticles and their effect on physiological, biochemical, and antioxidant defense system of mango under mango malformation disease. PLoS ONE 2023, 18, e0274679. [Google Scholar] [CrossRef]
- Dickinson, E. Food emulsions and foams: Stabilization by particles. Curr. Opin. Colloid Interface Sci. 2010, 15, 40–49. [Google Scholar] [CrossRef]
- Lima, K.O.; da Rocha, M.; Alemán, A.; López-Caballero, M.E.; Tovar, C.A.; Gómez-Guillén, M.C.; Montero, P.; Prentice, C. Yogurt fortification by the addition of microencapsulated strippedweakfish (Cynoscion guatucupa) protein hydrolysate. Antioxidants 2021, 10, 1567. [Google Scholar] [CrossRef]
- Marín-Peñalver, D.; Alemán, A.; Gómez-Guillén, M.C.; Montero, P. Carboxymethyl cellulose films containing nanoliposomes loaded with an angiotensin-converting enzyme inhibitory collagen hydrolysate. Food Hydrocoll. 2019, 94, 553–560. [Google Scholar] [CrossRef]
- Alemán, A.; Pérez-García, S.; Fernández de Palencia, P.; Montero, M.P.; Gómez-Guillén, M.D.C. Physicochemical, antioxidant, and anti-inflammatory properties of rapeseed lecithin liposomes loading a chia (Salvia hispanica L.) seed extract. Antioxidants 2021, 10, 693. [Google Scholar] [CrossRef]
- Butina, E.A.; Gerasimenko, E.O.; Bugaets, I.A.; Kopteva, A.A. Comparative assessment of plant lecithins as the technologically functional components for creating encapsulated biologically active substances. Int. J. Pharm. Res. 2018, 10, 297–304. [Google Scholar]
- Mecheta, A.; Hanachi, A.; Jeandel, C.; Arab-Tehrany, E.; Bianchi, A.; Velot, E.; Mezali, K.; Linder, M. Physicochemical Properties and Liposomal Formulations of Hydrolysate Fractions of Four Sea Cucumbers (Holothuroidea: Echinodermata) from the Northwestern Algerian Coast. Molecules 2020, 25, 2972. [Google Scholar] [CrossRef]
- Chen, C.; Han, X.; Dong, P.; Li, Z.; Yanagita, T.; Xue, C.; Zhang, T.; Wang, Y. Sea cucumber saponin liposomes ameliorate obesity-induced inflammation and insulin resistance in high-fat-diet-fed mice. Food Funct. 2018, 9, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Yang, Y.-H.; Xu, J.; Wang, Y.-M.; Xue, C.-H.; Kurihara, H.; Takahashi, K. Transport and uptake effects of marine complex lipid liposomes in small intestinal epithelial cell models. Food Funct. 2016, 7, 1904. [Google Scholar] [CrossRef]
- Sumarto Hasan b Karnila, R.; Sukmiwati, M. Characteristics of chitosan nanoparticles extracted from sea cucumber (Holothuria scabra) as source materials for glucosamine. Pertanika J. Sci. Technol. 2019, 27, 2409–2425. [Google Scholar]
- Citkowska, A.; Szekalska, M.; Winnicka, K. Possibilities of fucoidan utilization in the development of pharmaceutical dosage forms. Mar. Drugs 2019, 17, 458. [Google Scholar] [CrossRef]
- Li, R.; Zhang, L.Y.; Li, Z.J.; Xue, C.-H.; Dong, P.; Huang, Q.R.; Wang, Y.-M.; Zhang, T.T. Characterization and Absorption Kinetics of a Novel Multifunctional Nanoliposome Stabilized by Sea Cucumber Saponins Instead of Cholesterol. J. Agric. Food Chem. 2020, 68, 642–651. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Wang, Y.; Chang, Y.; Xue, C.; Zhang, T. Preparation and properties of fucoxanthin-loaded liposomes stabilized by sea cucumber derived cholesterol sulfate instead of cholesterol. J. Biosci. Bioeng. 2022, 135, 160–166. [Google Scholar] [CrossRef]
