Sustainability Indicators in Rice and Wheat Supply Chain
Abstract
1. Introduction
2. Indicator Selection Criteria
2.1. Contextualisation
2.2. Comparison and Evaluation of Indicators
2.3. Selection
3. Methodology
3.1. Systematic Literature Review
3.2. Expert Opinion Survey
4. SLR on Rice and Wheat Supply Chain Sustainability Indicators
4.1. Environmental Sustainability
4.1.1. Wheat
4.1.2. Rice
4.2. Economic Sustainability
4.3. Social Sustainability
5. Development of SI in Rice and Wheat Supply Chain: An Expert Survey
5.1. Participants
5.2. Survey Design
5.3. Survey Distribution and Data Collection
5.4. Demographic Analysis of Survey Participants
5.5. Analysis
5.5.1. Rice Supply Chain Environment Indicator
5.5.2. Wheat Supply Chain Environment Indicator
5.5.3. Economic Indicator
5.5.4. Social Indicators
6. Discussion
7. Limitations and Future Work
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Indicators | Unit | Definition | Counts | |
---|---|---|---|---|
Environment | Fertiliser used/type | kg/ha | Use of fertilisers in agriculture | 23 |
Fuel used (diesel) | L/ha | Total fossil fuels used in farming/transport | 22 | |
Field emission | CO2 eq | Number of days crop was in a flooded condition | 17 | |
Seed production | CO2 eq | Total emission from the production of seed | 15 | |
Pesticide used | kg/ha | Use of pesticides in agriculture | 14 | |
Electricity | mj/ha | Direct on-farm energy consumption/in processing | 13 | |
Fertiliser production | kg/ha | Fertilised produced at the farm | 9 | |
Machinery production | HP | Number of machines used and their ratings | 8 | |
Water used | L/ha | Irrigation water application rate | 8 | |
Organic fertiliser | kg/ha | Organic fertiliser used | 8 | |
Co-product handling | CO2 | How co-product was utilised | 7 | |
Packaging material/agri film | kg/ha | The total packaging material used per hectare of farm/ product | 6 | |
Economic | Land productivity | kg/ha | Gross output per hectare | 12 |
Profitability | AUD or % | Market-based gross margin (fewer subsidies) per hectare | 7 | |
Labour productivity | kg/labour | Income obtained per work unit of labour | 6 | |
Income per family worker | $ | Income per family member working on the farm | 5 | |
Revenue | $ | Total revenue of farm | 4 | |
Production cost | $ | Total input cost | 4 | |
Import dependency | % | Ratio of import products to domestic products | 4 | |
Viability | % | The farm is economically viable | 3 | |
Use of chemical fertiliser | kg/ha | Crop yield (kg) per kg of fertiliser applied | 3 | |
Marketing network | Likert scale | Availability of market for produced | 3 | |
Social | Knowledge/education | % | Average education level of farmers | 12 |
Employment | Number | Number of employees | 9 | |
Average wages | AUD | Worker’s wage as compared to the national legal minimum wage | 7 | |
Equality | % | Male female employee ratio | 7 | |
Accident rate | % | Number of safety incidents | 7 | |
Health | Likert scale | Working conditions of workers in agriculture and along the value chain | 6 | |
Community engagement | Number of community engagement event | 6 | ||
