Research on Physicochemical Properties and In Vitro Digestive Characteristics of High-Amylose Corn Starch–Ultrasound-Treated Waxy Rice Flour Blends
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pre-Treatment of Raw Materials
2.3. Amylose Content of HACS-UWRF Blends
2.4. Water Solubility Index and Swelling Potential of HACS-UWRF Blends
2.5. DSC of HACS-UWRF Blends
2.6. RVA of HACS-UWRF Blends
2.7. Rheological Properties of HACS-UWRF Blends
2.7.1. Determination of Dynamic Viscoelastic Properties
2.7.2. Determination of Static Rheological Properties
2.8. FTIR of HACS-UWRF Blends
2.9. X-Ray Diffraction (XRD) Patterns of HACS-UWRF Blends
2.10. SEM Analysis of HACS-UWRF Blends
2.11. Particle Size Distribution of HACS-UWRF Blends
2.12. In Vitro Digestion of HACS-UWRF Blends
2.13. Statistical Analysis
3. Results and Discussion
3.1. Effect of HACS Addition on the Amylose Content, Water Solubility Index and Swelling Power in HACS-UWRF Blends
3.2. Effect of HACS Addition on Thermodynamic Properties of HACS-UWRF Blends
3.3. Effect of HACS Addition on Gelatinization Properties of HACS-UWRF Blends
3.4. Effect of HACS Addition on the Rheological Properties of HACS-UWRF
3.4.1. Effect of HACS Addition on the Dynamic Viscoelastic Properties of HACS-UWRF Blends
3.4.2. Effect of HACS Addition on the Static Rheological Properties of HACS-UWRF Blends
3.5. Effect of HACS Addition on the Short-Range Ordered Structure of HACS-UWRF Blends
3.6. Effect of HACS Addition on the Crystalline Structure of HACS-UWRF Blends
3.7. Effect of HACS Addition on the Microstructure of HACS-UWRF Blends
3.8. Effect of HACS Addition on Particle Size Distribution of HACS-UWRF Blends
3.9. Effect of HACS Addition on the In Vitro Digestive Characteristics of Rice Cake
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, Y.Y.; Hao, Z.W.; Wang, B.X.; Deng, C.Y.; Hu, J.W.; Bian, Y.R. Effects of two celery fibers on the structural properties and digestibility of glutinous rice starch: A comparative study. Int. J. Biol. Macromol. 2024, 264, 130776. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.X.; Guo, M.L.; Li, Z.M.; Ye, H.; Guo, Y.X. Effects of hydrothermal and enzymatic treatments on the in vitro digestibility and glycemic index of glutinous rice flour. J. Food Saf. Qual. 2022, 13, 2252–2257. [Google Scholar]
- Chen, L.L.; Song, J.Q.; Li, W.; Wang, L.; Zheng, F.M.; Yang, X.Y. Research progress on the effects of non-thermal processing technologies on the structural properties of starch. Food Sci. 2023, 44, 380–393. [Google Scholar]
- Wei, Y.Y.; Li, G.T.; Zhu, F. Impact of long-term ultrasound treatment on structural and physicochemical properties of starches differing in granule size. Carbohydr. Polym. 2023, 320, 121195. [Google Scholar] [CrossRef]
- Yang, M.T.; Shen, S.M.; Shen, S.Q.; Kong, X.L. Effects of ultrasonic treatment on the structure and digestibility of glutinous and non-glutinous rice starches. J. Nucl. Agric. Sci. 2020, 34, 556–563. [Google Scholar]
- Flores-Silva, P.C.; Alvarez-Ramirez, J.; Bello-Perez, L.A. Effect of dual modification order with ultrasound and hydrothermal treatments on starch digestibility. Starch-Stärke 2018, 70, 1700284. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, Y.X.; Yang, Y.C.; Lin, J.C.; Wang, D.X.; Guo, Y.X. Current Research Status and Advances in Low Glycemic Index Foods. Sci. Technol. Food Ind. 2025, 1–16. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, Y.C.; Gui, Y.W.; Wang, D.X.; Guo, Y.X.; Deng, J. Effects of ultrasonic treatment on the digestibility of glutinous rice flour and optimization of processes to reduce its glycemic index. Sci. Technol. Food Ind. 2024, 45, 215–222. [Google Scholar]
- Li, H.T.; Gidley, M.J.; Dhital, S. High-amylose starches to bridge the “Fiber Gap”: Development, structure, and nutritional functionality. Compr. Rev. Food Sci. Food Saf. 2019, 18, 362–379. [Google Scholar] [CrossRef]
- Ma, M.T.; Li, Z.J.; Yang, F.; Wu, H.X.; Huang, W.Y.; Sui, Z.Q. Use of heat-moisture treated maize starch to modify the properties of wheat flour and the quality of noodles. Int. J. Food Sci. Technol. 2021, 56, 3607–3617. [Google Scholar] [CrossRef]
- Yuan, T.Z.; Ai, Y.F. Gelatinization and gelation behaviors and in vitro digestibility of high-amylose maize starch blended with wheat or potato starch evaluated at different heating temperatures. Food Hydrocoll. 2022, 131, 107783. [Google Scholar] [CrossRef]
- Gu, Y.C.; Cheng, L.; Li, C.M.; Li, Z.F.; Gu, Z.B.; Hong, Y. Effects of wheat flour substitution with high-amylose corn flour on the quality of dough and Chinese steamed bread. Starch-Stärke 2023, 75, 11–12. [Google Scholar] [CrossRef]
- Wang, D.X.; Guo, M.L.; Liu, Y.R.; Guo, Y.; Ye, H.; Guo, Y.X. Effects of hydrothermal treatment on the glycemic index and related indices of glutinous rice flour. Sci. Technol. Food Ind. 2023, 44, 253–259. [Google Scholar]
- GB/T 15683-2025; Inspection of Grain and Oils–Determination of Amylose Content in Rice. Standardization Administration of China: Beijing, China, 2025.
