Journal Description
Applied Nano
Applied Nano
is an international, peer-reviewed, open access journal on all aspects of application of nanoscience and nanotechnology, published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus and other databases.
- Journal Rank: CiteScore - Q2 (Materials Science (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 14.8 days after submission; acceptance to publication is undertaken in 4.2 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
- Applied Nano is a companion journal of Nanomaterials and Applied Sciences.
Latest Articles
A Methodology for Validation of DNA Origami–Quantum Dot Hybridization
Appl. Nano 2025, 6(4), 30; https://doi.org/10.3390/applnano6040030 - 8 Dec 2025
Abstract
Since the introduction of the DNA origami technology by Seeman and Rothemund, the integration of functional entities (nanoparticles, quantum dots, antibodies, etc.) has been of huge interest to broaden the area of applications for this technology. The possibility of precise functionalization of the
[...] Read more.
Since the introduction of the DNA origami technology by Seeman and Rothemund, the integration of functional entities (nanoparticles, quantum dots, antibodies, etc.) has been of huge interest to broaden the area of applications for this technology. The possibility of precise functionalization of the DNA origami technology gives opportunity to build up complex novel structures, opening up endless opportunities in medicine, nanotechnology, photonics and many more. The main advantage of the DNA origami technology, namely the self-assembly mechanism, can represent a challenge in the construction of complex mixed-material structures. Commonly, DNA origami structures are purified post-assembly by filtration (either spin columns or membranes) to wash away excess staple strands. However, this purification step can be critical since these functionalized DNA origami structures tend to agglomerate during purification. Therefore, custom production and purification procedures need to be applied to produce purified functionalized DNA origami structures. In this paper, we present a workflow to produce functionalized DNA origami structures, as well as a method to qualify the successful hybridization of a quantum dot to a square frame DNA origami structure. Through the utilization of a FRET fluorophore–quencher pair as well as a subsequent assembly, successful hybridization can be performed and confirmed using photoluminescence measurements.
Full article
(This article belongs to the Topic New Research on Thin Films and Nanostructures)
►
Show Figures
Open AccessArticle
Biodegradable 3D Screen Printing Technique for Roll-to-Roll Manufacturing of Eco-Friendly Flexible Hybrid Electronics
by
Sonia Ceron, David Barba and Miguel A. Dominguez
Appl. Nano 2025, 6(4), 29; https://doi.org/10.3390/applnano6040029 - 2 Dec 2025
Abstract
►▼
Show Figures
In this work, an eco-friendly 3D screen printing technique implemented in roll-to-roll technology for the manufacturing of flexible electronics is presented. The conductive ink was prepared through the decomposition of hydrogen peroxide, an eco-friendly reagent, onto the surfaces of silver nanoparticles. A biodegradable
[...] Read more.
In this work, an eco-friendly 3D screen printing technique implemented in roll-to-roll technology for the manufacturing of flexible electronics is presented. The conductive ink was prepared through the decomposition of hydrogen peroxide, an eco-friendly reagent, onto the surfaces of silver nanoparticles. A biodegradable master pattern for screen printing was printed by 3D fused deposition modeling using a polylactic acid filament. This technique was implemented to fabricate hybrid touch-sensitive sensors, to be used as electrical switches, on both photographic and conventional office papers. The functionality of these sensors was demonstrated, and the systems were tested under aging and bending conditions, proving the reliability of this technological approach in flexible electronics and offering a biodegradable alternative.
Full article

Figure 1
Open AccessArticle
Development of Chitosan-Based Nanocomposite Films Functionalized with Ag/TiO2 Catalysts for Antimicrobial and Packaging Applications
by
Luiz Eduardo Nochi Castro, William Gustavo Sganzerla, Carina Mendonça Müller, Lázaro José Gasparrini, Helton José Alves, Dirlei Diedrich Kieling, Cassia Reika Takabayashi and Leda Maria Saragiotto Colpini
Appl. Nano 2025, 6(4), 28; https://doi.org/10.3390/applnano6040028 - 29 Nov 2025
Abstract
►▼
Show Figures
The growing demand for environmentally friendly materials has driven extensive research into biopolymer-based nanocomposites with enhanced functional performance. Chitosan, a naturally derived polysaccharide, offers excellent film-forming ability, biodegradability, and antimicrobial potential, making it a promising matrix for sustainable packaging and coating applications. In
[...] Read more.
The growing demand for environmentally friendly materials has driven extensive research into biopolymer-based nanocomposites with enhanced functional performance. Chitosan, a naturally derived polysaccharide, offers excellent film-forming ability, biodegradability, and antimicrobial potential, making it a promising matrix for sustainable packaging and coating applications. In this study, a distinctive solvent-casting strategy was employed to fabricate chitosan-based nanocomposite films functionalized with dual-action silver/titania (Ag/TiO2) nanoparticles, combining both photocatalytic and metallic antimicrobial mechanisms—an approach that provides broader functionality than conventional single-component fillers. The biodegradable films were systematically characterized for their structural, mechanical, optical, and barrier properties, as well as their antimicrobial performance. The integration of Ag/TiO2 imparted unique synergistic effects, modifying film morphology and color, slightly reducing tensile strength, and enhancing hydrophobicity and structural compactness. The obtained water vapor permeability values (0.013–0.102 g·mm·m−2·h−1·kPa−1) classified the materials as moderate barriers, comparable to or better than many existing chitosan-based systems without nanofiller reinforcement. Notably, films containing 10 wt% Ag/TiO2 achieved a 40.4% reduction in Escherichia coli viability and an 8.2% inhibition of Staphylococcus aureus, demonstrating concentration-dependent antimicrobial activity superior to that of neat chitosan films. Overall, the unique combination of a biodegradable chitosan matrix with multifunctional Ag/TiO2 nanofillers offers clear advantages over traditional biopolymer films, highlighting their potential as advanced materials for active food packaging and antimicrobial surface coatings.
Full article