Training | Training provided to a worker | 5 | ||
Social capital | Likert scale | The donation, trust, local, SCR | 4 | |
Resources availability | Likert scale | Availability of resources to farm | 3 |
References
- Notarnicola, B.; Hayashi, K.; Curran, M.A.; Huisingh, D. Progress in working towards a more sustainable agri-food industry. J. Clean. Prod. 2012, 28, 1–8. [Google Scholar] [CrossRef]
- Lebacq, T.; Baret, P.V.; Stilmant, D. Sustainability indicators for livestock farming. A review. Agron. Sustain. Dev. 2013, 33, 311–327. [Google Scholar] [CrossRef]
- Castellani, V.; Sala, S.; Benini, L. Hotspots analysis and critical interpretation of food life cycle assessment studies for selecting eco-innovation options and for policy support. J. Clean. Prod. 2017, 140, 556–568. [Google Scholar] [CrossRef]
- Singh, R.K.; Murty, H.R.; Gupta, S.K.; Dikshit, A.K. An overview of sustainability assessment methodologies. Ecol. Indic. 2009, 9, 189–212. [Google Scholar] [CrossRef]
- Chandan, A.; John, M.; Potdar, V. Achieving UN SDGs in Food Supply Chain Using Blockchain Technology. Sustainability 2023, 15, 2109. [Google Scholar] [CrossRef]
- Cao, S.; Powell, W.; Foth, M.; Natanelov, V.; Miller, T.; Dulleck, U. Strengthening consumer trust in beef supply chain traceability with a blockchain-based human-machine reconcile mechanism. Comput. Electron. Agric. 2021, 180, 105886. [Google Scholar] [CrossRef]
- Lin, X.; Chang, S.-C.; Chou, T.-H.; Chen, S.-C.; Ruangkanjanases, A. Consumers’ Intention to Adopt Blockchain Food Traceability Technology towards Organic Food Products. Int. J. Environ. Res. Public Health 2021, 18, 912. [Google Scholar] [CrossRef]
- Bockstaller, C.; Guichard, L.; Makowski, D.; Aveline, A.; Girardin, P.; Plantureux, S. Agri-environmental indicators to assess cropping and farming systems. A review. Agron. Sustain. Dev. 2008, 28, 139–149. [Google Scholar] [CrossRef]
- Dale, V.H.; Beyeler, S.C. Challenges in the development and use of ecological indicators. Ecol. Indic. 2001, 1, 3–10. [Google Scholar] [CrossRef]
- Escribano, M.; Díaz-Caro, C.; Mesias, F.J. A participative approach to develop sustainability indicators for dehesa agroforestry farms. Sci. Total Environ. 2018, 640, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Rafiee, S.; Jafari, A.; Keyhani, A.; Dalgaard, T.; Knudsen, M.T.; Nguyen, T.L.T.; Borek, R.; Hermansen, J.E. Joint Life Cycle Assessment and Data Envelopment Analysis for the benchmarking of environmental impacts in rice paddy production. J. Clean. Prod. 2015, 106, 521–532. [Google Scholar] [CrossRef]
- Van Cauwenbergh, N.; Biala, K.; Bielders, C.; Brouckaert, V.; Franchois, L.; Garcia Cidad, V.; Hermy, M.; Mathijs, E.; Muys, B.; Reijnders, J.; et al. SAFE—A hierarchical framework for assessing the sustainability of agricultural systems. Agric. Ecosyst. Environ. 2007, 120, 229–242. [Google Scholar] [CrossRef]
- Gaviglio, A.; Bertocchi, M.; Demartini, E. A Tool for the Sustainability Assessment of Farms: Selection, Adaptation and Use of Indicators for an Italian Case Study. Resources 2017, 6, 60. [Google Scholar] [CrossRef]