- Derycke, V.; Veraverbeke, W.S.; Vandeputte, G.E.; De Man, W.; Hoseney, R.C.; Delcour, J.A. Impact of protein on gelatinization and cooking properties of nonparboiled and parboiled rice. Cereal Chem. 2005, 82, 468–474. [Google Scholar] [CrossRef]
- Kong, X.L.; Bao, J.S.; Corke, H. Physical properties of Amaranthus starch. Food Chem. 2009, 113, 371–376. [Google Scholar] [CrossRef]
- Gong, B.; Cheng, L.L.; Gilbert, R.G.; Li, C. Distribution of short to medium amylose chains are major controllers of in vitro digestion of retrograded rice starch. Food Hydrocoll. 2019, 96, 634–643. [Google Scholar] [CrossRef]
- Yang, K.; Luo, X.H.; Zhai, Y.H.; Liu, J.; Chen, K.H.; Shao, X.F. Influence of sodium alginate on the gelatinization, rheological, and retrogradation properties of rice starch. Int. J. Biol. Macromol. 2021, 185, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; Li, Q.P.; Chen, H.; Zeng, Y.L.; Li, B.; Zhong, X.Y. Relationship between chalkiness and the structural and thermal properties of rice starch after shading during grain-filling stage. Carbohydr. Polym. 2021, 252, 117212. [Google Scholar] [CrossRef]
- Englyst, H.N.; Kingman, S.M.; Cummings, J.H. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 1992, 46 (Suppl. 2), S33–S50. [Google Scholar]
- Li, W.H.; Wu, G.L.; Luo, Q.G.; Jiang, H.; Zheng, J.M.; Ouyang, S.H. Effects of removal of surface proteins on physicochemical and structural properties of A- and B-starch isolated from normal and waxy wheat. J. Food Sci. Technol. 2016, 53, 2673–2685. [Google Scholar] [CrossRef]
- Zou, P.L.; Zhang, J.L.; Li, Z.; Zhang, L.X.; Zhou, B.; Wu, W.J.; Chu, S. Relationship between molecular structure and gelling properties of rice starch from different production regions. Food Sci. 2025, 46, 39–50. [Google Scholar]
- Chen, S.Y.; Long, J.W.; Liang, J.F. Research progress on staple food innovation and development with low glycemic index. Food Res. Dev. 2025, 46, 218–224. [Google Scholar]
- Zhang, X.D.; Guo, D.W.; Xue, J.Q.; Yanniotis, S.; Mandala, I. The effect of salt concentration on swelling power, rheological properties and saltiness perception of waxy, normal and high amylose maize starch. Food Funct. 2017, 8, 3792–3802. [Google Scholar] [CrossRef] [PubMed]
- Vela, A.J.; Villanueva, M.; García Solaesa, Á.; Ronda, F. Impact of high-intensity ultrasound waves on structural, functional, thermal and rheological properties of rice flour and its biopolymers structural features. Food Hydrocoll. 2021, 113, 106480. [Google Scholar] [CrossRef]
- He, D.; Li, Y.; Wu, Y.L. Effects of faba bean starch and high amylose corn starch on quality of potato vermicelli. China Condiment 2023, 48, 66–72. [Google Scholar]
- Liu, F.Y.; Yang, Z.; Guo, X.N.; Xing, J.J.; Zhu, K.X. Influence of protein type, content and polymerization on in vitro starch digestibility of sorghum noodles. Food Res. Int. 2021, 142, 110199. [Google Scholar] [CrossRef]
- Cai, C.H.; Zhao, L.X.; Huang, J.; Chen, Y.F.; Wei, C.X. Morphology, structure and gelatinization properties of heterogeneous starch granules from high-amylose maize. Carbohydr. Polym. 2014, 102, 606–614. [Google Scholar] [CrossRef]
- Chang, L.; Zhao, N.; Jiang, F.; Ji, X.H.; Feng, B.L.; Liang, J.B.; Yu, X.Z.; Du, S.K. Structure, physicochemical, functional and in vitro digestibility properties of non-waxy and waxy proso millet starches. Int. J. Biol. Macromol. 2023, 224, 594–603. [Google Scholar] [CrossRef]
- Cai, J.W.; Man, J.M.; Huang, J.; Liu, Q.Q.; Wei, W.X.; Wei, C.X. Relationship between structure and functional properties of normal rice starches with different amylose contents. Carbohydr. Polym. 2015, 125, 35–44. [Google Scholar] [CrossRef]