Figure 1
Open AccessArticle
Initial Stage Flocculation of Positively Charged Colloidal Particles in the Presence of Ultrafine Bubbles
by
Marita Wulandari, Santanu Saha and Yasuhisa Adachi
Appl. Nano 2025, 6(4), 27; https://doi.org/10.3390/applnano6040027 - 26 Nov 2025
Abstract
►▼
Show Figures
Ultrafine bubbles (UFBs) have been proposed as interfacial agents that modulate colloidal interactions, yet their role in early-stage flocculation remains insufficiently quantified. Using amidine latex (AL) as a cationic model colloid under controlled end-over-end mixing, we combined flocculation kinetics with electrokinetic and interfacial
[...] Read more.
Ultrafine bubbles (UFBs) have been proposed as interfacial agents that modulate colloidal interactions, yet their role in early-stage flocculation remains insufficiently quantified. Using amidine latex (AL) as a cationic model colloid under controlled end-over-end mixing, we combined flocculation kinetics with electrokinetic and interfacial measurements to elucidate the mechanism by which UFBs promote aggregation. Electrophoretic measurements show adsorption-driven charge regulation by bubbles; increasing the UFB-to-AL ratio progressively neutralizes the surface and at sufficient dose reverses its charge. The neutrality point occurs at a characteristic ratio that is only weakly sensitive to background sodium chloride (NaCl). Interfacial measurements reveal a thicker hydrodynamic layer at higher ionic strength, consistent with closer packing of adsorbed UFBs under double layer compression, and micrographs of particle dimers confirm a larger inter-particle separation that directly visualizes this layer. Aggregation accelerates at 10 mM sodium chloride but remains slow at 0.1 mM, indicating that electrolyte screening is required for efficient adsorption and bridging; pH modulated the process secondarily. Together, the results support a coherent picture in which UFB adsorption creates patchy, charge-compensated surfaces and a soft hydrodynamic layer that enlarges the effective collision cross-section, thereby enhancing early-stage flocculation.
Full article

Figure 1
Open AccessArticle
Commercial Zinc Oxide Nanoparticles: Mechanistic Investigation into the Bacterial Leaf Blight Pathogen of Rice and Evaluation of Their Biocompatibility
by
Thanee Jaiyan, Paweena Rangsrisak, Kanchit Rahaeng, Duagkamol Maensiri and Wuttipong Mahakham
Appl. Nano 2025, 6(4), 26; https://doi.org/10.3390/applnano6040026 - 13 Nov 2025
Abstract
Bacterial leaf blight (BLB), a destructive disease of rice caused by Xanthomonas oryzae pv. oryzae (Xoo), continues to limit rice productivity worldwide. Although biologically synthesized zinc oxide nanoparticles (ZnO NPs) have been extensively investigated, knowledge regarding the antibacterial activity and biocompatibility
[...] Read more.
Bacterial leaf blight (BLB), a destructive disease of rice caused by Xanthomonas oryzae pv. oryzae (Xoo), continues to limit rice productivity worldwide. Although biologically synthesized zinc oxide nanoparticles (ZnO NPs) have been extensively investigated, knowledge regarding the antibacterial activity and biocompatibility of commercially available ZnO NPs is still limited. In this study, commercial ZnO NPs were systematically characterized and evaluated for their antibacterial mechanisms and biocompatibility in mammalian cells. FE-SEM and TEM analyses revealed irregular polyhedral, hexagonal, and short rod-like morphologies with an average particle size of ~33 nm, consistent with crystallite sizes estimated by XRD. The nanoparticles exhibited pronounced antibacterial activity against Xoo, with a minimum inhibitory concentration (MIC) of 16 µg/mL and a clear dose-dependent response. Mechanistic assays confirmed multifaceted bactericidal actions involving membrane disruption, ROS generation, Zn2+ release, and ultrastructural damage. Biocompatibility testing in human dermal fibroblasts showed enhanced proliferation at 8–32 µg/mL, no cytotoxicity up to 256 µg/mL, and reduced viability only at ≥512 µg/mL. These findings represent the first mechanistic evaluation of commercial ZnO NPs against Xoo, together with cytotoxicity assessment in mammalian cells, highlighting their structural distinctness and dual functionality that combine potent antibacterial activity with minimal mammalian cytotoxicity. Overall, the results underscore their potential as safe nanobiocontrol agents for sustainable rice disease management.
Full article
(This article belongs to the Topic Nano-Enabled Innovations in Agriculture)
►▼
Show Figures

