Purification, Composition, and Anti-Inflammatory Activity of Polyphenols from Sweet Potato Stems and Leaves
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Extraction of Polyphenols from SPSL
2.3. Total Phenolic Content (TPC) Determination
2.4. Purification of Polyphenols Extracted from SPSL
2.4.1. Macroporous Resin Screening
2.4.2. Static Adsorption–Desorption Test
2.4.3. Effect of Process Parameters on Adsorption–Desorption Performance [2]
2.4.4. Dynamic Adsorption–Desorption Test
2.4.5. Pilot-Scale Purification Test
2.5. Qualitative Analysis of PP by UHPLC-QE-MS/MS
2.6. Quantitative Analysis of Chlorogenic Acids in PP by HPLC
2.7. Anti-Inflammatory Activity Assessment
2.7.1. Cell Culture and Sample Treatment
2.7.2. Cell Viability
2.7.3. NO and Inflammatory Cytokines Determination
2.7.4. RT-qPCR
2.7.5. Western Blotting
2.8. Statistical Analysis
3. Results and Discussion
3.1. Macroporous Resin Screening
3.2. Static Adsorption and Desorption Kinetics
3.3. Effect of Process Parameters on Adsorption–Desorption Performance
3.3.1. Effect of Sample Solution pH on Adsorption Capacity
3.3.2. Effect of Sample Concentration on Adsorption Capacity
3.3.3. Effect of Eluent Concentration on Desorption Ratio
3.4. NKA-II Macroporous Resin Column Chromatography
3.4.1. Dynamic Adsorption andDesorption
3.4.2. Pilot-Scale Purification
3.5. Qualitative Analysis of PP by UHPLC-QE-MS/MS
3.6. Quantitative Analysis of Chlorogenic Acids in PP by HPLC
3.7. Anti-Inflammatory Activity of PP
3.7.1. Effect of PP on Cell Viability
3.7.2. Effect of PP on NO Production
3.7.3. Effect of PP on Inflammatory Cytokine Expression and Release
3.7.4. Effect of PP on NF-κB Pathway Stimulation
3.7.5. Influences of PP on MAPK Pathway Activation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). FAOSTAT Database. Available online: http://www.fao.org/faostat/en/ (accessed on 21 May 2025).
- Xi, L.; Mu, T.; Sun, H. Preparative purification of polyphenols from sweet potato (Ipomoea batatas L.) leaves by AB-8 macroporous resins. Food Chem. 2015, 172, 166–174. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, D.; Wu, L.; Zhang, J.; Li, X.; Wu, W. Chemical Characterization and Antioxidant Properties of Ethanolic Extract and Its Fractions from Sweet Potato (Ipomoea batatas L.) Leaves. Foods 2020, 9, 15. [Google Scholar] [CrossRef]
- Machado, M.; Silva, S.; Pintado, M.; Costa, E.M. Exploring the Effects of Sweet Potato Leaves on Skin Health—From Antimicrobial to Immunomodulator. Molecules 2025, 30, 855. [Google Scholar] [CrossRef]
- Carvalho, D.G.; Piacentini, J.N.; Trierweiler, L.F.; Trierweiler, J.O. Exploring the biorefinery potential of sweet potato crop residues through torrefaction and pyrolysis: Processing of leaves, stems, and peel. Biomass Bioenerg. 2024, 187, 107293. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Fang, X.; Chen, X.; Yin, Z.; Zhang, C. Preparation of edible film from sweet potato peel polyphenols: Application in fresh fruit preservation. Front. Sustain. Food Syst. 2024, 8, 1470732. [Google Scholar] [CrossRef]
- Sun, H.; Mu, T.; Xi, L.; Song, Z. Effects of Domestic Cooking Methods on Polyphenols and Antioxidant Activity of Sweet Potato Leaves. J. Agric. Food Chem. 2014, 62, 8982–8989. [Google Scholar] [CrossRef]
- Sun, H.; Mu, T.; Xi, L.; Zhang, M.; Chen, J. Sweet potato (Ipomoea batatas L.) leaves as nutritional and functional foods. Food Chem. 2014, 156, 380–389. [Google Scholar] [CrossRef]
- Luo, D.; Mu, T.; Sun, H. Profiling of phenolic acids and flavonoids in sweet potato (Ipomoea batatas L.) leaves and evaluation of their anti-oxidant and hypoglycemic activities. Food Biosci. 2021, 39, 100801. [Google Scholar] [CrossRef]