- Srihera, N.; Li, Y.; Zhang, T.-T.; Wang, Y.M.; Yanagita, T.; Waiprib, Y.; Xue, C.-H. Preparation and characterization of astaxanthin-loaded liposomes stabilized by sea cucumber sulfated sterols instead of cholesterol. J. Oleo Sci. 2022, 71, 401–410. [Google Scholar] [CrossRef]
- Nga, N.T.; Phuong, D.T.; Cuc, N.T.; Phuong, T.H.; Huong, P.T.M.; Cuong, N.X.; Tai, B.H.T.; Kiem, P.V.; Thao, D.T. Nanoliposomal Cercodemasoide A and Its Improved Activities Against NTERA-2 Cancer Stem Cells. Nat. Prod. Commun. 2020, 15, 1934578X20982108. [Google Scholar] [CrossRef]
- Edrispour, Z.; Homaei, A. Exploring in vitro effect of silver nanoparticles and Holothuria parva extracts on kinetics and stability of α-amylase. Biotechnol. Appl. Biochem. 2022, 70, 885–894. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Mamelona, J.; Pelletier, É.; Girard-Lalancette, K.; Legault, J.; Karboune, S.; Kermasha, S. Quantification of phenolic contents and antioxidant capacity of Atlantic sea cucumber, Cucumaria frondosa. Food Chem. 2007, 104, 1040–1047. [Google Scholar] [CrossRef]
- Alemán, A.; Giménez, B.; Montero, P.; Gómez-Guillén, M.C. Antioxidant activity of several marine skin gelatins. LWT Food Sci. Technol. 2011, 44, 407–413. [Google Scholar] [CrossRef]
- Alemán, A.; Mastrogiacomo, I.; López-Caballero, M.E.; Ferrari, B.; Montero, P.; Gómez-Guillén, M.C. A Novel Functional Wrapping Design by Complexation of ε-Polylysine with Liposomes Entrapping Bioactive Peptides. Food Bioprocess Technol. 2016, 9, 1113–1124. [Google Scholar] [CrossRef]
- Sánchez-Faure, A.; Calvo, M.M.; Pérez-Jiménez, J.; Martín-Diana, A.B.; Rico, D.; Montero, P.; Gómez-Guillén, M.C.; López-Caballero, M.E.; Martínez-Alvarez, O. Exploring the potential of common iceplant, seaside arrowgrass and sea fennel as edible halophytic plants. Food Res. Int. 2020, 137, 109613. [Google Scholar] [CrossRef] [PubMed]
- Alemán, A.; González, F.; Arancibia, M.Y.; López-Caballero, M.E.; Montero, P.; Gómez-Guillén, M.C. Comparative study between film and coating packaging based on shrimp concentrate obtained from marine industrial waste for fish sausage preservation. Food Control 2016, 70, 325–332. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct 2014, 5, 113–124. [Google Scholar] [CrossRef]
- Jenzri, M.; Gharred, C.; Bouraoui, Z.; Guerbej, H.; Jebali, J.; Gharred, T. Evisceration of Holothuria poli by mechanical, chemical and hypoxia stress methods and its bioremediation potentials for the pisciculture wastewater. Aquac. Res. 2022, 53, 3309–3317. [Google Scholar] [CrossRef]
- Zhong, Y.; Khan, M.A.; Shahidi, F. Compositional characteristics and antioxidant properties of fresh and processed sea cucumber (Cucumaria frondosa). J. Agric. Food Chem. 2007, 55, 1188–1192. [Google Scholar] [CrossRef]
- Bilgin, S.; Tanrikulu, H.Ö. The changes in chemical composition of Holothuria tubulosa (Gmelin, 1788) with ambient-drying and oven-drying methods. Food Sci. Nutr. 2018, 6, 1456–1461. [Google Scholar] [CrossRef]
