Impact of the Physical Modification of Starch (Oxalis tuberosa) in a Low-Fat Snack by Hot Air Frying, a Sustainable Process
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Physical Modification of the Native Starch
2.3. Amylose and Amylopectin Content of the Native and Modified Starch
2.4. Functional Properties of Native and Physically Modified Starches
2.5. Analysis of the Surface of Native and Modified Starches Using Microscopy Analysis
2.6. Formulation of Snacks
2.7. Hardness and Radial Expansion Index
2.8. Hedonic Test
2.9. Colorimetric Parameters
2.10. Acrylamide Content
2.11. Proximal Composition Analysis
2.12. Fatty Acid Profile by GC-MS
2.13. Statistical Analysis
3. Results and Discussion
3.1. Amylose/Amylopectin Content, Functional Properties, and Microscopy Analysis of Oxalis Tuberosa Starch
3.2. Texture and Radial Expansion Index of the Snacks
3.3. Sensory Analysis
3.4. Color of the Snacks
3.5. Acrylamide Content
3.6. Proximal Composition and Fatty Acid Profile Analysis of the Snacks
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sajilata, M.G.; Singhal, R.S. Specialty starches for snack foods. Carbohydr. Polym. 2005, 59, 131–151. [Google Scholar] [CrossRef]
- Magro, P.C.; Maestro-Gaitán, I.; Blázquez, M.R.; Prieto, J.M.; Iñiguez, F.M.S.; Sobrado, V.C.; Gómez, M.J.R. Determination of nutritional signatures of vegetable snacks formulated with quinoa, amaranth, or wheat flour. Food Chem. 2024, 433, 137370. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Z.A.; Mohammed, N.K. Investigating influencing factors on acrylamide content in fried potatoes and mitigating measures: A review. Food Prod. Process Nutr. 2024, 6, 24. [Google Scholar] [CrossRef]
- Baraniak, J.; Kania-Dobrowolska, M. The dual nature of amaranth—Functional food and potential medicine. Foods 2022, 11, 618. [Google Scholar] [CrossRef] [PubMed]
- Escuredo, O.; González, M.M.I.; Wells, M.G.; Fischer, S.; Hernández, H.J.M. Amino acid profile of the quinoa (Chenopodium quinoa Willd.) using near infrared spectroscopy and chemometric techniques. J. Cereal Sci. 2014, 60, 67–74. [Google Scholar] [CrossRef]
- Compart, J.; Singh, A.; Fettke, J.; Apriyanto, A. Customizing starch properties: A review of starch modifications and their applications. Polymers 2023, 15, 3491. [Google Scholar] [CrossRef]
- Rashwan, A.K.; Younis, H.A.; Abdelshafy, A.M.; Osman, A.I.; Eletmany, M.R.; Hafouda, M.A.; Chen, W. Plant starch extraction, modification, and green applications: A review. Environ. Chem. Lett. 2024, 22, 2483–2530. [Google Scholar] [CrossRef]
- Oyeyinka, S.A.; Akintayo, O.A.; Adebo, O.A.; Kayitesi, E.; Njobeh, P.B. A review on the physicochemical properties of starches modified by microwave alone and in combination with other methods. Int. J. Biol. Macromol. 2021, 176, 87–95. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, J.; Feng, D.; Zhao, J.; Guo, Y.; Zhao, J.; Li, W.; Yan, W. Modification of structural and physicochemical properties of repeated freeze-thawed cycle maize starch. Int. J. Food Prop. 2020, 23, 1597–1610. [Google Scholar] [CrossRef]
- Surojanametakul, V.; Udomrati, S.; Satmalee, P. Effects of liquid nitrogen deep freezing treatment on rice starch properties. Starch-Stärke 2022, 74, 2100137. [Google Scholar] [CrossRef]