- Sun, H.; Mu, B.; Song, Z.; Ma, Z.; Mu, T.; Valencia, D.V. The In Vitro Antioxidant Activity and Inhibition of Intracellular Re-active Oxygen Species of Sweet Potato Leaf Polyphenols. Oxid. Med. Cell. Longev. 2018, 2018, 9017828. [Google Scholar] [CrossRef] [PubMed]
- Kurata, R.; Adachi, M.; Yamakawa, O.; Yoshimoto, M. Growth Suppression of Human Cancer Cells by Polyphenolics from Sweetpotato (Ipomoea batatas L.) Leaves. J. Agric. Food Chem. 2007, 55, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Ntchapda, F.; Tchatchouang, F.C.; Miaffo, D.; Maidadi, B.; Vecchio, L.; Talla, R.E.; Bonabe, C.; Seke Etet, P.F.; Dimo, T. Hypo-lipidemic and anti-atherosclerogenic effects of aqueous extract of Ipomoea batatas leaves in diet-induced hypercholester-olemic rats. Chin. J. Integr. Med. 2021, 19, 243–250. [Google Scholar] [CrossRef]
- Luo, D.; Mu, T.; Sun, H. Sweet potato (Ipomoea batatas L.) leaf polyphenols ameliorate hyperglycemia in type 2 diabetes mellitus mice. Food Funct. 2021, 12, 4117–4131. [Google Scholar] [CrossRef] [PubMed]
- Mu, T.; Sun, H.; Zhang, M.; Wang, C. Sun, B., Jin, Z., Eds.; Sweet Potato Processing Technology, 1st ed.; Academic Press: Pittsburgh, PA, USA, 2017; Volume 7, pp. 357–403. ISBN 978-0-1281-2871-8. [Google Scholar]
- Ignat, I.; Volf, I.; Popa, V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegeta-bles. Food Chem. 2011, 126, 1821–1835. [Google Scholar] [CrossRef]
- Conidi, C.; Drioli, E.; Cassano, A. Membrane-based agro-food production processes for polyphenol separation, purification and concentration. Curr. Opin. Food Sci. 2018, 23, 149–164. [Google Scholar] [CrossRef]
- Lucas Tenório, C.J.; Assunção Ferreira, M.R.; Lira Soares, L.A. Recent advances on preparative LC approaches for polyphenol separation and purification: Their sources and main activities. Trends Food Sci. Tech. 2022, 128, 129–146. [Google Scholar] [CrossRef]
- Li, L.; Zhao, J.; Yang, T.; Sun, B. High-speed countercurrent chromatography as an efficient technique for large separation of plant polyphenols: A review. Food Res. Int. 2022, 153, 110956. [Google Scholar] [CrossRef]
- Galván D’Alessandro, L.; Vauchel, P.; Przybylski, R.; Chataigné, G.; Nikov, I.; Dimitrov, K. Integrated process extraction–adsorption for selective recovery of antioxidant phenolics from Aronia melanocarpa berries. Sep. Purif. Technol. 2013, 120, 92–101. [Google Scholar] [CrossRef]
- Fan, Q.; Li, Y. Enrichment of rosmarinic acid from Salvia przewalskii Maxim. leaves using macroporous resin: Adsorp-tion/desorption behavior, process optimization followed by scale-up. Ind. Crop. Prod. 2023, 191, 115931. [Google Scholar] [CrossRef]
- Hou, M.; Zhang, L. Adsorption/desorption characteristics and chromatographic purification of polyphenols from Vernonia patula (Dryand.) Merr. using macroporous adsorption resin. Ind. Crop. Prod. 2021, 170, 113729. [Google Scholar] [CrossRef]
- Zhang, L.; Fan, Y.; Su, H.W.; Wu, L.; Huang, Y.Y.; Zhao, L.; Han, B.; Shu, G.W.; Xiang, M.X.; Yang, J.M. Chlorogenic acid methyl ester exerts strong anti-inflammatory effects via inhibiting the COX-2/NLRP3/NF-κB pathway. Food Funct. 2018, 9, 6155. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, H.; Zhuang, S.; Liu, N.; Bao, X.; Liu, X.; Ren, H.; Lv, D.; Li, Z.; Bai, J.; et al. Novel pharmacological inhibition of EZH2 attenuates septic shock by altering innate inflammatory responses to sepsis. Int. Immunopharmacol. 2019, 76, 105899. [Google Scholar] [CrossRef]
