Sustainable Uses and Applications of By-Products of the Food Industry

A special issue of Foods (ISSN 2304-8158). This special issue belongs to the section "Food Security and Sustainability".

Deadline for manuscript submissions: 15 March 2026 | Viewed by 10757

Special Issue Editors


E-Mail Website
Guest Editor
Laboratory of Food Chemistry, Section of Industrial Chemistry and Food Chemistry, Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece
Interests: food science and technology; food composition and analysis; bioactive compounds; utilization of by-products; antioxidants; functional foods

E-Mail Website
Guest Editor
Department of Dairy Research, Institute of Technology of Agricultural Products, Hellenic Agricultural Organization “DIMITRA”, Ethnikis Antistaseos 3, 45221 Ioannina, Greece
Interests: dairy technology; dairy microbiology; probiotics; fermented food technology; fermentation processes and bioprocesses
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

A significant number of by-products from the food processing industry are generated worldwide every day. Most of them are disposed of in landfills, potentially damaging the environment and simultaneously causing economic losses. Food by-products are rich in bioactive compounds, including polyphenols, carotenoids, phytosterols, fatty acids, aromatic compounds, dietary fiber, proteins, lipids, vitamins, organic acids, and minerals. These ingredients could have several potential applications, namely in food, health, pharmaceutical, cosmetic, and environmental fields. For instance, dairy, fruit and vegetable by-products containing high amounts of proteins and fibrous materials can produce biopolymers applied as value-added functional packaging films and coatings. The potential uses of all these products present affordable alternatives for creating a circular economy, reducing environmental pollution, and enabling sustainable green development.

This Special Issue of Foods is dedicated to original research and review articles that cover the latest findings discussing the diverse applications and innovative utilization of food by-products. It will also cover topics related to biotechnological approaches for converting them into value-added products, applications in functional foods and nutraceuticals, and potential applications and uses of the most important compounds found in them, with a particular focus on the food and pharmaceutical industries and the environment.

Dr. Vassiliki G. Kontogianni
Dr. Loulouda Bosnea
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Foods is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • food by-products
  • sustainability
  • bioactive compounds
  • functional foods
  • value-added products
  • alternative food products
  • biodegradable food packaging

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 1239 KB  
Article
Novel Insights into Torrefacto and Natural Coffee Silverskin: Composition, Bioactivity, Safety, and Environmental Impact for Sustainable Food Applications
by Ernesto Quagliata, Silvina Gazzara, Cecilia Dauber, Analía Rodríguez, Luis Panizzolo, Bruno Irigaray, Adriana Gámbaro, José A. Mendiola, Ignacio Vieitez and María Dolores del Castillo
Foods 2025, 14(19), 3388; https://doi.org/10.3390/foods14193388 - 30 Sep 2025
Viewed by 684
Abstract
Coffee silverskin (CS), the principal solid by-product from coffee roasting, is a promising raw material for sustainable food applications aligned with circular economy principles. Due to its high flammability at roasting temperatures, effective management of CS is not only an environmental but also [...] Read more.
Coffee silverskin (CS), the principal solid by-product from coffee roasting, is a promising raw material for sustainable food applications aligned with circular economy principles. Due to its high flammability at roasting temperatures, effective management of CS is not only an environmental but also a safety concern in coffee processing facilities. To the best of our knowledge, this is the first study evaluating the chemical composition, bioactivity, safety, and environmental impact of torrefacto (CT) and natural (CN) coffee silverskin. CT (from Arabica–Robusta blends subjected to sugar-glazing) and CN (from 100% Arabica) were characterized in terms of composition and function. Oven-dried CT showed higher levels of caffeine (13.2 ± 0.6 mg/g vs. 8.7 ± 0.7 mg/g for CN), chlorogenic acid (1.34 ± 0.08 mg/g vs. 0.92 ± 0.06 mg/g), protein (18.1 ± 0.2% vs. 16.7 ± 0.2%), and melanoidins (14.9 ± 0.3 mg/g vs. 9.6 ± 0.2 mg/g), but CN yielded more total phenolics (13.8 ± 0.6 mg GAE/g). Both types exhibited strong antioxidant capacity (ABTS: 48.9–59.2 µmol TE/g), and all oven-dried samples met food safety criteria (microbial loads below 102 CFU/g, moisture 7.9%). Oven drying was identified as the most industrially viable, ensuring preservation of bioactives and resulting in a 19% lower greenhouse gas emissions impact compared to freeze-drying. Sun drying was less reliable microbiologically. The valorization of oven-dried CT as a clean-label, antioxidant-rich colorant offers clear potential for food reformulation and waste reduction. Renewable energy use during drying is recommended to further enhance sustainability. This study provides scientific evidence to support the safe use of coffee silverskin as a novel food, contributing to regulatory assessment and sustainable food innovation aligned with SDGs 9, 12, and 13. Full article
(This article belongs to the Special Issue Sustainable Uses and Applications of By-Products of the Food Industry)
Show Figures