- Sun, C.; Du, K.; He, Z.; Zhu, Z.; Hu, Y.; Wang, C.; Mei, L.; Xie, Q.; Chen, Y.; Liu, Y.; et al. Liquid nitrogen ball-milled mechanochemical modification of starches with typically selected A, B and C crystal types on multiscale structure and physicochemical properties. Food Chem. 2025, 463, 141148. [Google Scholar] [CrossRef] [PubMed]
- Pesce, F.; Parafati, L.; Fallico, B.; Palmeri, R. Use of liquid nitrogen in food products: A review. Food Front. 2025, 6, 1617–1644. [Google Scholar] [CrossRef]
- Zheng, S.; Yang, Y.; Li, Z.; Pan, Z.; Huang, Z.; Ai, Z. A comparative study of different freezing methods on water distribution, retrogradation, and digestion properties of liangpi (Starch Gel Food). Starch-Stärke 2022, 74, 2100205. [Google Scholar] [CrossRef]
- Cai, M.; Zhang, Y.; Cao, H.; Li, S.; Zhang, Y.; Huang, K.; Song, H.; Guan, X. Exploring the remarkable effects of microwave treatment on starch modification: From structural evolution to changed physicochemical and digestive properties. Carbohydr. Polym. 2024, 343, 122412. [Google Scholar] [CrossRef]
- Chunli Deng, C.; Melnyk, O.; Luo, Y. Substitution of wheat flour with modified potato starch affects texture properties of dough and the quality of fresh noodles. Food Sci. Technol. 2023, 43, e128222. [Google Scholar] [CrossRef]
- Koksel, F.; Masatcioglu, M.T. Physical properties of puffed yellow pea snacks produced by nitrogen gas assisted extrusion cooking. LWT-Food Sci. Technol. 2018, 93, 592–598. [Google Scholar] [CrossRef]
- Nadir, A.S.; Helmy, I.M.F.; Nahed, M.; Wafaa, A.; Abozeid, M.M.; Ramadan, M.T. Modification of potato starch by some different physical methods and utilization in cookies production. App Sci. 2015, 4, 556–569. [Google Scholar]
- Ulus, H.; Allen, J. Nutrient degradation in baked or air-fried sweet potato chips. Curr. Dev. Nutr. 2020, 4, 783. [Google Scholar] [CrossRef]
- Sansano, M.; Juan-Borras, M.; Escriche, I.; Andrés, A.; Heredia, A. Effect of pretreatments and air-frying, a novel technology, on acrylamide generation in fried potatoes. J. Food Sci. 2015, 80, T1120–T1128. [Google Scholar] [CrossRef]
- Núñez-Bretón, L.; Cruz-Rodríguez, L.; Tzompole-Colohua, M.; Jiménez-Guzmán, J.; Perea-Flores, M.J.; Rosas-Flores, W.; González-Jiménez, F.E. Physicochemical, functional and structural characterization of Mexican Oxalis tuberosa starch modified by cross-linking. J. Food Meas. Charact. 2019, 13, 2862–2870. [Google Scholar] [CrossRef]
- British Standards Rice ISO 6647-2:2020; Determination of Amylose Content. BSI British Standards: London, UK, 2020.
- Anderson, R.A.; Conway, H.F.; Peplinski, A.J. Gelatinization of corn grits by roll cooking, extrusion cooking and steaming. Starch-Stärke 1970, 22, 130–135. [Google Scholar] [CrossRef]
- Miñon-Hernández, D.; Villalobos-Espinosa, J.; Santiago-Roque, I.; González-Herrera, S.; Herrera-Meza, S.; Meza-Alvarado, E.; Bello-Perez, L.; Osorio-Díaz, P.; Chanona-Pérez, J.; Méndez-Méndez, J.; et al. Biofunctionality of native and nano-structured blue corn starch in pre-diabetic Wistar rats. CYTA-J. Food 2018, 16, 477–483. [Google Scholar] [CrossRef]
- Martínez-Muñoz, A.G. Elaboración de una Botana a Base de Malanga (Colocasia Esculenta) Utilizando Microondas para su Procesamiento. Master’s Thesis, Universidad Veracruzan, Xalapa, Mexico, 2013. Available online: https://cdigital.uv.mx/items/e17a9285-1d44-4423-bc9d-3edbda2582f0 (accessed on 27 November 2022).