- Roy, R.; Chan, N.W.; Rainis, R. Development of indicators for sustainable rice farming in Bangladesh: A case study with participative multi-stakeholder involvement. World Appl. Sci. J. 2013, 22, 672–682. [Google Scholar]
- Bockstaller, C.; Feschet, P.; Angevin, F. Issues in evaluating sustainability of farming systems with indicators. OCL Oilseeds Fats Crops Lipids 2015, 22, D102. [Google Scholar] [CrossRef]
- FAO. Food Outlook—Biannual Report on Global Food Markets; Food and Agriculture Organization: Rome, Italy, 2023. [Google Scholar]
- Fallahpour, F.; Aminghafouri, A.; Behbahani, A.G.; Bannayan, M. The environmental impact assessment of wheat and barley production by using life cycle assessment (LCA) methodology. Environ. Dev. Sustain. 2012, 14, 979–992. [Google Scholar] [CrossRef]
- Brock, P.; Madden, P.; Schwenke, G.; Herridge, D. Greenhouse gas emissions profile for 1 tonne of wheat produced in Central Zone (East) New South Wales: A life cycle assessment approach. Crop Pasture Sci. 2012, 63, 319–329. [Google Scholar] [CrossRef]
- Moudrỳ Jr, J.; Jelínková, Z.; Plch, R.; Moudrỳ, J.; Konvalina, P.; Hyšpler, R. The emissions of greenhouse gases produced during growing and processing of wheat products in the Czech Republic. J. Food Agric. Environ. 2013, 11, 1133–1136. [Google Scholar]
- Ali, S.A.; Tedone, L.; De Mastro, G. Optimization of the environmental performance of rainfed durum wheat by adjusting the management practices. J. Clean. Prod. 2015, 87, 105–118. [Google Scholar] [CrossRef]
- Achten, W.M.J.; Van Acker, K. EU-Average Impacts of Wheat Production: A Meta-Analysis of Life Cycle Assessments. J. Ind. Ecol. 2016, 20, 132–144. [Google Scholar] [CrossRef]
- Roer, A.-G.; Korsaeth, A.; Henriksen, T.M.; Michelsen, O.; Strømman, A.H. The influence of system boundaries on life cycle assessment of grain production in central southeast Norway. Agric. Syst. 2012, 111, 75–84. [Google Scholar] [CrossRef]
- Korsaeth, A.; Henriksen, T.M.; Roer, A.-G.; Strømman, A.H. Effects of regional variation in climate and SOC decay on global warming potential and eutrophication attributable to cereal production in Norway. Agric. Syst. 2014, 127, 9–18. [Google Scholar] [CrossRef]
- Wang, W.; Dalal, R.C. Nitrogen management is the key for low-emission wheat production in Australia: A life cycle perspective. Eur. J. Agron. 2015, 66, 74–82. [Google Scholar] [CrossRef]
- Johnson, M.D.; Rutland, C.T.; Richardson, J.W.; Outlaw, J.L.; Nixon, C.J. Greenhouse gas emissions from US grain farms. J. Crop Improv. 2016, 30, 447–477. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Sui, P.; Gao, W.; Qin, F.; Zhang, J.; Wu, X. Emergy analysis of grain production systems on large-scale farms in the North China Plain based on LCA. Agric. Syst. 2014, 128, 66–78. [Google Scholar] [CrossRef]
- Zhu, Y.; Waqas, M.A.; Li, Y.e.; Zou, X.; Jiang, D.; Wilkes, A.; Qin, X.; Gao, Q.; Wan, Y.; Hasbagan, G. Large-scale farming operations are win-win for grain production, soil carbon storage and mitigation of greenhouse gases. J. Clean. Prod. 2018, 172, 2143–2152. [Google Scholar] [CrossRef]