- Chen, Z.; Bozec, A.; Ramming, A.; Schett, G. Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nat. Rev. Rheumatol. 2018, 15, 9–17. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, Y.; Yang, G.; Han, J.; Zhu, L.; Li, L.; Zhang, S. The role of the Hippo pathway in the pathogenesis of inflammatory bowel disease. Cell Death Dis. 2021, 12, 79. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.H.; Yeh, D.W.; Lai, C.; Liu, Y.; Huang, L.R.; Lee, A.Y.L.; Jin, S.L.C.; Chuang, T.H. USP17 mediates macrophage-promoted inflammation and stemness in lung cancer cells by regulating TRAF2/TRAF3 complex formation. Oncogene 2018, 37, 6327–6340. [Google Scholar] [CrossRef]
- Kyriakis, J.M.; Avruch, J. Mammalian MAPK Signal Transduction Pathways Activated by Stress and Inflammation: A 10-Year Update. Physiol. Rev. 2012, 92, 689–737. [Google Scholar] [CrossRef]
- O’Neill, L.A.J. Targeting signal transduction as a strategy to treat inflammatory diseases. Nat. Rev. Drug Discov. 2006, 5, 549–563. [Google Scholar] [CrossRef] [PubMed]
- Zinatizadeh, M.R.; Schock, B.; Chalbatani, G.M.; Zarandi, P.K.; Jalali, S.A.; Miri, S.R. The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases. Genes Dis. 2021, 8, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Ferrario, G.; Baron, G.; Gado, F.; Della Vedova, L.; Bombardelli, E.; Carini, M.; D’Amato, A.; Aldini, G.; Altomare, A. Polyphenols from Thinned Young Apples: HPLC-HRMS Profile and Evaluation of Their Anti-Oxidant and Anti-Inflammatory Activities by Proteomic Studies. Antioxidants 2022, 11, 1577. [Google Scholar] [CrossRef]
- Guo, Y.; Chang, X.; Zheng, B.; Xie, J.; Chen, Y.; Shan, J.; Hu, X.; Yu, Q. Bound polyphenols from insoluble dietary fiber of navel orange peel alleviates cellular inflammation by inhibiting LPS-induced NF-κB/JAK-STAT pathway in RAW264.7 macrophages. Food Biosci. 2024, 59, 104044. [Google Scholar] [CrossRef]
- Xu, R.; Han, F.; Wang, H.; Wang, J.; Cai, Z.; Guo, M. Tea polyphenols alleviate TBBPA-induced inflammation, ferroptosis and apoptosis via TLR4/NF-κB pathway in carp gills. Fish Shellfish Immun. 2024, 146, 109382. [Google Scholar] [CrossRef]
- Zengin, G.; Locatelli, M.; Stefanucci, A.; Macedonio, G.; Novellino, E.; Mirzaie, S.; Dvorácskó, S.; Carradori, S.; Brunetti, L.; Orlando, G.; et al. Chemical characterization, antioxidant properties, anti-inflammatory activity, and enzyme inhibition ofIpomoea batatasL. leaf extracts. Int. J. Food Prop. 2017, 20, S1907–S1919. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Zhao, L.; Niu, F.; Yue, R.; Zhu, H.; Zhang, W.; Ma, C. Protective Effect of Sweetpotato (Ipomoea batatas L.) Leaf Phenolic Acids Extract on IL-1β-Induced Barrier Injury of Caco-2 Monolayers. Processes 2022, 10, 2211. [Google Scholar] [CrossRef]
- Yang, Y.; Zhu, Q.; Yan, X.; Zhou, Z.; Zhao, J.; Xia, J.; Gao, X.; Ye, M.; Deng, L.; Zeng, Z.; et al. Enrichment of polyphenols from Cinnamomum camphora seed kernel by macroporous adsorption resins and evaluation of its antioxidant and enzyme inhibitory activities. Ind. Crop. Prod. 2024, 222, 119486. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Y.; Guo, X.; Chen, Y.; Li, H.; Zhou, G.; Sun, S.; Ren, Q.; Simal-Gandara, J.; Sun, J.; et al. Extraction, purification and anticancer activity studies on triterpenes from pomegranate peel. Food Funct. 2024, 15, 6914–6928. [Google Scholar] [CrossRef]
- GB/T 43733—2024; Standardization Administration of the People’s Republic of China (SAC). Determination of Chlorogenic Acids in Plants—High-Performance Liquid Chromatography. China Standards Press: Beijing, China, 2024.