Figure 1
Open AccessArticle
Upscaled, Industrial In-Line Monitoring of Nanoparticle Synthesis by Turbidity Measurement and Transferable Chemometric Modeling
by
James Bolton, Susana Gomez, Alessandro Nardecchia, Eva M. Torres and Laura Rodriguez-Turienzo
Appl. Nano 2025, 6(4), 25; https://doi.org/10.3390/applnano6040025 - 10 Nov 2025
Abstract
►▼
Show Figures
An industrial system, based on a probe for turbidity measurement and a model, has been developed and tested for the in-line monitoring of nanoparticle synthesis reactions, thus providing information on the reaction progress and particle size. Real-time turbidity measurements, reliably indicating the reaction
[...] Read more.
An industrial system, based on a probe for turbidity measurement and a model, has been developed and tested for the in-line monitoring of nanoparticle synthesis reactions, thus providing information on the reaction progress and particle size. Real-time turbidity measurements, reliably indicating the reaction end and allowing run-time variations to be detected, were obtained for three silica nanoparticle syntheses. The system, initially built for a research laboratory reactor of 6 L, was successfully upscaled to an industrial 160 L reactor, simply by adapting the probe’s mounting components. In a further upscaling process, transferability of the model from the smaller to the larger reactor, giving accurate particle size predictions, was achieved. In addition, a combined model, developed from the first two reactions, predicted the particle size in the third reaction without first needing to obtain any data for the model from this reaction. The combined model’s predictions showed an average relative error of 18% with respect to the measured particle size. The probe was resistant to harsh reaction conditions at a temperature of 90 °C with concentrated acids, making the system potentially useful in industrial nanoparticle production.
Full article

Figure 1
Open AccessEditorial
Applied Nano—Five Years of Growth and Challenges
by
Angelo Taglietti
Appl. Nano 2025, 6(4), 24; https://doi.org/10.3390/applnano6040024 - 31 Oct 2025
Abstract
When I was first invited to lead the Editorial Board of Applied Nano in 2020, one question immediately came to mind: Do we really need another nano-journal [...]
Full article
Open AccessArticle
Hyperfine Coupling Constants of Photoinduced Axial Symmetry NV Centers in a 6H Silicon Carbide: DFT and High-Field ENDOR Spectroscopy Study
by
Yuliya Ermakova, Ekaterina Dmitrieva, Irina Gracheva, Darya Shurtakova, Margarita Sadovnikova, Fadis Murzakhanov, Georgy Mamin, Sergey Nagalyuk, Evgeny Mokhov and Marat Gafurov
Appl. Nano 2025, 6(4), 23; https://doi.org/10.3390/applnano6040023 - 31 Oct 2025
Abstract
►▼
Show Figures
Solid-state spin centers are at the forefront of developing advanced quantum technologies, engaging in applications of sensing, communication and computing. A semiconductor host matrix compatible with existing silicon technology provides a robust platform for holding spin defects and an opportunity for external manipulation.
[...] Read more.
Solid-state spin centers are at the forefront of developing advanced quantum technologies, engaging in applications of sensing, communication and computing. A semiconductor host matrix compatible with existing silicon technology provides a robust platform for holding spin defects and an opportunity for external manipulation. In this article, negatively charged nitrogen-vacancy (NV) centers in the hexagonal hh position in a 6H polytype silicon carbide crystal was studied using high-frequency (94 GHz) electron paramagnetic (EPR) and electron nuclear double resonances (ENDOR) spectroscopy. Experimentally determined values of hyperfine and quadrupole interactions of 14N were compared with the values obtained for the centers in NVk2k1 positions. The distribution of spin density of the defect within a supercell of the SiC crystal lattice was calculated using the density functional theory approach. The theoretical estimation of electron-nuclear interaction constants turned out to be in close agreement with the experimental values, which allows us to refine the microscopic model of a point defect. The temperature dependence of the spin Hamiltonian values (δA/δT ≅ 180 Hz/K) was studied with the possibility of observing the 14N NMR signal at room temperature. The fundamental knowledge gained about interactions’ parameters’ behavior lays the foundation for the creation of promising quantum platforms.
Full article

Figure 1
Open AccessArticle
Influence of pH and Temperature on the Synthesis and Stability of Biologically Synthesized AgNPs
by
Oksana Velgosova, Lívia Mačák, Maksym Lisnichuk and Peter Varga
Appl. Nano 2025, 6(4), 22; https://doi.org/10.3390/applnano6040022 - 10 Oct 2025
Abstract
The synthesis of silver nanoparticles (AgNPs) using sustainable and non-toxic methods has become an important research focus due to the limitations of conventional chemical approaches, which often involve hazardous reagents and produce unstable products. In particular, the effects of reaction conditions on the
[...] Read more.
The synthesis of silver nanoparticles (AgNPs) using sustainable and non-toxic methods has become an important research focus due to the limitations of conventional chemical approaches, which often involve hazardous reagents and produce unstable products. In particular, the effects of reaction conditions on the quality and stability of AgNPs obtained via green synthesis remain insufficiently understood. This study addresses this gap by examining the influence of pH and temperature on the synthesis of AgNPs using Rosmarinus officinalis extract as both reducing and stabilizing agents. UV-vis spectroscopy and TEM analysis revealed that optimal conditions for producing uniform, stable, and spherical AgNPs were achieved at pH 8, with a narrow size distribution (~17.5 nm). At extreme pH values (≤3 or ≥13), nanoparticle formation was hindered by aggregation or precipitation, while elevated temperatures mainly accelerated reaction without altering particle morphology. HRTEM and SAED confirmed the crystalline face-centered cubic structure, and colloids synthesized at pH 8 showed excellent stability over 30 days. Overall, the results demonstrate that precise pH control is critical for obtaining high-quality AgNPs via a simple, scalable, and environmentally friendly approach. Their stability and homogeneous size highlight potential applications in biomedicine, food packaging, and sensing, where reproducibility and long-term functionality are essential.
Full article
(This article belongs to the Collection Feature Papers for Applied Nano)
►▼
Show Figures