- Yang, X.; Sui, P.; Zhang, X.; Dai, H.; Yan, P.; Li, C.; Wang, X.; Chen, Y. Environmental and economic consequences analysis of cropping systems from fragmented to concentrated farmland in the North China Plain based on a joint use of life cycle assessment, emergy and economic analysis. J. Environ. Manag. 2019, 251, 109588. [Google Scholar] [CrossRef]
- Barton, L.; Thamo, T.; Engelbrecht, D.; Biswas, W.K. Does growing grain legumes or applying lime cost effectively lower greenhouse gas emissions from wheat production in a semi-arid climate? J. Clean. Prod. 2014, 83, 194–203. [Google Scholar] [CrossRef]
- Chiriacò, M.V.; Grossi, G.; Castaldi, S.; Valentini, R. The contribution to climate change of the organic versus conventional wheat farming: A case study on the carbon footprint of wholemeal bread production in Italy. J. Clean. Prod. 2017, 153, 309–319. [Google Scholar] [CrossRef]
- Esmaeilzadeh, S.; Asgharipour, M.R.; Bazrgar, A.B.; Soufizadeh, S.; Karandish, F. Assessing the carbon footprint of irrigated and dryland wheat with a life cycle approach in bojnourd. Environ. Prog. Sustain. Energy 2019, 38, 13134. [Google Scholar] [CrossRef]
- Wang, M.; Xia, X.; Zhang, Q.; Liu, J. Life cycle assessment of a rice production system in Taihu region, China. Int. J. Sustain. Dev. World Ecol. 2010, 17, 157–161. [Google Scholar] [CrossRef]
- Brodt, S.; Kendall, A.; Mohammadi, Y.; Arslan, A.; Yuan, J.; Lee, I.-S.; Linquist, B. Life cycle greenhouse gas emissions in California rice production. Field Crops Res. 2014, 169, 89–98. [Google Scholar] [CrossRef]
- Cai, S.; Pittelkow, C.M.; Zhao, X.; Wang, S. Winter legume-rice rotations can reduce nitrogen pollution and carbon footprint while maintaining net ecosystem economic benefits. J. Clean. Prod. 2018, 195, 289–300. [Google Scholar] [CrossRef]
- Jimmy, A.N.; Khan, N.A.; Hossain, M.N.; Sujauddin, M. Evaluation of the environmental impacts of rice paddy production using life cycle assessment: Case study in Bangladesh. Model. Earth Syst. Environ. 2017, 3, 1691–1705. [Google Scholar] [CrossRef]
- Rahman, M.H.A.; Chen, S.S.; Razak, P.R.A.; Bakar, N.A.A.; Shahrun, M.S.; Zawawi, N.Z.; Mujab, A.A.M.; Abdullah, F.; Jumat, F.; Kamaruzaman, R. Life cycle assessment in conventional rice farming system: Estimation of greenhouse gas emissions using cradle-to-gate approach. J. Clean. Prod. 2019, 212, 1526–1535. [Google Scholar] [CrossRef]
- Kasmaprapruet, S.; Paengjuntuek, W.; Saikhwan, P.; Phungrassami, H. Life cycle assessment of milled rice production: Case study in Thailand. Eur. J. Sci. Res. 2009, 30, 195–203. [Google Scholar]
- Gathorne-Hardy, A.; Reddy, D.N.; Venkatanarayana, M.; Harriss-White, B. System of Rice Intensification provides environmental and economic gains but at the expense of social sustainability—A multidisciplinary analysis in India. Agric. Syst. 2016, 143, 159–168. [Google Scholar] [CrossRef]
- Tayefeh, M.; Sadeghi, S.M.; Noorhosseini, S.A.; Bacenetti, J.; Damalas, C.A. Environmental impact of rice production based on nitrogen fertilizer use. Environ. Sci. Pollut. Res. 2018, 25, 15885–15895. [Google Scholar] [CrossRef]