- Carletti, A.; Cardoso, C.; Lobo-Arteaga, J.; Sales, S.; Juliao, D.; Ferreira, I.; Chainho, P.; Dionísio, M.A.; Gaudêncio, M.J.; Afonso, C.; et al. Antioxidant and Anti-inflammatory Extracts From Sea Cucumbers and Tunicates Induce a Pro-osteogenic Effect in Zebrafish Larvae. Front. Nutr. 2022, 9, 888360. [Google Scholar] [CrossRef]
- Nursid, M.; Hadiati, D.A.; Winanto, T. Antioxidant capacity of dry sea cucumber Holothuria edulis, Pearsonothuria graeffei, and Stichopus herrmanni from Boalemo waters, Gorontalo, Indonesia. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; Volume 967, pp. 12–27. [Google Scholar] [CrossRef]
- Althunibat, O.Y.; Hashim, R.B.; Taher, M.; Daud, J.M.; Ikeda, M.-A. In Vitro Antioxidant and Antiproliferative Activities of Three Malaysian Sea Cucumber Species. Eur. J. Sci. Res. 2009, 37, 376–387. [Google Scholar]
- Althunibat, O.; Ridzwan, B.; Taher, M.; Daud, J.; Jauhari Arief Ichwan, S.; Qaralleh, H. Antioxidant and cytotoxic properties of two sea cucumbers, Holothuria edulis Lesson and Stichopus horrens Selenka. Acta Biol. Hung. 2013, 64, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Giménez, B.; Moreno, S.; López-Caballero, M.E.; Gómez-Guillén, M.C.; Montero, P. Antioxidant properties of green tea extract incorporated to fish gelatin films after simulated gastrointestinal enzymatic digestion. LWT Food Sci. Technol. 2013, 53, 445–451. [Google Scholar] [CrossRef]
- Jallali, I.; Megdiche, W.; M’Hamdi, B.; Oueslati, S.; Smaoui, A.; Abdelly, C.; Ksouri, R. Changes in phenolic composition and antioxidant activities of the edible halophyte Crithmum maritimum L. with physiological stage and extraction method. Acta Physiol. Plant 2012, 34, 1451–1459. [Google Scholar] [CrossRef]
- Roggatz, C.C.; González-Wangüemert, M.; Pereira, H.; João Rodrigues, M.; Moreira da Silva, M.; Barreira, L.; Varela, J.; Custódio, L. First report of the nutritional profile and antioxidant potential of Holothuria arguinensis, a new resource for aquaculture in Europe. Nat. Prod. Res. 2016, 30, 2034–2040. [Google Scholar] [CrossRef]
- Senadheera, T.R.L.; Dave, D.; Shahidi, F. Antioxidant potential and physicochemical properties of protein hydrolysates from body parts of North Atlantic sea cucumber (Cucumaria frondosa). Food Prod. Process. Nutr. 2021, 3, 3. [Google Scholar] [CrossRef]
- Ghanbari, R.; Zarei, M.; Ebrahimpour, A.; Abdul-Hamid, A.; Ismail, A.; Saari, N. Angiotensin-I Converting Enzyme (ACE) Inhibitory and Anti-Oxidant Activities of Sea Cucumber (Actinopyga lecanora) Hydrolysates. Int. J. Mol. Sci. 2015, 16, 28870–28885. [Google Scholar] [CrossRef]
- Nugroho, A.; Harahap, I.A.; Ardiansyah, A.; Bayu, A.; Rasyid, A.; Murniasih, T.; Setyastuti, A.; Putra, M.Y. Antioxidant and antibacterial activities in 21 species of Indonesian sea cucumbers. J. Food Sci. Technol. 2021, 59, 239–248. [Google Scholar] [CrossRef]
- Telahigue, K.; Ghali, R.; Nouiri, E.; Labidi, A.; Hajji, T. Antibacterial activities and bioactive compounds of the ethyl acetate extract of the sea cucumber Holothuria forskali from Tunisian coasts. J. Mar. Biol. Assoc. UK 2020, 100, 229–237. [Google Scholar] [CrossRef]