Graphical abstract

13 pages, 621 KB  
Article
Anti-Protozoal Activity of Hops Essential Oil and Myrcene Against Cryptosporidium Parvum in Cell Culture
by Danielle F. Aycart, Astrid Domínguez-Uscanga, William H. Witola and Juan E. Andrade Laborde
Foods 2025, 14(19), 3352; https://doi.org/10.3390/foods14193352 - 27 Sep 2025
Viewed by 347
Abstract
Hops essential oil (HEO), a by-product of the brewing industry, has known antibacterial and antifungal properties, but its antiparasitic effects remain underexplored. This study evaluated the cytotoxicity of HEO and its predominant monoterpene, myrcene, in intestinal cells and assessed their ability to reduce [...] Read more.
Hops essential oil (HEO), a by-product of the brewing industry, has known antibacterial and antifungal properties, but its antiparasitic effects remain underexplored. This study evaluated the cytotoxicity of HEO and its predominant monoterpene, myrcene, in intestinal cells and assessed their ability to reduce Cryptosporidium parvum infection in vitro. The cytotoxicity (IC50) of HEO and myrcene was determined in HCT-8 intestinal cells using flow cytometry and propidium iodide staining after 24 and 48 h of exposure. The anti-Cryptosporidium activity of HEO and myrcene was assessed by infecting confluent HCT-8 cells with C. parvum sporozoites (1 × 104 sporozoites/mL) and treating them with bioactives below their IC50 values. Two treatment modalities were tested: (1) immediate treatment during infection (invasion) and (2) treatment initiated 2 h after infection (growth). Parasite growth was quantified using an immunofluorescence assay with a fluorescence-conjugated anti-Cryptosporidium antibody. HEO exhibited low cytotoxicity (IC50 = 382.7 µg/mL), while myrcene showed higher cytotoxicity (IC50 = 240.6 µg/mL). HEO reduced C. parvum growth in a dose-dependent manner, with IC50 values of 45.8 and 58.7 µg/mL under either modality, respectively. Myrcene alone demonstrated greater anti-Cryptosporidium activity, with IC50 values lower under the invasion modality (17.7 µg/mL) than the growth modality (28.1 µg/mL) on average for both food-grade and analytical standards. HEO and myrcene exhibited significant in vitro anti-Cryptosporidium activity, highlighting their potential as novel therapeutic agents against cryptosporidiosis. Full article
(This article belongs to the Special Issue Sustainable Uses and Applications of By-Products of the Food Industry)
Show Figures

Figure 1

29 pages, 3441 KB  
Article
The Use of Whey Powder to Improve Bread Quality: A Sustainable Solution for Utilizing Dairy By-Products
by Diana Fluerasu (Bălțatu), Christine Neagu, Sylvestre Dossa, Monica Negrea, Călin Jianu, Adina Berbecea, Daniela Stoin, Dacian Lalescu, Diana Brezovan, Liliana Cseh, Mariana Suba, Cătălin Ianasi and Ersilia Alexa
Foods 2025, 14(16), 2911; https://doi.org/10.3390/foods14162911 - 21 Aug 2025
Viewed by 967
Abstract
This paper aims to study the potential of whey, a by-product in the dairy industry, to be used as a sustainable and health-promoting ingredient in baking. In this regard, whey powder (WhF) was produced and incorporated into three composite flours consisting of wheat [...] Read more.
This paper aims to study the potential of whey, a by-product in the dairy industry, to be used as a sustainable and health-promoting ingredient in baking. In this regard, whey powder (WhF) was produced and incorporated into three composite flours consisting of wheat flour and whey powder in proportions of 5% (WhWF5), 10% (WhWF10), and 15% (WhWF15). These composite flours were then used to produce bread. The nutritional properties (proximate composition, macro and microelement content) and bioactive compounds (total polyphenols and antioxidant activity) were assessed for both the composite flours and the resulting breads. In addition, the rheological behavior of the dough was evaluated using the Mixolab system, while the microstructural characteristics and physical properties of the composite flours were analyzed using Small/Wide Angle X-ray Scattering (SAXS/WAXS) and Fourier Transform Infrared Spectroscopy (FTIR). Sensory evaluation of the breads was also performed. The results demonstrated a positive effect of the whey powder addition on the nutritional profile of both composite flours and bakery products, particularly through increased protein levels (25.24–37.77% in fortified flours vs. 11.26% in control; 16.64–18.89% in fortified breads vs. 14.12% in control) and enhanced mineral content (11.27–80.45% higher compared to white wheat bread), alongside a reduction in carbohydrate content. Bread fortified with 15% whey powder showed higher monolement with increases of 27.80% for K, 7.01% for Mg, and 28.67% for Ca compared to control bread without whey. The analysis of the Mixolab charts confirmed the progressive influence of whey powder on dough rheology. While water absorption remains high, other functional parameters, such as gluten quality, kneading capacity, and starch viscosity, were negatively affected. Nonetheless, the nutritional advantages and reduced retrogradation tendency may offset these drawbacks in the context of developing functional bakery products. Formulations containing 5–10% whey powder appear to offer an optimal balance between technological performance, nutritional quality, and sensory acceptance. Full article
(This article belongs to the Special Issue Sustainable Uses and Applications of By-Products of the Food Industry)
Show Figures