- Qin, L.; Chen, S.; Xie, L.; Yu, Q.; Chen, Y.; Shen, M.; Xie, J. Mechanisms of RAW264.7 macrophages immunomodulation me-diated by polysaccharide from mung bean skin based on RNA-seq analysis. Food Res. Int. 2022, 154, 111017. [Google Scholar] [CrossRef] [PubMed]
- Shan, J.; Ma, W.; Guo, Y.; Chang, X.; Xie, J.; Chen, Y.; Hu, X.; Yu, Q. Unveiling the immunomodulatory mechanism of poly-saccharides from Polygonum cyrtonema based on RNA-seq. Food Res. Int. 2024, 175, 113755. [Google Scholar] [CrossRef]
- Azizollahi, P.; Rahimi, M.; Banan, K.; Hanifi, K.; Rezadoost, H. An efficient elution system for enrichment and separation of Saffron’s Major compounds using macroporous resin. Ind. Crops Prod. 2025, 232, 121302. [Google Scholar] [CrossRef]
- Liu, B.; Dong, B.; Yuan, X.; Kuang, Q.; Zhao, Q.; Yang, M.; Liu, J.; Zhao, B. Enrichment and separation of chlorogenic acid from the extract of Eupatorium adenophorum Spreng by macroporous resin. J. Chromatogr. B 2016, 1008. [Google Scholar] [CrossRef] [PubMed]
- Hou, M.; Hu, W.; Hao, K.; Xiu, Z.; Zhang, X.; Liu, S. Enhancing the potential exploitation of Salvia miltiorrhiza Bunge: Ex-traction, enrichment and HPLC-DAD analysis of bioactive phenolics from its leaves. Ind. Crop. Prod. 2020, 158, 113019. [Google Scholar] [CrossRef]
- Li, C.; Li, H.; Fu, X.; Huang, Q.; Li, Y. Purification, Characterization, and Anti-Inflammatory Potential of Free and Bound Polyphenols Extracted from Rosa roxburghii Tratt Pomace. Foods 2024, 13, 2044. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, Y.; Zhang, R. Purification and antioxidant properties of triterpenic acids from blackened jujube (Ziziphus jujuba Mill.) by macroporous resins. Food Sci. Nutr. 2021, 9, 5070–5082. [Google Scholar] [CrossRef]
- Ferrare, K.; Bidel, L.P.R.; Awwad, A.; Poucheret, P.; Cazals, G.; Lazennec, F.; Azay-Milhau, J.; Tournier, M.; Lajoix, A.D.; Tousch, D. Increase in insulin sensitivity by the association of chicoric acid and chlorogenic acid contained in a natural chicoric acid extract (NCRAE) of chicory (Cichorium intybus L.) for an antidiabetic effect. J. Ethnopharmacol. 2018, 215, 241–248. [Google Scholar] [CrossRef]
- Sun, N.; Xie, J.; Xie, J.; Chen, Y.; Hu, X.; Yu, Q. Purification, composition and activity of bound polyphenols from mung bean coat dietary fiber. Food Res. Int. 2022, 162, 111997. [Google Scholar] [CrossRef] [PubMed]
- Cheiran, K.P.; Raimundo, V.P.; Manfroi, V.; Anzanello, M.J.; Kahmann, A.; Rodrigues, E.; Frazzon, J. Simultaneous identifica-tion of low-molecular weight phenolic and nitrogen compounds in craft beers by HPLC-ESI-MS/MS. Food Chem. 2019, 286, 113–122. [Google Scholar] [CrossRef]