- Abraham, T.J.; Nagarajan, J.; Shanmugam, S.A. Antimicrobial substances of potential biomedical importance from holothurian species. Indian J. Mar. Sci. 2002, 31, 161–164. [Google Scholar]
- Kumar, R.; Chaturvedi, A.K.; Shuklab, P.K.; Lakshmia, V. Antifungal activity in triterpene glycosides from the sea cucumber Actinopyga lecanora. Bioorganic Med. Chem. Lett. 2007, 17, 4387–4391. [Google Scholar] [CrossRef]
- Jiang, J.; Zhou, Z.; Dong, Y.; Guan, X.; Wang, B.; Jiang, B.; Yang, A.; Chen, Z.; Gao, S.; Sun, H. Characterization of phenoloxidase from the sea cucumber Apostichopus japonicas. Immunobiology 2014, 219, 450–456. [Google Scholar] [CrossRef]
- Ghanbari, R.; Ebrahimpour, A.; Abdul-Hamid, A.; Ismail, A.; Saari, N. Actinopyga lecanora Hydrolysates as Natural Antibacterial Agents. Int. J. Mol. Sci. 2012, 13, 16796–16811. [Google Scholar] [CrossRef]
- Lu, Z.; Sun, N.; Dong, L.; Gao, Y.; Lin, S. Production of bioactive peptides from sea cucumber and its potential health benefits: A comprehensive review. J. Agric. Food Chem. 2022, 70, 7607–7625. [Google Scholar] [CrossRef]
- Esmat, A.Y.; Said, M.M.; Soliman, A.A.; El-Masry, K.S.H.; Badiea, E.A. Bioactive compounds, antioxidant potential, and hepatoprotective activity of sea cucumber (Holothuria atra) against thioacetamide intoxication in rats. Nutrition 2013, 29, 258–267. [Google Scholar] [CrossRef]
- Zeng, M.; Xiao, F.; Zhao, Y.; Liu, Z.; Li, B.; Dong, S. Study on the free radical scavenging activity of sea cucumber (Paracaudina chinens var.) gelatin hydrolysate. J. Ocean Univ. China 2007, 6, 255–258. [Google Scholar] [CrossRef]
- Sun, T.; Tang, J.; Powers, J.R.; Chen, F. Antioxidant activity and sensory quality of asparagus affected by microwave-circulated water combination and conventional cooking methods. Food Chem. 2011, 128, 1087–1093. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, B.; Liu, Z.; Dong, S.; Zhao, X.; Zeng, M. Antihypertensive effect and purification of an ACE inhibitory peptide from sea cucumber gelatin hydrolysate. Process Biochem. 2007, 42, 1586–1591. [Google Scholar] [CrossRef]
- Dewi, A.S.; Patantis, G.; Fawzya, Y.N.; Irianto, H.E.; Sa’diah, S. Angiotensin-converting enzyme (ace) inhibitory activities of protein hydrolysates from Indonesian sea cucumbers. Int. J. Pept. Res. Ther. 2020, 26, 485–2493. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.; Wang, L.; Zhang, S.; Wang, F.; Lin, H.; Gao, S.; Li, X.; Liu, K. Anti-inflammatory peptides and metabolomics-driven biomarkers discovery from sea cucumber protein hydrolysates. J. Food Sci. 2021, 86, 3540–3549. [Google Scholar] [CrossRef]
- Sun, S.; Xu, X.; Sun, X.; Zhang, X.; Chen, X.; Xu, N. Preparation and identification of ACE inhibitory peptides from the marine Macroalga Ulva intestinalis. Mar. Drugs 2019, 17, 179. [Google Scholar] [CrossRef]
- Doucet, D.; Otter, D.E.; Gauthier, S.F.; Foegeding, E.A. Enzyme-induced gelation of extensively hydrolyzed whey proteins by alcalase: Peptide identification and determination of Enzyme Specificity. J. Agric. Food Chem. 2003, 51, 6300–6308. [Google Scholar] [CrossRef] [PubMed]
- Murray, B.A.; FitzGerald, R.J. Angiotensin Converting Enzyme Inhibitory Peptides Derived from Food Proteins: Biochemistry, Bioactivity and Production. Curr. Pharm. Des. 2007, 13, 773–791. [Google Scholar] [CrossRef]