- Luo, S.; Paliwal, J.; Koksel, F. Nitrogen gas-assisted extrusion for improving the physical quality of pea protein-enriched corn puffs with a wide range of protein contents. Foods 2024, 13, 2411. [Google Scholar] [CrossRef] [PubMed]
- Pedrero, F.D.; Pangborn, R. Métodos de evaluación sensorial. In Evaluación Sensorial de los Alimentos, 1st ed.; México D.F. Alhambra Mexicana S.A. de C.V.: Lima, Peru, 2017; p. 106. [Google Scholar]
- Macdougall, D.B. Colour measurement of food: Principles and practice. In Colour Measurement, Principles, Advances and Industrial Applications; Woodhead Publishing Series in Textiles; Woodhead Publishing: Sawston, UK, 2010; pp. 312–342. [Google Scholar]
- Biedermann, M.; Biedermann-Brem, S.; Noti, A.; Grob, K.; Egli, P.; Mändli, H. Two GC-MS methods for the analysis of acrylamide in foods. Mitt. Geb. Lebensm. Unters. Hyg. 2002, 93, 638–652. [Google Scholar]
- A.O.A.C. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersberg, MD, USA, 2005. [Google Scholar]
- Zhu, F.; Cui, R. Comparison of molecular structure of oca (Oxalis tuberosa), potato, and maize starches. Food Chem. 2019, 296, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, Q.; Li, R.; Liang, W.; Lin, Q.; Niu, L.; Zhao, W.; Li, W. Effect of microwave treatment on the structural and physicochemical properties of amylose partially removed sorghum starch. Int. J. Biol. Macromol. 2025, 300, 140285. [Google Scholar] [CrossRef]
- Fonseca-Santanilla, E.B.; Betancourt-López, L.L. Physicochemical and structural characterization of starches from Andean roots and tubers grown in Colombia. Food Sci. Technol. Int. 2022, 28, 144–156. [Google Scholar] [CrossRef]
- Zhang, J.; Tao, L.; Yang, S.; Li, Y.; Wu, Q.; Song, S.; Yu, L. Water absorption behavior of starch: A review of its determination methods, influencing factors, directional modification, and food applications. Trends Food Sci. Technol. 2024, 144, 104321. [Google Scholar] [CrossRef]
- Zailani, M.A.; Kamilah, H.; Husaini, A.; Sarbini, S.R. Physicochemical properties of microwave heated sago (Metroxylon sagu) starch. CyTA J. Food 2021, 19, 596–605. [Google Scholar] [CrossRef]
- Braşoveanu, M.; Nemţanu, M.R. Behaviour of starch exposed to microwave radiation treatment. Starch-Stärke 2014, 66, 3–14. [Google Scholar] [CrossRef]
- Cui, Q.; Mahfouzi, M.; Zhang, H.; Gao, R.; Guo, Z. Characteristics of sweet potato starch particles modified by various methods for use in food-grade Pickering emulsion. LWT-Food Sci. Technol. 2024, 210, 116831. [Google Scholar] [CrossRef]
- Muñoz-Pabon, K.S.; Parra-Polanco, A.S.; Roa-Acosta, D.F.; Hoyos-Concha, J.L.; Bravo-Gomez, J.E. Physical and paste properties comparison of four snacks produced by high protein quinoa flour extrusion cooking. Front. Sustain. Food Syst. 2022, 6, 852224. [Google Scholar] [CrossRef]