- Harada, H.; Kobayashi, H.; Shindo, H. Reduction in greenhouse gas emissions by no-tilling rice cultivation in Hachirogata polder, northern Japan: Life-cycle inventory analysis. Soil. Sci. Plant Nutr. 2007, 53, 668–677. [Google Scholar] [CrossRef]
- Blengini, G.A.; Busto, M. The life cycle of rice: LCA of alternative agri-food chain management systems in Vercelli (Italy). J. Environ. Manag. 2009, 90, 1512–1522. [Google Scholar] [CrossRef]
- Nunes, F.A.; Seferin, M.; Maciel, V.G.; Flôres, S.H.; Ayub, M.A.Z. Life cycle greenhouse gas emissions from rice production systems in Brazil: A comparison between minimal tillage and organic farming. J. Clean. Prod. 2016, 139, 799–809. [Google Scholar] [CrossRef]
- Jane Dillon, E.; Hennessy, T.; Buckley, C.; Donnellan, T.; Hanrahan, K.; Moran, B.; Ryan, M. Measuring progress in agricultural sustainability to support policy-making. Int. J. Agric. Sustain. 2016, 14, 31–44. [Google Scholar] [CrossRef]
- Yakovleva, N. Measuring the sustainability of the food supply chain: A case study of the UK. J. Environ. Policy Plan. 2007, 9, 75–100. [Google Scholar] [CrossRef]
- Boström, M. A missing pillar? Challenges in theorizing and practicing social sustainability: Introduction to the special issue. Sustain. Sci. Pract. Policy 2012, 8, 3–14. [Google Scholar] [CrossRef]
- Gava, O.; Galli, F.; Bartolini, F.; Brunori, G. Linking sustainability with geographical proximity in food supply chains. An indicator selection framework. Agriculture 2018, 8, 130. [Google Scholar] [CrossRef]
- Bloemhof, J.M.; van der Vorst, J.G.A.J.; Bastl, M.; Allaoui, H. Sustainability assessment of food chain logistics. Int. J. Logist. Res. Appl. 2015, 18, 101–117. [Google Scholar] [CrossRef]
- Manning, L.; Soon, J.M. Development of sustainability indicator scoring (SIS) for the food supply chain. Brit Food J. 2016, 118, 2097–2125. [Google Scholar] [CrossRef]
- Bienge, K.; Geibler, J.v.; Lettenmeier, M.; Biermann, B.; Adria, O.; Kuhndt, M. Sustainability Hot Spot Analysis: A streamlined life cycle assessment towards sustainable food chains. In Proceedings of the 9th European International Farming System Association Symposium, Vienna, Austria, 4–7 July 2010. [Google Scholar]
S. No. | Indicator | Min. | Max. | Mean | Std. Deviation | Variance |
---|---|---|---|---|---|---|
1 | Fertiliser used (kg/ha) | 1 | 4 | 1.72 | 0.834 | 0.696 |
2 | Integrated weed management (%) | 1 | 5 | 1.92 | 1.066 | 1.136 |
3 | Cropping program (%) | 1 | 5 | 2 | 1.161 | 1.347 |
4 | Packaging material/agri film (kg/ha) | 1 | 5 | 2.08 | 1.158 | 1.34 |
5 | Pesticide used (kg/ha) | 1 | 5 | 2.12 | 1.206 | 1.455 |
6 | Fuel used (L/ha) | 1 | 5 | 2.16 | 1.299 | 1.688 |
7 | Water used (L/ha) | 1 | 5 | 2.18 | 1.224 | 1.498 |
8 | Organic fertiliser used (kg/ha) | 1 | 5 | 2.18 | 1.207 | 1.457 |
9 | Co-product handling/waste by-product handling (CO2 eq) | 1 | 5 | 2.18 | 1.155 | 1.334 |
10 | Field emission (CO2 eq) | 1 | 5 | 2.22 | 1.404 | 1.971 |
11 | Electricity used (mj/ha) | 1 | 5 | 2.26 | 1.175 | 1.38 |
12 | Machinery used (HP/ha) | 1 | 5 | 2.32 | 1.377 | 1.896 |