- Sepúlveda, C.T.; Alemán, A.; Zapata, J.E.; Montero, P.; Gómez-Guillén, M.C. Characterization and storage stability of spray dried soy-rapeseed lecithin/trehalose liposomes loaded with a tilapia viscera hydrolysate. Innov. Food Sci. Emerg. Technol. 2021, 139, 102708. [Google Scholar] [CrossRef]
- Sepúlveda, C.T.; Zapata, J.E.; Martínez-Álvarez, O.; Alemán, A.; Montero, P.; Gómez-Guillén, M.C. The preferential use of a soy-rapeseed lecithin blend for the liposomal encapsulation of a tilapia viscera hydrolysate. Innov. Food Sci. Emerg. Technol. 2021, 71, 110530. [Google Scholar] [CrossRef]
- Panja, S.; Khatua, D.K.; Halder, M. Effect of casein on pure lecithin liposome: Mixed biomacromolecular system for providing superior stabilization to hydrophobic molecules. Colloids Surf. B Biointerfaces 2019, 180, 298–305. [Google Scholar] [CrossRef]
- Pavlović, N.; Mijalković, J.; Đorđević, V.; Pecarski, D.; Bugarski, B.; Knezević-Jugović, Z. Ultrasonication for production of nanoliposomes with encapsulated soy protein concentrate hydrolysate: Process optimization, vesicle characteristics and in vitro digestion. Food Chem. X 2022, 15, 100370. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Soleimani, M.R.; Nikkhah, M. Chitosan/sodium tripolyphosphate nanoparticles as efficient vehicles for antioxidant peptidic fraction from common kilka. Int. J. Biol. Macromol. 2018, 111, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Lima, K.; Mauricio, C.; Alemán, A.; López-Caballero, M.E.; Gómez-Guillén, M.C.; Montero, M.P.; Prentice, C. Characterization, bioactivity and application of chitosan-based nanoparticles in a food emulsion model. Polymers 2021, 13, 3331. [Google Scholar] [CrossRef] [PubMed]
- Batalla Mayoral, J.; Cuadros Moreno, A.; San Martín-Martínez, E. Potencial zeta en la determinación de carga superficial de liposomas. Lat. Am. J. Phys. Educ. 2014, 8, 4319-1–4319-6. Available online: http://www.lajpe.org/dec14/4319_San_Martin.pdf (accessed on 5 June 2023).
- Gan, Q.; Wang, T. Chitosan nanoparticle as protein delivery carrier—Systematic examination of fabrication conditions for efficient loading and release. Colloids Surf. B Biointerfaces 2007, 59, 24–34. [Google Scholar] [CrossRef]
- Xiong, Y.-M.; Feng, Y.-X.; Chang, M.; Wang, Q.; Yin, S.-N.; Jian, L.-Y.; Ren, D.-F. Formulated chitosan-sodium tripolyphosphate nanoparticles for co-encapsulation of ellagic acid and anti-inflammatory peptide: Characterization, stability and anti-inflammatory activity. J. Sci. Food Agric. 2023, 103, 3447–3456. [Google Scholar] [CrossRef]
- Umerska, A.; Paluch, K.J.; Santos-Martínez, M.J.; Corrigan, O.I.; Medina, C.; Tajber, L. Liofilización de nanopartículas complejas de polielectrolitos: Efecto de la composición de nanopartículas y selección de crioprotectores. Int. J. Pharm. 2018, 552, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Marín-Peñalver, D.; Alemán, A.; Montero, P.; Gómez-Guillén, M.C. Protein aggregation, water binding and thermal gelation of salt-ground hake muscle in the presence of wet and dried soy phosphatidylcholine liposomes. Food Hydrocoll. 2018, 82, 466–477. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, C.; Zheng, Q.; Wu, J.; Zhu, K.; Shen, X.; Cao, J. Effect of simulated gastrointestinal digestion in vitro on the antioxidant activity, molecular weight and microstructure of polysaccharides from a tropical sea cucumber (Holothuria leucospilota). Food Hydrocoll. 2019, 89, 735–741. [Google Scholar] [CrossRef]