- Elhawary, S.S.; Younis, I.Y.; El Bishbishy, M.H.; Khattab, A.R. LC–MS/MS-based chemometric analysis of phytochemical di-versity in 13 Ficus spp. (Moraceae): Correlation to their in vitro antimicrobial and in silico quorum sensing inhibitory activities. Ind. Crop. Prod. 2018, 126, 261–271. [Google Scholar] [CrossRef]
- Li, F.; Zhang, B.; Chen, G.; Fu, X. The novel contributors of anti-diabetic potential in mulberry polyphenols revealed by UHPLC-HR-ESI-TOF-MS/MS. Food Res. Int. 2017, 100, 873–884. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.K.; Lee, S.U.; Kozukue, N.; Levin, C.E.; Friedman, M. Distribution of phenolic compounds and antioxidative activities in parts of sweet potato (Ipomoea batata L.) plants and in home processed roots. J. Food Compos. Anal. 2011, 24, 29–37. [Google Scholar] [CrossRef]
- Liang, Q.; Li, Z.; Xu, H.; Li, J.L.; Chen, Y.; Schwarz, E.M.; Shi, Q.; Wang, Y.; Xing, L. Lymphatic muscle cells contribute to dysfunction of the synovial lymphatic system in inflammatory arthritis in mice. Arthritis Res. Ther. 2021, 23, 58. [Google Scholar] [CrossRef]
- Xu, X.; Wang, L.; Wu, G.; Li, X. Therapeutic effects of chlorogenic acid on allergic rhinitis through TLR4/MAPK/NF-κB pathway modulation. Biomol. Biomed. 2025, in press. [Google Scholar] [CrossRef]
- Lee, G.B.; Kim, Y.; Lee, K.E.; Vinayagam, R.; Singh, M.; Kang, S.G. Anti-Inflammatory Effects of Quercetin, Rutin, and Troxerutin Result From the Inhibition of NO Production and the Reduction of COX-2 Levels in RAW 264.7 Cells Treated with LPS. Appl. Biochem. Biotechnol. 2024, 196, 8431–8452. [Google Scholar] [CrossRef]
- Jia, X.; Gu, M.; Dai, J.; Wang, J.; Zhang, Y.; Pang, Z. Quercetin attenuates Pseudomonas aeruginosa-induced acute lung inflammation by inhibiting PI3K/AKT/NF-κB signaling pathway. Inflammopharmacology 2024, 32, 1059–1076. [Google Scholar] [CrossRef]
- Jia, K.; Wei, M.; He, Y.; Wang, Y.; Wei, H.; Tao, X. Characterization of Novel Exopolysaccharides from Enterococcus hirae WEHI01 and Its Immunomodulatory Activity. Foods 2022, 11, 3538. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Li, J.; Zhang, X.; Wang, L.; Zhang, W. Pomegranate peel polyphenols inhibits inflammation in LPS-induced RAW264.7 macrophages via the suppression of MAPKs activation. J. Funct. Foods 2018, 43, 62–69. [Google Scholar] [CrossRef]
- Comalada, M.; Ballester, I.; Bailón, E.; Sierra, S.; Xaus, J.; Gálvez, J.; Medina, F.S.d.; Zarzuelo, A. Inhibition of pro-inflammatory markers in primary bone marrow-derived mouse macrophages by naturally occurring flavonoids: Analysis of the structure–activity relationship. Biochem. Pharmacol. 2006, 72, 1010–1021. [Google Scholar] [CrossRef]