Graphical abstract
Open AccessReview
Food Safety Promotion via Nanotechnology: An Argumentative Review on Nano-Sanitizers
by
Lok R. Pokhrel, Caroline A. Knowles and Pradnya T. Akula
Appl. Nano 2025, 6(4), 21; https://doi.org/10.3390/applnano6040021 - 1 Oct 2025
Abstract
Nano-sanitizers, which exploit the unique physicochemical properties of nanomaterials, are being increasingly investigated as innovative tools to promote food safety. In this argumentative review, we compare and contrast nano-sanitizers with conventional sanitation methods by examining their underlying antimicrobial mechanisms, multifaceted benefits, inherent challenges,
[...] Read more.
Nano-sanitizers, which exploit the unique physicochemical properties of nanomaterials, are being increasingly investigated as innovative tools to promote food safety. In this argumentative review, we compare and contrast nano-sanitizers with conventional sanitation methods by examining their underlying antimicrobial mechanisms, multifaceted benefits, inherent challenges, and wide-ranging public health implications. We evaluate regulatory conundrums and consumer perspectives alongside future outlooks for integration with advanced technologies such as artificial intelligence. Through selective synthesis of the published literature, our argumentative discussion demonstrates that nano-sanitizers not only promise superior performance in pathogen inactivation but could also contribute to overall food system sustainability, provided safety and regulatory concerns are adequately addressed.
Full article
(This article belongs to the Topic Nano-Enabled Innovations in Agriculture)
►▼
Show Figures

Figure 1
Open AccessArticle
Multi-Walled Carbon Nanotube Application Alters Stomatal Behavior in Boreal Shrubs Under Drought Conditions
by
Sahari Inoue, Binyam Tedla, Jean-Marie Sobze and Raymond Thomas
Appl. Nano 2025, 6(4), 20; https://doi.org/10.3390/applnano6040020 - 28 Sep 2025
Abstract
►▼
Show Figures
Seedling establishment on reclaimed boreal sites is frequently constrained by drought and other abiotic stresses. Carbon nanomaterials have been shown to influence stress physiology in crops, but their effects on native boreal species are poorly understood. We tested whether carboxylic acid-functionalized multi-walled carbon
[...] Read more.
Seedling establishment on reclaimed boreal sites is frequently constrained by drought and other abiotic stresses. Carbon nanomaterials have been shown to influence stress physiology in crops, but their effects on native boreal species are poorly understood. We tested whether carboxylic acid-functionalized multi-walled carbon nanotubes (MWCNTs) alter drought responses in three shrubs widely used in reclamation: Shepherdia canadensis (L.) Nutt, Cornus sericea L., and Viburnum edule. Seedlings received two irrigations with MWCNTs suspensions (0 (control), 10, or 30 mg L−1) before exposure to well-watered or drought conditions in a greenhouse. Drought reduced photosynthesis, stomatal conductance, and transpiration and increased Ci/Ca across species, consistent with declining leaf water potential. MWCNTs did not broadly modify these responses, but the highest concentration (30 mg L−1) further suppressed stomatal conductance in C. sericea and V. edule during mid- to late drought. S. canadensis showed little responsiveness. These effects suggest that MWCNT-associated stomatal closure may limit water loss under stress but also constrain CO2 uptake, offering no clear photosynthetic benefit. MWCNT impacts were subtle, species- and dose-dependent, and centered on stomatal regulation. Application in reclamation should therefore be approached cautiously, balancing potential water-saving benefits against possible reductions in carbon assimilation and growth.
Full article