- Xu, J.; Jiang, S.; Liu, L.; Zhao, Y.; Zeng, M. Encapsulation of oyster protein hydrolysates in nanoliposomes: Vesicle characteristics, storage stability, in vitro release, and gastrointestinal digestion. J. Food Sci. 2023, 86, 960–968. [Google Scholar] [CrossRef]
- Alemán, A.; Marín-Peñalver, D.; Fernández de Palencia, P.; Gómez-Guillén, M.C.; Montero, M.P. Anti-Inflammatory properties, bioaccessibility and intestinal absorption of sea fennel (Crithmum maritimum) extract encapsulated in soy phosphatidylcholine liposomes. Nutriens 2022, 14, 210. [Google Scholar] [CrossRef]
- Pérez-Vega, J.A.; Olivera-Castillo, L.; Gómez-Ruiz, J.A.; Hernández-Ledesma, B. Release of multifunctiona l peptides by gastrointestinal digestion of sea cucumber (Isostichopus badionotus). J. Funct. Foods 2013, 5, 869–877. [Google Scholar] [CrossRef]
- Bekale, L.; Agudelo, D.; Tajmir-Riahi, H.A. Effect of polymer molecular weight on chitosan-protein interaction. Colloids Surf. B Biointerfaces 2015, 125, 309–317. [Google Scholar] [CrossRef]
- Ye, L.; Chen, H. Characterization of the interactions between chitosan/whey protein at different conditions. Food Sci. Technol. 2019, 39, 163–169. [Google Scholar] [CrossRef]
- Davidov-Pardo, G.; Perez-Ciordia, S.; Marin-Arroyo, M.R.; McClements, D.J. Improving resveratrol bioaccessibility using biopolymer nanoparticles and complexes: Impact of protein-carbohydrate Maillard conjugation. J. Agric. Food Chem. 2015, 63, 3915–3923. [Google Scholar] [CrossRef]
- Niaz, T.; Imran, M.; Mackie, A. Improving carvacrol bioaccessibility using core-shell carrier-systems under simulated gastrointestinal digestion. Food Chem. 2021, 353, 129505. [Google Scholar] [CrossRef]
- Ahmed, T.A.; Aljaeid, B.M. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des. Dev. Ther. 2016, 10, 483–507. [Google Scholar] [CrossRef]
- Mackie, A.R.; Goycoolea, F.M.; Menchicchi, B.; Caramella, C.M.; Saporito, F.; Lee, S.; Stephansen, K.; Chronakis, I.S.; Hiorth, M.; Adamczak, M.; et al. Innovative methods and applications in mucoadhesion research. Macromol. Biosci. 2017, 17, 1600534. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Ferrari, F.; Bonferoni, M.C.; Caramella, C. Characterization of chitosan hydrochloride–mucin interaction by means of viscosimetric and turbidimetric measurements. Eur. J. Pharm. Sci. 2000, 10, 251–257. [Google Scholar] [CrossRef]
- Ways, T.M.M.; Lau, W.M.; Khutoryanskiy, V.V. Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers 2018, 10, 267. [Google Scholar] [CrossRef] [PubMed]
- Sogias, I.A.; Williams, A.C.; Khutoryanskiy, V.V. Why is chitosan mucoadhesive? Biomacromolecules 2008, 9, 1837–1842. [Google Scholar] [CrossRef] [PubMed]