- Verma, V.; Yadav, N. Acrylamide content in starch based commercial foods by using high performance liquid chromatography and its association with browning index. Curr. Res. Food Sci. 2022, 5, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Singh, V.; Chauhan, O.P.; Yadav, N. Comparative evaluation of conventional and advanced frying methods on hydroxymethylfurfural and acrylamide formation in French fries. Inn. Food Sci. Emerg. Technol. 2023, 83, 103233. [Google Scholar] [CrossRef]
- Esposito, M.; De Luca, L.; Sorrentino, G.; Basile, G.; Calabrese, M.; Pizzolongo, F.; Romano, R. Evaluation of the effect of enzymatic pretreatment with l-asparaginase on acrylamide formation during microwave, air, and deep frying of potatoes. J. Food Sci. 2025, 90, e70081. [Google Scholar] [CrossRef]
- Zhong, S.; He, Z.; Chaudhary, M.N.; Mu, Y.; Zhou, K.; Yang, A.; Luo, L.; Zeng, L.; Luo, W. Effect of freezing pretreatment on the mitigation of acrylamide in potato chips and French fries. LWT-Food Sci. Technol. 2024, 200, 116174. [Google Scholar] [CrossRef]
- Basuny, A.M.M.; Al oatibi, H. Effect of a novel technology (air and vacuum frying) on sensory evaluation and acrylamide generation in fried potato chips. Banat’s J. Biotechnol. 2016, 7, 101–112. [Google Scholar] [CrossRef]
- Ciesarová, Z.; Kiss, E.; Kolek, E. Study of factors affecting acrylamide levels in model systems. Czech J. Food Sci. 2018, 24, 133–137. [Google Scholar] [CrossRef]
- Kahlon, T.; Olson, D.; Friedman, M.; Haff, R. Comparison of infrared heating and hot air frying for creating novel puffed snacks from Bengal gram and garbanzo grains. Vegetos 2025, 1–6. [Google Scholar] [CrossRef]
- Food and Drug Administration. Informed Consent Guidance for IRBs, Clinical Investigators, and Sponsors; Food and Drug Administration: Silver Spring, NH, USA, 2023; Volume 1, p. 21.
Ingredients (g/100 g) | SNS * | SLNS | SLNMS |
---|---|---|---|
Amaranth flour (g) | 16.0 | 16.0 | 16.0 |
Quinoa flour (g) | 16.0 | 16.0 | 16.0 |
Corn (g) | 13.0 | 13.0 | 13.0 |
Native starch (g) | 26.0 | 0.00 | 0.00 |
Starch treated with liquid nitrogen (g) | 0.00 | 26.0 | 0.00 |
Starch treated with liquid nitrogen/microwaves (g) | 0.00 | 0.00 | 26.0 |
Onion powder (g) | 2.00 | 2.00 | 2.00 |
Salt (g) | 2.00 | 2.00 | 2.00 |
Water (g) | 25.0 | 23.6 | 21.1 |
Amylose (%) | Amylopectin (%) | Amylose/Amylopectin | |
---|---|---|---|
NS | 21.3 ± 0.04 a | 78.7 ± 0.04 b | 0.27 ± 0.00 c |
LNS | 20.7 ± 0.00 a | 79.3 ± 0.00 b | 0.26 ± 0.00 c |
LNMS | 22.3 ± 0.07 a | 77.7 ± 0.05 b | 0.28 ± 0.00 c |
* WAI (g Gel/g) | OAC (mL/g) | SP (%) | WSI (%) | |
---|---|---|---|---|
NS ✓ | 2.23 ± 0.4 a | 1.2 ± 0.0 b | 2.33 ± 0.5 d | 4.19 ± 0.0 e |