Figure 1
Open AccessArticle
Structure–Optical Properties and Sustainability Assessment of Carbon Dots Derived from Laurus nobilis Leaves
by
Valeria De Matteis, Cristina Baglivo, Silvia Tamborino, Mariafrancesca Cascione, Marco Anni, Paolo Vitali, Giuseppe Negro, Mariaenrica Frigione, Paolo Maria Congedo and Rosaria Rinaldi
Appl. Nano 2025, 6(3), 19; https://doi.org/10.3390/applnano6030019 - 2 Sep 2025
Abstract
Carbon dots (CDs) derived from renewable biomass are emerging as sustainable alternatives to traditional nanomaterials for applications in bioimaging, sensing, and photonics. In this study, we reported a one-step synthesis of photoluminescent CDs from Laurus nobilis leaves particularly spread in the Mediterranean area.
[...] Read more.
Carbon dots (CDs) derived from renewable biomass are emerging as sustainable alternatives to traditional nanomaterials for applications in bioimaging, sensing, and photonics. In this study, we reported a one-step synthesis of photoluminescent CDs from Laurus nobilis leaves particularly spread in the Mediterranean area. The resulting nanoparticles (NPs) exhibited average diameters of 3–5 nm and high colloidal stability in water. Structural analysis by X-Rays Diffraction revealed the presence of amorphous graphitic domains, while infrared spectroscopy confirmed oxygenated functional groups on the CD surface. Spectrofluorimetric analysis showed excitation-dependent blue–green emission with a maximum at 490 nm that can be applied also as label agents for cells. The environmental sustainability of the synthetic procedure was evaluated through a Life Cycle Assessment (LCA), highlighting that the current impacts were primarily associated with electricity consumption, due to the laboratory-scale nature of the process. These impacts are expected to decrease significantly with future scale-up and process optimization.
Full article
(This article belongs to the Special Issue Biocompatible Functional Nanostructures for Nanomedicine, Environmental and Energy Applications)
►▼
Show Figures

Figure 1
Open AccessReview
Usefulness of Nanoparticles in the Fight Against Esophageal Cancer: A Comprehensive Review of Their Therapeutic Potential
by
Gabriel Tchuente Kamsu and Eugene Jamot Ndebia
Appl. Nano 2025, 6(3), 18; https://doi.org/10.3390/applnano6030018 - 1 Sep 2025
Abstract
Esophageal squamous cell carcinoma (ESCC) accounts for the majority of esophageal cancers worldwide, with a poor prognosis and increasing resistance to conventional treatments. Faced with these limitations, nanoparticles (NPs) are attracting growing interest as innovative therapeutic agents capable of improving specificity and efficacy
[...] Read more.
Esophageal squamous cell carcinoma (ESCC) accounts for the majority of esophageal cancers worldwide, with a poor prognosis and increasing resistance to conventional treatments. Faced with these limitations, nanoparticles (NPs) are attracting growing interest as innovative therapeutic agents capable of improving specificity and efficacy and reducing systemic toxicity. This study critically examines the pharmacological effects, mechanisms of action, and toxicity profiles of different metallic or organic nanoparticles tested on ESCC cell lines. Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 guidelines were followed by a meticulous literature search of Google Scholar, Web of Science, PubMed/Medline, and Scopus databases to achieve this goal. The results show that the anti-tumor properties vary according to the type of nanoparticle (copper(II) oxide (CuO), silver (Ag), gold (Au), nickel(II) oxide (NiO), nano-curcumin, etc.), the synthesis method (chemical vs. green), and the biological activity assessment method (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Bromodeoxyuridine (BrdU), Cell Counting Kit-8 (CCK8) assays, etc.). NPs derived from green synthesis, such as those based on Moringa oleifera, Photinia glabra, or pomegranate bark, exhibit moderate cytotoxic activity (50% inhibitory concentration (IC50) between 92 and 500 µg/mL) but show good tolerance on normal cells. In contrast, chemically synthesized NPs, such as Cu(II) complexes with 1,3,5-benzenetricarboxylic acid (H3btc) or 1,2,4-triazole (Htrz), show lower IC50 (34–86 µM), indicating more marked cytotoxicity towards cancer cells, although data on their toxicity are sometimes lacking. In addition, multifunctional nanoparticles, such as gold-based nano-conjugates targeting Cluster of Differentiation 271 (CD271) or systems combined with doxorubicin, show remarkable activity with IC50 below 3 µM and enhanced tumor selectivity, positioning them among the most promising candidates for future clinical application against ESCC. The most frequently observed mechanisms of action include induction of apoptosis (↑caspases, ↑p53, ↓Bcl-2), oxidative stress, and inhibition of proliferation. In conclusion, this work identifies several promising nanoparticles (silver nanoparticles derived from Photinia glabra (PG), gold-based nano-immunoconjugates targeting CD271, and silver–doxorubicin complexes) for future pharmaceutical exploitation against ESCC. However, major limitations remain, such as the lack of methodological standardization, insufficient in vivo and clinical studies, and poor industrial transposability. Future prospects include the development of multifunctional nanocomposites, the integration of biomarkers for personalized targeting, and long-term toxicological assessment.
Full article
(This article belongs to the Collection Review Papers for Applied Nano Science and Technology)
►▼
Show Figures