- Hassan, E.E.; Gallo, J.M. A simple rheological method for the in vitro assessment of mucin-polymer bioadhesive bond strength. Pharm. Res. 1990, 7, 491–495. [Google Scholar] [CrossRef]
- Bonferoni, M.C.; Sandri, G.; Ferrari, F.; Rossi, S.; Larghi, V.; Zambito, Y.; Caramella, C. Comparison of different in vitro and ex vivo methods to evaluate mucoadhesion of glycol-palmitoyl chitosan micelles. J. Drug Deliv. Sci. Technol. 2010, 20, 419–424. [Google Scholar] [CrossRef]
- Hejjaji, E.M.A.; Smith, A.M.; Morris, G.A. Evaluation of the mucoadhesive properties of chitosan nanoparticles prepared using different chitosan to tripolyphosphate (CS:TPP) ratios. Int. J. Biol. Macromol. 2018, 120, 1610–1617. [Google Scholar] [CrossRef] [PubMed]






| Name | Raw Material | Extraction | Reconstitution | 
|---|---|---|---|
| WT/W/E | H. forskali-E | Water 98 °C | Water | 
| WT/E/E | H. forskali -E | Water 98 °C | Ethanol–Water | 
| WT/W/SE | H. forskali-SE | Water 98 °C | Water | 
| WT/E/SE | H. forskali-SE | Water 98 °C | Ethanol–Water | 
| WC/W/E | H. forskali-E | Water 25 °C | Water | 
| WC/E/E | H. forskali-E | Water 25 °C | Ethanol–Water | 
| WC/W/SE | H. forskali-SE | Water 25 °C | Water | 
| WC/E/SE | H. forskali-SE | Water 25 °C | Ethanol–Water | 
| E/W/E | H. forskali-E | Ethanol–Water | Water | 
| E/E/E | H. forskali-E | Ethanol–Water | Ethanol–Water | 
| E/W/SE | H. forskali-SE | Ethanol–Water | Water | 
| E/E/SE | H. forskali-SE | Ethanol–Water | Ethanol–Water | 
| H/W/E | H. forskali-E | Hydrolysate | Water | 
| H/E/E | H. forskali-E | Hydrolysate | Ethanol–Water | 
| H/W/SE | H. forskali-SE | Hydrolysate | Water | 
| H/E/SE | H. forskali-SE | Hydrolysate | Ethanol–Water | 
| Microorganisms | Inhibition Halo (mm) * | |
|---|---|---|
| E/W/E | E/W/SE | |
| Aeromonas hydrophila | 12.6 ± 0 | 12 ± 0 | 
| Aspergillus niger | 9.17 ± 1.38 | 8.3 ± 1.08 | 
| Bacillus cereus | 9.15 ± 0.2 | 10.1 ± 5.66 | 
| Bacillus coagulans | 21.43 ± 4.29 | 23.03 ± 1.26 | 
| Bifidobacterium animalis sub lactis | 19.43 ± 2.55 | 18.03 ± 2.66 | 
| Bifidobacterium bifidum | 27.03 ± 1.72 | 24.4 ± 4.77 | 
| Botrytis cinnerea | 11.9 ± 6.15 | 13.16 ± 2.47 | 
| Brochothrix thermosphacta | 16.7 ± 3.12 | 19.43 ± 1.55 | 
| Citrobacter freundii | 11.35 ± 1.5 | 8.8 ± 4.27 | 
| Colletotrichum lindemuthianum | 21.96 ± 4.54 | 10.25 ± 1.62 | 
| Clostridium perfringens | 14.07 ± 2.17 | 13.07 ± 0.65 | 
| Debaryomyces hansenii | 21.17 ± 1.63 | 20.33 ± 1.91 | 
| Enterococcus faecium | 12 ± 0 | 13.5 ± 0.7 | 
| Enterococus faecalis | 12.2 ± 0.53 | 13.9 ± 1.41 | 
| Escherichia coli | 7.86 ± 0.3 | 9.13 ± 0.15 | 
| Escherichia coli K-12 | 7.87 ± 0.12 | 7.93 ± 0.31 | 
| Fusarium oxysporum | ** | |
| Lactobacillus acidophilus | 20.2 ± 1.8 | 21.4 ± 0.61 | 
| Lactobacillus helveticus | - | |
| Listeria innocua | 20.2 ± 7.83 | 13.8 ± 4.48 | 
| Listeria monocytogenes | 8.27 ± 0.5 | 9.5 ± 0.64 | 
| Mucor rouxii | - | |
| Penicillium expansum | 14.27 ± 2.28 | 13.13 ± 3.32 | 
| Photobacterium phosphoreum | 9.9 ± 0 | 11.93 ± 1.56 | 
| Pseudomonas aeruginosa | 7.8 ± 0 | 10.9 ± 0 | 
| Pseudomonas fluorescens | ** | |
| Salmonella enterica | 9.33 ± 0.66 | 9.57 ± 0.12 | 
| Shewanella putrefaciens | 9.5 ± 1.22 | 9.1 ± 1.08 | 