- Francisco, V.; Costa, G.; Figueirinha, A.; Marques, C.; Pereira, P.; Miguel Neves, B.; Celeste Lopes, M.; García-Rodríguez, C.; Teresa Cruz, M.; Teresa Batista, M. Anti-inflammatory activity of Cymbopogon citratus leaves infusion via proteasome and nuclear factor-κB pathway inhibition: Contribution of chlorogenic acid. J. Ethnopharmacol. 2013, 148, 126–134. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, J.; Zheng, Y.; Guan, X.; Lai, C.; Gao, H.; Ho, C.-T.; Lin, B. Selenium-enriched oolong tea (Camellia sinensis) extract exerts anti-inflammatory potential via targeting NF-kB and MAPK pathways in macrophages. Food Sci. Hum. Wellness 2022, 11, 635–642. [Google Scholar] [CrossRef]
- Hommes, D.W.; Peppelenbosch, M.P.; van Deventer, S.J.H. Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets. Gut 2003, 52, 144–151. [Google Scholar] [CrossRef]
- Kim, H.G.; Yoon, D.H.; Lee, W.H.; Han, S.K.; Shrestha, B.; Kim, C.H.; Lim, M.H.; Chang, W.; Lim, S.; Choi, S.; et al. Phellinus linteus inhibits inflammatory mediators by suppressing redox-based NF-κB and MAPKs activation in lipopolysaccharide-induced RAW 264.7 macrophage. J. Ethnopharmacol. 2007, 114, 307–315. [Google Scholar] [CrossRef]
- Kim, Y.S.; Ahn, C.B.; Je, J.Y. Anti-inflammatory action of high molecular weight Mytilus edulis hydrolysates fraction in LPS-induced RAW264.7 macrophage via NF-κB and MAPK pathways. Food Chem. 2016, 202, 9–14. [Google Scholar] [CrossRef]
- Han, Y.; Wang, S.; Xiong, Y.; Tu, S.; Xiong, Z.; Li, S.; She, W.; Zhang, Y.; He, X.; Zou, S.; et al. Peroxiredoxin-1 aggravates hypoxia-induced renal injury by promoting inflammation through the TLR4/MAPK/NF-κB signaling pathway. Free Radic. Biol. Med. 2025, 236, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Sabio, G.; Davis, R.J. TNF and MAP kinase signalling pathways. Semin. Immunol. 2014, 26, 237–245. [Google Scholar] [CrossRef] [PubMed]
Resin Types | Polarity | Specific Surface Area (m2/g) | Average Pore Size (nm) | Adsorption Capacity (mg CAE/g) | Desorption Rate (%) |
---|---|---|---|---|---|
S-8 | Polar | 100–120 | 28–30 | 22.85 ± 0.11 b | 88.48 ± 0.99 b |
NKA-9 | Polar | 170–250 | 15.5–16.5 | 21.17 ± 0.41 c | 83.83 ± 0.35 d |
NKA-Ⅱ | Polar | 950–1250 | 14.5–15.5 | 29.32 ± 0.19 a | 90.50 ± 0.28 a |
DA-201 | Polar | ≥200 | 10–13 | 21.15 ± 0.52 c | 86.26 ± 0.89 c |
AB-8 | Weak polar | 480–520 | 13–14 | 22.45 ± 0.33 b | 86.12 ± 0.53 c |
HP20 | Non-polar | ≥500 | 75–80 | 21.34 ± 0.01 c | 89.39 ± 0.34 ab |
Models | Equations | Parameters | ||
---|---|---|---|---|
PFO * | In (Qe−Qt) = −1.30556 t + 2.92608 | R2 = 0.9671 | k1 = 1.3056 h−1 | Qe = 18.654 mg CAE/g |
PSO ** | t/Qt = 0.03314 t + 0.00442 | R2 = 0.9971 | k2 = 0.2485 g·mg−1·h−1 | Qe = 30.175 mg CAE/g |
No. | Rt (min) | [M-H]− (m/z) | MS Fragments (m/z) | Molecular Formula | Identification |
---|---|---|---|---|---|
Phenolic acids | |||||
2 | 4.44 | 353.0871 | 191.0554, 179.0341 | C16H18O9 | 5-Caffeoylquinic acid |
3 | 4.87 | 339.0719 | 177.0186, 161.0235 | C15H16O9 | Esculin |
5 | 5.49 | 179.0341 | 135.0440 | C9H8O4 | Caffeic acid |
6 | 5.69 | 161.0235 | 133.0284 | C9H6O3 | 7-Hydroxycoumarin |