Figure 1
Open AccessArticle
Modulating Photodissociation and Photobleaching via Plasmon Resonance to Enhance Light-Induced Nitric Oxide Release
by
Danil V. Shershnev, Natalia A. Virts, Igor A. Gladskikh, Pavel V. Geydt, Mikhail A. Panfilov, Alexey Yu. Vorob’ev and Alexander E. Moskalensky
Appl. Nano 2025, 6(3), 17; https://doi.org/10.3390/applnano6030017 - 1 Sep 2025
Abstract
Localized therapeutic action and targeted drug release offer compelling advantages over traditional systemic drug administration. This is particularly important for nitric oxide (NO), whose biological effects vary greatly depending on concentration and cellular environment. Light-sensitive NO donors are promising for achieving precise, on-demand
[...] Read more.
Localized therapeutic action and targeted drug release offer compelling advantages over traditional systemic drug administration. This is particularly important for nitric oxide (NO), whose biological effects vary greatly depending on concentration and cellular environment. Light-sensitive NO donors are promising for achieving precise, on-demand NO release. However, their efficiency and photostability are limited by competing photophysical processes and the generation of reactive oxygen species (ROS). In this study, we investigate hybrid systems composed of photosensitive nitric oxide (NO) donors and silver island films (SIFs). The influence of localized surface plasmon on non-radiative relaxation pathways and ROS generation is the main focus of the paper. Upon excitation at 500 nm, we observed several-fold increase in NO release, attributed to resonant interactions between the plasmonic field and the dye molecules. By tuning the thickness of a SiO2 buffer layer, we identified key parameters affecting process efficiency: the spectral overlap between the plasmon resonance and the sensitizer’s absorption band, and the distance between the nanoparticle and the molecule. Additionally, singlet oxygen generation increase was observed. These findings demonstrate the potential of plasmonic enhancement to controllably boost photochemical activity in organic systems, paving the way for advanced applications in phototherapy and biomedical diagnostics.
Full article
(This article belongs to the Collection Feature Papers for Applied Nano)
►▼
Show Figures

Figure 1
Open AccessArticle
Electroless Nickel Plating of Magnesium Particles for Hydrogen Storage
by
Sindy Bello, Robinson Aguirre Ocampo, Julián Arias Velandia, Alejandro Zuleta Gil, Esteban Correa, Wilber Silva, Julián Andrés Lenis Rodas, Carlos Arrieta, Francisco Bolívar, Cesar Nieto and Félix Echeverria
Appl. Nano 2025, 6(3), 16; https://doi.org/10.3390/applnano6030016 - 20 Aug 2025
Abstract
►▼
Show Figures
Hydrogen is emerging as a key energy vector for the transition toward renewable and sustainable energy sources. However, its safe and efficient storage remains a significant technical challenge in terms of cost, safety, and performance. In this study, we aimed to address the
[...] Read more.
Hydrogen is emerging as a key energy vector for the transition toward renewable and sustainable energy sources. However, its safe and efficient storage remains a significant technical challenge in terms of cost, safety, and performance. In this study, we aimed to address the kinetic limitations of Mg by synthesizing catalyzed Mg@Ni systems using commercially available micrometric magnesium particles (~26 µm), which were decorated via electroless nickel plating under both aqueous and anhydrous conditions. Morphological and compositional characterization was carried out using SEM, EDS, and XRD. The resulting materials were evaluated through Temperature-Programmed Desorption (TPD), DSC, and isothermal hydrogen absorption/desorption kinetics. Reversibility over multiple absorption–desorption cycles was also investigated. The synthesized Mg@NiB system shows a reduction of 37 °C in the hydrogen release activation temperature at atmospheric pressure and a decrease of 167.3 °C under high vacuum conditions (4.5 × 10−7 MPa), in addition to a reversible hydrogen absorption/desorption capacity of 3.5 ± 0.09 wt.%. Additionally, the apparent activation energy for hydrogen desorption was lower (161.7 ± 21.7 kJ/mol) than that of hydrogenated commercial pure magnesium and was comparable to that of milling MgH2 systems. This research is expected to contribute to the development of efficient and low-cost processing routes for large-scale Mg catalysis.
Full article