Figure 1

18 pages, 973 KB  
Article
Assessing the Potential of Brewer’s Spent Grain to Enhance Cookie Physicochemical and Nutritional Profiles
by Marisa Nicolai, Maria Lídia Palma, Ricardo Reis, Rúben Amaro, Jaime Fernandes, Elsa M. Gonçalves, Mafalda Silva, Manuela Lageiro, Adília Charmier, Elisabete Maurício, Patrícia Branco, Carla Palma, Joaquim Silva, Maria Cristiana Nunes, Pedro C. B. Fernandes and Paula Pereira
Foods 2025, 14(1), 95; https://doi.org/10.3390/foods14010095 - 2 Jan 2025
Cited by 3 | Viewed by 3266
Abstract
Brewers’ spent grain (BSG), the major by-product of the brewery industry, has high nutritional value, making it suitable for upcycling into products such as healthy, and sustainable cookies. Nonetheless, the incorporation of BSG in cookies can impact their quality, given the increased fiber [...] Read more.
Brewers’ spent grain (BSG), the major by-product of the brewery industry, has high nutritional value, making it suitable for upcycling into products such as healthy, and sustainable cookies. Nonetheless, the incorporation of BSG in cookies can impact their quality, given the increased fiber and protein content. This work explored the effect of replacing wheat flour with BSG at 50% and 75% in cookie formulations, focusing on physical, chemical, and sensory properties. The dietary fiber, lipid, and protein content of cookies improved considerably with the highest incorporation of BSG, increasing from 6.37% to 15.54%, 9.95% to 13.06%, and 9.59% to 12.29%, respectively. Conversely, moisture and water activity decreased from 11.03% to 3.37% and 0.742 to 0.506, respectively, forecasting a lower risk of microbial contamination and increased shelf-life. The incorporation of BSG in cookies resulted in decreased brightness and increased hardness, from 40 N to 97 N. Moreover, colorimetric shifts among the control cookies and the two BSG-rich formulations could be easily identified by an untrained observer. Sensory evaluation showed that cookies with 50% BSG retained acceptable sensory characteristics, suggesting potential for further development. Overall, BSG enhances the nutritional profile of cookies with no excessive detrimental impact on sensory features. Full article
(This article belongs to the Special Issue Sustainable Uses and Applications of By-Products of the Food Industry)
Show Figures