LNS | 2.25 ± 0.4 a | 1.8 ± 0.0 c | 2.34 ± 0.9 d | 3.7 ± 0.0 f |
LNMS | 2.26 ± 0.9 a | 1.8 ± 0.0 c | 2.23 ± 0.7 d | 1.14 ± 0.2 g |
Snacks | L* | a* | b* | h° | C* | BI |
---|---|---|---|---|---|---|
SNS | 62.2 ± 0.2 a | 9.91 ± 0.1 c | 30.5 ± 0.3 f | 72.0 ±0.4 i | 32.1 ± 0.3 l | 77.4 ± 0.6 o |
SLNS | 73.5 ± 0.3 a | 4.56 ± 0.2 d | 24.3 ± 0.4 g | 79.3 ± 0.7 j | 24.7 ± 0.4 m | 43.9 ± 0.5 p |
SLNMS | 68.7 ± 0.0 b | 6.08 ± 0.0 e | 26.8 ± 0.1 h | 77.1 ± 0.0 k | 27.5 ± 0.1 n | 54.8 ± 0.2 q |
Snack * | Moisture | Ash | Protein | Fat | Carbohydrates |
---|---|---|---|---|---|
SNS | 1.50 ± 0.15 b | 5.90 ± 1.98 c | 7.70 ± 0.4 f | 1.90 ± 1.22 g | 83.0 ± 3.37 i |
SLNS | 1.60 ± 0.02 a | 6.00 ± 1.73 d | 7.70 ± 0.09 f | 2.70 ± 0.85 h | 82.0 ± 0.29 j |
SLMNS | 1.65± 0.13 a | 7.11 ± 0.25 e | 7.75 ± 0.3 f | 1.49 ± 0.37 h | 82.0 ± 3.08 i |
Fatty Acid (%) | Snacks * | ||
---|---|---|---|
SNS | SLNS | SLNSMS | |
C14:0 Myristic acid | 0.04 | 0.05 | 0.08 |
C16:0 Palmitic acid | 8.76 | 9.69 | 9.55 |
C18:0 Estearic acid | 0.40 | 0.68 | 0.40 |
C16:1 Palmitoleic acid | 0.07 | 0.09 | 0.07 |
C18:1 Oleic acid | 45.3 | 38.2 | 39.9 |
C18:2 Linoleic acid | 43.5 | 49.5 | 48.5 |
C18:3 Linolenic acid | 1.93 | 1.79 | 1.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loyo-Trujillo, N.A.; Mendoza-López, M.R.; Guzmán-Gerónimo, R.I.; Galvan-Martínez, R.; González-Jiménez, F.E.; del Ángel-Zumaya, J.A.; Peredo-Lovillo, A.; Méndez-Méndez, J.V. Impact of the Physical Modification of Starch (Oxalis tuberosa) in a Low-Fat Snack by Hot Air Frying, a Sustainable Process. Foods 2025, 14, 2909. https://doi.org/10.3390/foods14162909
Loyo-Trujillo NA, Mendoza-López MR, Guzmán-Gerónimo RI, Galvan-Martínez R, González-Jiménez FE, del Ángel-Zumaya JA, Peredo-Lovillo A, Méndez-Méndez JV. Impact of the Physical Modification of Starch (Oxalis tuberosa) in a Low-Fat Snack by Hot Air Frying, a Sustainable Process. Foods. 2025; 14(16):2909. https://doi.org/10.3390/foods14162909
Chicago/Turabian StyleLoyo-Trujillo, Nayeli Anayansi, María Remedios Mendoza-López, Rosa Isela Guzmán-Gerónimo, Rosario Galvan-Martínez, Francisco Erik González-Jiménez, Josué Antonio del Ángel-Zumaya, Audry Peredo-Lovillo, and Juan Vicente Méndez-Méndez. 2025. "Impact of the Physical Modification of Starch (Oxalis tuberosa) in a Low-Fat Snack by Hot Air Frying, a Sustainable Process" Foods 14, no. 16: 2909. https://doi.org/10.3390/foods14162909
APA StyleLoyo-Trujillo, N. A., Mendoza-López, M. R., Guzmán-Gerónimo, R. I., Galvan-Martínez, R., González-Jiménez, F. E., del Ángel-Zumaya, J. A., Peredo-Lovillo, A., & Méndez-Méndez, J. V. (2025). Impact of the Physical Modification of Starch (Oxalis tuberosa) in a Low-Fat Snack by Hot Air Frying, a Sustainable Process. Foods, 14(16), 2909. https://doi.org/10.3390/foods14162909