Figure 1
Open AccessArticle
Effects of Graphene Quantum Dots on Thermal Properties of Epoxy Using Molecular Dynamics
by
Swapnil S. Bamane and Ozgur Keles
Appl. Nano 2025, 6(3), 15; https://doi.org/10.3390/applnano6030015 - 20 Aug 2025
Abstract
Polymer matrix composites (PMCs) are crucial for their applications in aerospace, electronics, defense, and structural materials. PMCs reinforced with nanofillers offer substantial potential for enhanced thermal and mechanical performance. Although there have been significant developments in nanofiller-based high-performance composites involving graphene, carbon nanotubes,
[...] Read more.
Polymer matrix composites (PMCs) are crucial for their applications in aerospace, electronics, defense, and structural materials. PMCs reinforced with nanofillers offer substantial potential for enhanced thermal and mechanical performance. Although there have been significant developments in nanofiller-based high-performance composites involving graphene, carbon nanotubes, and metal oxides, the smallest of all the fillers, the graphene quantum dot (GQD), has not been explored thoroughly. The objective of this study is to investigate the effects of GQDs on the thermal properties of epoxy nanocomposites using all-atom molecular dynamics (MD) simulations. Specifically, the influence of GQDs on the glass transition temperature (Tg) and coefficient of linear thermal expansion (CTE) of the bisphenol F epoxy is evaluated. Further, the effects of surface functionalization and edge functionalization of GQDs are analyzed. Results demonstrate that the inclusion of functionalized GQDs leads to a 16% improvement in Tg, attributed to enhanced interfacial interactions and restricted molecular mobility in the epoxy network. MD simulations reveal that functional groups on GQDs form strong physical and chemical interactions with the polymer matrix, effectively altering its dynamics at the Tg. These results provide key molecular-level insights into the design of the next generation of thermally stable epoxy nanocomposites for high-performance applications in aerospace and defense.
Full article
(This article belongs to the Topic Future Trends in Polymer Science: Materials, Design, and Advanced Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Amino Acid Selection Altered Silver Nanoparticles Morphology and Formation of Silver Oxide Layers
by
Şuheda Bolat, Zafer Sancak, Abdurrahman Gümüş and Idris Yazgan
Appl. Nano 2025, 6(3), 14; https://doi.org/10.3390/applnano6030014 - 13 Aug 2025
Abstract
►▼
Show Figures
Amino acids are not just monomers of proteins, but they can also carry biological functions. L-cysteine (Cys), L-proline (Pro), L-asparagine (Asn), and L-glutamic acid (Glu) were used to evaluate how different amino acid chemistries alter the morphology and size of the silver nanoparticles
[...] Read more.
Amino acids are not just monomers of proteins, but they can also carry biological functions. L-cysteine (Cys), L-proline (Pro), L-asparagine (Asn), and L-glutamic acid (Glu) were used to evaluate how different amino acid chemistries alter the morphology and size of the silver nanoparticles (AgNPs) synthesized in the presence of two carbohydrate ligands, which were lactose methoxyaniline (LMA) and galactose 5-aminosalicylic acid (G5AS). UV–vis, infrared (IR), High-Resolution Transmission Electron Microscopy (HR-TEM) and X-ray diffraction (XRD) characterizations revealed that the effect of amino acids on the characteristics of the AgNPs showed dependence on the carbohydrate ligand chemistry. In the case of LMA, AgNPs shifted from aggregates to anisotropic nanoparticles, larger aggregates, and a mixture of anisotropic and 1D nanoparticles in the presence of Cys, Glu, Asn and Pro amino acids, respectively. In contrast to this, the introduction of Cys and Asn caused the formation of cluster-like AgNPs and larger rounded nanoparticles, while G5AS-synthesized AgNPs were multigonal 0D particles. Moreover, Glu and Pro contributed the resistance of silver oxide formation on the particles. Antibacterial characterization showed that LMA_Glu_AgNPs were the most effective ones, while LMA_Cys_AgNPs and G5AS_Cys_AgNPs, which were the smallest AgNPs, did not show any significant antibacterial activity.
Full article

Figure 1
Open AccessReview
Super-Resolution Microscopy in the Structural Analysis and Assembly Dynamics of HIV
by
Aiden Jurcenko, Olesia Gololobova and Kenneth W. Witwer
Appl. Nano 2025, 6(3), 13; https://doi.org/10.3390/applnano6030013 - 31 Jul 2025
Abstract
Super-resolution microscopy (SRM) has revolutionized our understanding of subcellular structures, including cell organelles and viruses. For human immunodeficiency virus (HIV), SRM has significantly advanced knowledge of viral structural biology and assembly dynamics. This review analyzes how SRM techniques (particularly PALM, STORM, STED, and
[...] Read more.
Super-resolution microscopy (SRM) has revolutionized our understanding of subcellular structures, including cell organelles and viruses. For human immunodeficiency virus (HIV), SRM has significantly advanced knowledge of viral structural biology and assembly dynamics. This review analyzes how SRM techniques (particularly PALM, STORM, STED, and SIM) have been applied over the past decade to study HIV structural components and assembly. By categorizing and comparing studies based on SRM methods, HIV components, and labeling strategies, we assess the strengths and limitations of each approach. Our analysis shows that PALM is most commonly used for live-cell imaging of HIV Gag, while STED is primarily used to study the viral envelope (Env). STORM and SIM have been applied to visualize various components, including Env, capsid, and matrix. Antibody labeling is prevalent in PALM and STORM studies, targeting Env and capsid, whereas fluorescent protein labeling is mainly associated with PALM and focused on Gag. A recent emphasis on Gag and Env points to deeper investigation into HIV assembly and viral membrane dynamics. Insights from SRM studies of HIV not only enhance virological understanding but also inform future research in therapeutic strategies and delivery systems, including extracellular vesicles.
Full article
(This article belongs to the Collection Review Papers for Applied Nano Science and Technology)
►▼
Show Figures