Figure 1

26 pages, 676 KB  
Article
Effect of Feed on the Growth Performance, Nutrition Content and Cost of Raising the Field Cricket (Gryllus madagascarensis) as a Sustainable Nutrient Source in Madagascar
by Henlay J. O. Magara, Sylvain Hugel and Brian L. Fisher
Foods 2024, 13(19), 3139; https://doi.org/10.3390/foods13193139 - 30 Sep 2024
Cited by 7 | Viewed by 2877
Abstract
The field cricket, Gryllus madagascarensis, is a sustainable and nutritious food resource that has the potential to mitigate global malnutrition. Feeds provided to this cricket can influence its growth parameters, nutritional content, and the cost of raising it for food. The current [...] Read more.
The field cricket, Gryllus madagascarensis, is a sustainable and nutritious food resource that has the potential to mitigate global malnutrition. Feeds provided to this cricket can influence its growth parameters, nutritional content, and the cost of raising it for food. The current study aimed to evaluate the effects of feeds formulated from weeds, agro-byproducts, and chicken feed (control) on the growth parameters and nutritional content of G. madagascarensis. The formulated feeds included CFB (25.0% protein), CFC (24.5% protein), CFD (24.0% protein), CFE (23.5% protein), CFF (22.5% protein), CFG (21.5% protein), CFH (20.0% protein), CFI (14.5% protein), and CFJ (13.5% protein), and chicken feed (CFA) (28% protein) was used as the control. The formulation of the feeds was based on the acceptability and protein content of the 12 selected weeds and agro-byproducts. Proximate, mineral, and fatty acid analyses were conducted to determine the nutrient content of each feed, as well as the crickets raised on these feeds. The fastest development time was recorded with CFE and CFC. The highest survivorship (98%) was observed in CFG, CFE, and CFC. The highest body mass (1.15 g) and body length (26.80 mm) were observed in crickets fed CFG. By comparison, crickets fed control feed averaged a body mass of 0.81 g and a body length of 23.55 mm. The feed conversion ratio for G. madagascarensis fed CFG, CFE, and CFC was 1.71. Crickets raised on CFH and CFG had the lowest cost of feeding per kg live mass gain. Crickets fed on CFF had the highest quantity of protein (67%), followed by those fed CFG (65% protein); crickets with the lowest protein content (50%) were fed CFJ. Crickets fed on CFG had the highest mineral content. Linoleic acid, oleic acid, and palmitic acid were the major fatty acids. The findings indicate that formulated feeds from weeds and agro-byproducts have great potential to be used as an alternative feed source for crickets for two reasons: their capacity to positively influence the biology and nutrition of the cricket, and they can serve as an inexpensive replacement for chicken feed. Full article
(This article belongs to the Special Issue Sustainable Uses and Applications of By-Products of the Food Industry)
Show Figures

Figure 1

12 pages, 1151 KB  
Communication
Production of α-Glycerylphosphorylcholine in Fermented Roots, Tubers, and Fruits
by Timothy J. Tse, Farley Chicilo, Daniel J. Wiens, Jianheng Shen, Javier Anleu Alegria, Young Jun Kim, Ji Youn Hong, Jae Kyeom Kim, Eui-Cheol Shin, Martin J. T. Reaney and Youn Young Shim
Foods 2024, 13(19), 3085; https://doi.org/10.3390/foods13193085 - 27 Sep 2024
Cited by 3 | Viewed by 1765
Abstract
Vegetables and fruits, high in starch and sugars, are promising substrates for bioethanol production, but can also yield valuable nootropic compounds, such as α-glycerylphosphorylcholine (α-GPC). This compound is a known cognitive enhancer that works by increasing the release of acetylcholine, a neurotransmitter essential [...] Read more.
Vegetables and fruits, high in starch and sugars, are promising substrates for bioethanol production, but can also yield valuable nootropic compounds, such as α-glycerylphosphorylcholine (α-GPC). This compound is a known cognitive enhancer that works by increasing the release of acetylcholine, a neurotransmitter essential for learning and memory. In this study, select root and tuber crops, as well as fruits, were subjected to Saccharomyces cerevisiae fermentation to observe the co-production of ethanol and α-GPC. The ethanol yields from these substrates were comparable to those from wheat (var. AC Andrew), ranging from 30.44 g/L (beet) to 70.04 g/L (lotus root). Aside from ethanol, α-GPC was also produced, with purple top turnip yielding 0.91 g/L, the second highest concentration after wheat (used as a reference), which produced 1.25 g/L. Although α-GPC yields in the tested substrates were lower than those from cereal grains (e.g., wheat and barley), a noteworthy observation was the production of methanol in many of these substrates. Methanol was detected in all feedstocks except wheat, with concentrations ranging from 0.10 g/L (cassava) to 1.69 g/L (purple top turnip). A linear regression analysis revealed a strong correlation between methanol and α-GPC content (R2 = 0.876; slope = 0.52), suggesting a potential link in their biosynthetic pathways. These feedstocks not only proved effective as substrates for bioethanol production, but also showed potential for generating value-added compounds such as α-GPC. This dual-purpose potential presents new market opportunities for producers by leveraging both biofuel and nootropic compound production. Furthermore, the observed relationship between methanol and α-GPC production warrants further investigation to elucidate the metabolic pathways involved. Full article
(This article belongs to the Special Issue Sustainable Uses and Applications of By-Products of the Food Industry)
Show Figures

Figure 1

Back to TopTop