7 | 5.89 | 353.0871 | 191.0555, 173.0447 | C16H18O9 | 3-Caffeoylquinic acid |
8 | 6.74 | 353.0871 | 191.0553 | C16H18O9 | 4-Caffeoylquinic acid |
9 | 7.51 | 367.1025 | 191.0553, 134.0358, | C17H20O9 | Feruloylquinic acid |
12 | 9.01 | 207.0657 | 163.0757 | C11H12O4 | Ethyl caffeate |
13 | 9.18 | 515.1179 | 353.0878, 173.0446 | C25H24O12 | 3,4-Dicaffeoylquinic acid |
14 | 9.52 | 515.1179 | 353.0878, 191.0553 | C25H24O12 | 3,5-Dicaffeoylquinic acid |
15 | 10.04 | 515.1179 | 353.0875, 179.0340 | C25H24O12 | 4,5-Dicaffeoylquinic acid |
17 | 12.14 | 677.1487 | 515.1185, 173.0446 | C34H30O15 | 3,4,5-Tricaffeoylquinic acid |
Flavonoids | |||||
1 | 4.01 | 301.0351 | 257.4846 | C15H10O7 | Quercetin |
4 | 5.00 | 285.0437 | 152.0106, 108.0205 | C15H10O6 | Kaempferol |
10 | 8.11 | 609.1448 | 300.0287 | C27H30O16 | Rutin |
11 | 8.61 | 463.0872 | 300.0276, 151.0028 | C21H20O12 | Hyperoside |
16 | 12.13 | 299.0555 | 284.0320, 151.0023 | C16H12O6 | Diosmetin |
18 | 12.38 | 329.0662 | 314.0436, 299.0203 | C17H14O7 | Jaceosidin |
19 | 14.36 | 313.0714 | 298.0487 | C17H14O6 | Pectolinarigenin |
Peak No. | Retention Time (min) | Identification | Standard Curve | R2 | Content (mg/g DW) |
---|---|---|---|---|---|
1 | 6.218 | 5-CQA | y = 24,700 x + 979 | 0.999977 | 17.39 ± 0.24 |
2 | 10.547 | 3-CQA | y = 30,000 x – 32,900 | 0.999945 | 113.35 ± 1.26 |
3 | 11.078 | 4-CQA | y = 30,800 x − 8190 | 0.999987 | 17.14 ± 0.34 |
4 | 15.972 | 3,4-diCQA | y = 30,900 x – 40,300 | 0.999975 | 75.52 ± 0.53 |
5 | 16.563 | 3,5-diCQA | y = 37,300 x – 56,900 | 0.999968 | 54.21 ± 0.28 |
6 | 16.951 | 4,5-diCQA | y = 34,500 x − 6460 | 0.999984 | 11.37 ± 0.13 |
7 | 19.800 | 3,4,5-triCQA | y = 30,000 x – 92,700 | 0.999208 | 9.03 ± 0.10 |
Sum | 298.01 ± 2.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhang, L.; Gao, F.; Yang, S.; Deng, Q.; Shi, K.; Li, S. Purification, Composition, and Anti-Inflammatory Activity of Polyphenols from Sweet Potato Stems and Leaves. Foods 2025, 14, 2903. https://doi.org/10.3390/foods14162903
Zhang H, Zhang L, Gao F, Yang S, Deng Q, Shi K, Li S. Purification, Composition, and Anti-Inflammatory Activity of Polyphenols from Sweet Potato Stems and Leaves. Foods. 2025; 14(16):2903. https://doi.org/10.3390/foods14162903
Chicago/Turabian StyleZhang, Huanhuan, Ling Zhang, Feihu Gao, Shixiong Yang, Qian Deng, Kaixin Shi, and Sheng Li. 2025. "Purification, Composition, and Anti-Inflammatory Activity of Polyphenols from Sweet Potato Stems and Leaves" Foods 14, no. 16: 2903. https://doi.org/10.3390/foods14162903
APA StyleZhang, H., Zhang, L., Gao, F., Yang, S., Deng, Q., Shi, K., & Li, S. (2025). Purification, Composition, and Anti-Inflammatory Activity of Polyphenols from Sweet Potato Stems and Leaves. Foods, 14(16), 2903. https://doi.org/10.3390/foods14162903