Figure 1
Open AccessArticle
Effect of Vacancy Defect on Mechanical Properties of Single Wall Carbon Nanotube
by
Nachiket S. Makh and Ajit D. Kelkar
Appl. Nano 2025, 6(3), 12; https://doi.org/10.3390/applnano6030012 - 27 Jun 2025
Abstract
Carbon nanotubes (CNTs) are cylindrical nanostructures formed by rolling a graphene sheet—a hexagonal lattice of carbon atoms—into a tube. Based on the rolling direction, CNTs are categorized as armchair, zigzag, or chiral. The chiral vector, derived from the graphene lattice, defines the CNT’s
[...] Read more.
Carbon nanotubes (CNTs) are cylindrical nanostructures formed by rolling a graphene sheet—a hexagonal lattice of carbon atoms—into a tube. Based on the rolling direction, CNTs are categorized as armchair, zigzag, or chiral. The chiral vector, derived from the graphene lattice, defines the CNT’s structure, with chiral CNTs denoted by indices (n, m), where m > 0 and m ≠ n. The mechanical properties and structural stability of CNTs are highly sensitive to defects and impurities within their atomic framework. Among these, point defects such as single-atom vacancies are the most prevalent and can significantly degrade mechanical performance. These defects alter stress distribution, reduce stiffness, and impair strength, thereby limiting the functional reliability of CNTs in advanced applications such as nanocomposites, sensors, and electronic devices. This study examines the influence of vacancy defects on CNT mechanical behavior through a multiscale modeling framework. Molecular dynamics (MD) simulations are conducted using LAMMPS, with structural visualization via Visual Molecular Dynamics (VMD). Concurrently, a finite element (FE) model is developed in ANSYS, where the CNT is idealized as a space frame of elastic beam elements representing carbon–carbon bonds. The integration of atomistic and continuum approaches offers a comprehensive understanding of defect-induced mechanical degradation. The MD and FEM results are in strong agreement with findings in existing literature, validating the adopted methodology. These findings contribute valuable insights into the design and optimization of CNT-based materials for high-performance engineering applications.
Full article
(This article belongs to the Collection Feature Papers for Applied Nano)
►▼
Show Figures

Figure 1
Open AccessArticle
Exploring the Electrochemical Signatures of Heavy Metals on Synthetic Melanin Nanoparticle-Coated Electrodes: Synthesis and Characterization
by
Mohamed Hefny, Rasha Gh. Orabi, Medhat M. Kamel, Haitham Kalil, Mekki Bayachou and Nasser Y. Mostafa
Appl. Nano 2025, 6(3), 11; https://doi.org/10.3390/applnano6030011 - 23 Jun 2025
Abstract
►▼
Show Figures
This study investigates the development and sensing profile of synthetic melanin nanoparticle-coated electrodes for the electrochemical detection of heavy metals, including lead (Pb), cadmium (Cd), cobalt (Co), zinc (Zn), nickel (Ni), and iron (Fe). Synthetic melanin films were prepared in situ by the
[...] Read more.
This study investigates the development and sensing profile of synthetic melanin nanoparticle-coated electrodes for the electrochemical detection of heavy metals, including lead (Pb), cadmium (Cd), cobalt (Co), zinc (Zn), nickel (Ni), and iron (Fe). Synthetic melanin films were prepared in situ by the deacetylation of diacetoxy indole (DAI) to dihydroxy indole (DHI), followed by the deposition of DHI monomers onto indium tin oxide (ITO) and glassy carbon electrodes (GCE) using cyclic voltammetry (CV), forming a thin layer of synthetic melanin film. The deposition process was characterized by electrochemical quartz crystal microbalance (EQCM) in combination with linear sweep voltammetry (LSV) and amperometry to determine the mass and thickness of the deposited film. Surface morphology and elemental composition were examined using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). In contrast, Fourier-transform infrared (FTIR) and UV–Vis spectroscopy confirmed the melanin’s chemical structure and its polyphenolic functional groups. Differential pulse voltammetry (DPV) and amperometry were employed to evaluate the melanin films’ electrochemical activity and sensitivity for detecting heavy metal ions. Reproducibility and repeatability were rigorously assessed, showing consistent electrochemical performance across multiple electrodes and trials. A comparative analysis of ITO, GCE, and graphite electrodes was conducted to identify the most suitable substrate for melanin film preparation, focusing on stability, electrochemical response, and metal ion sensing efficiency. Finally, the applicability of melanin-coated electrodes was tested on in-house heavy metal water samples, exploring their potential for practical environmental monitoring of toxic heavy metals. The findings highlight synthetic melanin-coated electrodes as a promising platform for sensitive and reliable detection of iron with a sensitivity of 106 nA/ppm and a limit of quantification as low as 1 ppm.
Full article

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Applied Nano, C, Materials, Nanomaterials, Polymers
Advances in Carbon-Based Materials
Topic Editors: Giovanni Spinelli, Vittorio RomanoDeadline: 31 December 2025
Topic in
Applied Nano, Nanomaterials, Plants, Sustainability, Agriculture
Nano-Enabled Innovations in Agriculture
Topic Editors: Heyou Han, João Rodrigues, Mohamed F. Foda, Lok. R. PokhrelDeadline: 28 February 2026
Topic in
Applied Nano, Catalysts, Materials, Nanomaterials, Polymers, Molecules
Application of Nanomaterials in Environmental Analysis
Topic Editors: Yonggang Zhao, Yun ZhangDeadline: 13 April 2026
Topic in
Applied Nano, Biosensors, Materials, Nanomaterials, Chemosensors, Applied Biosciences, Laboratories
Applications of Nanomaterials in Biosensing: Current Trends and Future Prospects
Topic Editors: Kundan Sivashanmugan, Xianming KongDeadline: 30 April 2026
Conferences
Special Issues
Special Issue in
Applied Nano
Biocompatible Functional Nanostructures for Nanomedicine, Environmental and Energy Applications
Guest Editor: Valeria De MatteisDeadline: 20 February 2026
Topical Collections
Topical Collection in
Applied Nano
Feature Papers for Applied Nano
Collection Editor: Angelo Taglietti
Topical Collection in
Applied Nano
Review Papers for Applied Nano Science and Technology
Collection Editor: Johann Michael Köhler