13 | Seed production (CO2 eq) | 1 | 5 | 2.34 | 1.272 | 1.617 |
14 | Lime used (kg/ha) | 1 | 5 | 2.36 | 1.241 | 1.541 |
15 | Fertiliser produced on-farm (kg) | 1 | 5 | 2.6 | 1.309 | 1.714 |
S. No. | Indicator | Min. | Max. | Mean | Std. Deviation | Variance |
---|---|---|---|---|---|---|
1 | Water used (L/ha) | 1 | 5 | 2.06 | 1.15 | 1.323 |
2 | Pesticide used (kg/ha) | 1 | 5 | 2.12 | 1.239 | 1.536 |
3 | Cropping program (%) | 1 | 5 | 2.14 | 1.088 | 1.184 |
4 | Lime used (kg/ha) | 1 | 5 | 2.16 | 1.149 | 1.321 |
5 | Soil organic carbon loss (%) | 1 | 5 | 2.18 | 1.207 | 1.457 |
6 | Fertiliser used (kg/ha) | 1 | 5 | 2.22 | 1.234 | 1.522 |
7 | Integrated weed management (%) | 1 | 5 | 2.22 | 1.298 | 1.685 |
8 | Fuel used (L/ha) | 1 | 5 | 2.24 | 1.222 | 1.492 |
9 | Co-product handling/waste | 1 | 5 | 2.24 | 1.135 | 1.288 |
10 | Seed production (CO2 eq) | 1 | 5 | 2.34 | 1.239 | 1.535 |
11 | Electricity used (mj/ha) | 1 | 5 | 2.4 | 1.178 | 1.388 |
12 | Machinery used (HP/ha) | 1 | 5 | 2.42 | 1.311 | 1.718 |
13 | Fertiliser produced on-farm (kg) | 1 | 5 | 2.62 | 1.26 | 1.587 |
S. No. | Indicator | Max. | Min. | Mean | Std. Deviation | Variance |
---|---|---|---|---|---|---|
1 | Revenue (AUD) | 1 | 5 | 1.86 | 1.088 | 1.184 |
2 | Land productivity (kg/ha) | 1 | 5 | 1.94 | 1.15 | 1.323 |
3 | Benefit-to-cost ratio (%) | 1 | 5 | 2.04 | 0.903 | 0.815 |
4 | Marketing opportunity (%) | 1 | 5 | 2.06 | 0.978 | 0.956 |
5 | Labour productivity (kg/labour) | 1 | 5 | 2.14 | 1.03 | 1.062 |
6 | Import dependency (%) | 1 | 5 | 2.16 | 1.149 | 1.321 |
7 | Profitability (AUD) | 1 | 5 | 2.18 | 1.273 | 1.62 |
8 | Revenue per family worker (AUD) | 1 | 5 | 2.24 | 1.271 | 1.615 |
9 | Use of chemical fertiliser (AUD/ha/year) | 1 | 5 | 2.26 | 1.139 | 1.298 |
10 | Production cost (AUD) | 1 | 5 | 2.32 | 1.168 | 1.365 |
S. No. | Indicator | Min. | Max. | Mean | Std. Deviation | Variance |
---|---|---|---|---|---|---|
1 | Accident rate (%) | 1 | 5 | 2 | 1.088 | 1.184 |
2 | Employment (persons/kg) | 1 | 5 | 2.14 | 1.143 | 1.307 |
3 | Training (binary) | 1 | 5 | 2.14 | 1.01 | 1.021 |
4 | Average wages (AUD) | 1 | 5 | 2.18 | 1.137 | 1.293 |
5 | Health(AUD/employee) | 1 | 5 | 2.2 | 1.125 | 1.265 |
6 | Community engagement | 1 | 5 | 2.26 | 1.065 | 1.135 |
7 | Education (level) | 1 | 5 | 2.3 | 1.147 | 1.316 |
8 | Gender equality (%) | 1 | 5 | 2.32 | 1.22 | 1.487 |
9 | Service to society (AUD) | 1 | 5 | 2.6 | 1.212 | 1.469 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandan, A.; John, M. Sustainability Indicators in Rice and Wheat Supply Chain. Foods 2025, 14, 2917. https://doi.org/10.3390/foods14162917
Chandan A, John M. Sustainability Indicators in Rice and Wheat Supply Chain. Foods. 2025; 14(16):2917. https://doi.org/10.3390/foods14162917
Chicago/Turabian StyleChandan, Anulipt, and Michele John. 2025. "Sustainability Indicators in Rice and Wheat Supply Chain" Foods 14, no. 16: 2917. https://doi.org/10.3390/foods14162917
APA StyleChandan, A., & John, M. (2025). Sustainability Indicators in Rice and Wheat Supply Chain. Foods, 14(16), 2917. https://doi.org/10.3390/foods14162917