| Shigella sonnei | 10.87 ± 0.4 | 11.1 ± 0.46 | 
| Staphylococcus aureus | 8.53 ± 0.42 | 10.23 ± 0.99 | 
| Streptococcus pyogenes | - | |
| Vibrio parahemolíticus | - | |
| Yersinia enterocolitica | 10.1 ± 2.55 | 9.4 ± 2.27 | 
| Amino Acids | % | 
|---|---|
| Asx | 5.4 | 
| Thr | 8.2 | 
| Ser | 6.6 | 
| Glx | 4.2 | 
| Gly | 19.4 | 
| Ala | 8.2 | 
| Cys | 0.5 | 
| Val | 5.3 | 
| Met | 1.0 | 
| Ile | 2.7 | 
| Leu | 4.1 | 
| Tyr | 3.2 | 
| Phe | 2.0 | 
| His | 0.8 | 
| Lys | 2.5 | 
| Arg | 4.6 | 
| Pro | 5.7 | 
| Hyp | 2.5 | 
| Hyl | 13.0 | 
| Viscosity (mPa.s) | Rheological Synergism (mPa.s) | Relative Synergism (%) | ζ-Potential (mV) | Particle Size (nm) | ||||
|---|---|---|---|---|---|---|---|---|
| Whole Digest (Non-Diluted) | Mucin–Digest (1:1) | Whole Digest (Non-Diluted) | Mucin–Digest (1:1) | Whole Digest (Non-Diluted) | Mucin–Digest (1:1) | |||
| C | 0.654 ± 0.008 a | 0.861 ± 0.008 a | −0.690 ± 0.009 a | 100 | −15.63 ± 0.56 a | −9.54 ± 2.51 a | 458.7 ± 25.6 a | 1275 ± 66 a | 
| NPs | 1.485 ± 0.052 c | 0.938 ± 0.092 a | −0.883 ± 0.092 b | 128 | −2.66 ± 0.17 b | −10.16 ± 1.62 ab | 6951 ± 712 b | 2135 ± 121 b | 
| NPHs | 1.614 ± 0.108 d | 0.886 ± 0.009 a | −0.982 ± 0.027 c | 142 | −2.46 ± 0.22 b | −12.78 ± 1.42 bc | 6687 ± 534 b | 1529 ± 121 a | 
| L | 0.871 ± 0.043 b | 1.068 ± 0.025 b | −0.553 ± 0.033 d | 80 | −16.57 ± 0.87 ac | −18.77 ± 1.22 d | 492.3 ± 42.9 a | 1397 ± 114 a | 
| LHs | 0.740 ± 0.010 a | 1.036 ± 0.057 b | −0.549 ± 0.051 d | 80 | −22.17 ± 2.52 d | −17.93 ± 0.63 d | 554 ± 52.1 a | 896 ± 68 c | 
| H | 0.697 ± 0.004 a | 0.902 ± 0.003 a | −0.652 ± 0.005 a | 95 | −19.43 ± 2.42 cd | −15.13 0.80 c | 369 ± 15.9 a | 1313 ± 202 a | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alemán, A.; Gómez-Guillén, M.d.C.; Montero, M.P.; López-Caballero, M.E. The Effect of In Vitro Gastrointestinal Digestion on the Biological Activity of a Sea Cucumber (Holothuria forskali) Hydrolysate Encapsulated in Chitosan Nanoparticles and Rapeseed Lecithin Liposomes. Appl. Sci. 2025, 15, 11495. https://doi.org/10.3390/app152111495
Alemán A, Gómez-Guillén MdC, Montero MP, López-Caballero ME. The Effect of In Vitro Gastrointestinal Digestion on the Biological Activity of a Sea Cucumber (Holothuria forskali) Hydrolysate Encapsulated in Chitosan Nanoparticles and Rapeseed Lecithin Liposomes. Applied Sciences. 2025; 15(21):11495. https://doi.org/10.3390/app152111495
Chicago/Turabian StyleAlemán, Ailén, María del Carmen Gómez-Guillén, María Pilar Montero, and María Elvira López-Caballero. 2025. "The Effect of In Vitro Gastrointestinal Digestion on the Biological Activity of a Sea Cucumber (Holothuria forskali) Hydrolysate Encapsulated in Chitosan Nanoparticles and Rapeseed Lecithin Liposomes" Applied Sciences 15, no. 21: 11495. https://doi.org/10.3390/app152111495
APA StyleAlemán, A., Gómez-Guillén, M. d. C., Montero, M. P., & López-Caballero, M. E. (2025). The Effect of In Vitro Gastrointestinal Digestion on the Biological Activity of a Sea Cucumber (Holothuria forskali) Hydrolysate Encapsulated in Chitosan Nanoparticles and Rapeseed Lecithin Liposomes. Applied Sciences, 15(21), 11495. https://doi.org/10.3390/app152111495
 
        


 
       