- Zheng, Y.X.; Ou, Y.J.; Zhang, Y.; Zheng, B.D.; Zeng, H.L.; Zeng, S.X. Physicochemical properties and in vitro digestibility of lotus seed starch-lecithin complexes prepared by dynamic high pressure homogenization. Int. J. Biol. Macromol. 2020, 156, 196–203. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Gong, L.J.; Zhaxinima; Li, Y.J.; Zheng, X.R.; Yuan, P.Y.; Deng, X. Effect of starch content on gelatinization properties of wine corn. Food Res. Dev. 2025, 46, 57–62. [Google Scholar]
- Shar, T.; Ali, U.; Fiaz, S.; Sheng, Z.H.; Wei, X.J.; Xie, L.H. Mapping quantitative trait loci associated with starch paste viscosity attributes by using double haploid populations of rice (Oryza sativa L.). J. Integr. Agric. 2020, 19, 1691–1703. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, D.W.; Zheng, X.; Xu, Q.Y.; Dong, H.Y.; Chen, M.X.; Shao, Y.F. Starch digestion characteristics and hypoglycemic activity of brown rice. Sci. Agric. Sin. 2025, 58, 2439–2452. [Google Scholar]
- Zhu, D.W.; Zheng, X.; Yu, J.; Mou, R.X.; Chen, M.X.; Shao, Y.F.; Zhang, L.P. Differences in physicochemical characteristics and eating quality between high taste northern Japonica rice and southern Semi-Glutinous Japonica rice varieties in China. Sci. Agric. Sin. 2024, 57, 469–483. [Google Scholar]
- Wang, H.W.; Yu, Y.P.; Zhang, J.; Zhang, Y.Y.; Liu, X.L.; Zhang, H. Effect of frozen storage on microstructure and physicochemical properties of waxy corn starch. Food Sci. 2022, 43, 35–40. [Google Scholar]
- Qian, X.J.; Sun, B.H.; Gu, Y.J.; Ma, S.; Wang, X.X. Enhancing the quality of steamed oat cake by partially gelatinized starch in oat flour and its molecular mechanism. Int. J. Biol. Macromol. 2023, 238, 124139. [Google Scholar] [CrossRef]
- Luo, Y.M.; Zhou, Y.H.; Xiao, N.; Xie, X.N.; Li, L. Partial gelatinization treatment affects the structural, gelatinization, and retrogradation characteristics of maize starch-dietary fiber complexes. Food Res. Int. 2025, 202, 115799. [Google Scholar] [CrossRef] [PubMed]
- Perez-Orozco, J.P.; Sanchez-Herrera, L.M.; Ortiz-Basurto, R.I. Effect of concentration, temperature, pH, co-solutes on the rheological properties of Hyptis suaveolens L. mucilage dispersions. Food Hydrocoll. 2019, 87, 297–306. [Google Scholar] [CrossRef]
- Xiao, W.H.; Shen, M.Y.; Ren, Y.M.; Wen, H.L.; Li, J.W.; Rong, L.Y.; Liu, W.M.; Xie, J.H. Controlling the pasting, rheological, gel, and structural properties of corn starch by incorporation of debranched waxy corn starch. Food Hydrocoll. 2022, 123, 107136. [Google Scholar] [CrossRef]
- Chandak, A.; Dhull, S.B.; Chawla, P.; Goksen, G.; Rose, P.K.; Al Obaid, S.; Ansari, M.J. Lotus (Nelumbo nucifera G.) seed starch: Understanding the impact of physical modification sequence (ultrasonication and HMT) on properties and in vitro digestibility. Int. J. Biol. Macromol. 2024, 278, 135032. [Google Scholar] [CrossRef]
- Moreira, R.; Chenlo, F.; Torres, M.D.; Glazer, J. Rheological properties of gelatinized chestnut starch dispersions: Effect of concentration and temperature. J. Food Eng. 2012, 112, 94–99. [Google Scholar] [CrossRef]
- Wang, Y.; Han, S.J.; Hao, Z.W.; Gu, Z.Y.; Li, C.; Wu, Z.J.; Zhao, Z.Y.; Xiao, Y.Q.; Liu, Y.N.; Liu, K.; et al. Preparation of the black rice starch-gallic acid complexes by ultrasound treatment: Physicochemical properties, multiscale structure, and in vitro digestibility. Int. J. Biol. Macromol. 2024, 263, 130331. [Google Scholar] [CrossRef]
- Dangi, N.; Yadav, B.S.; Yadav, R.B. Pasting, rheological, thermal and gel textural properties of pearl millet starch as modified by guar gum and its acid hydrolysate. Int. J. Biol. Macromol. 2019, 139, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.D.; Yang, D.Y.; Lai, S.J.; Yang, H.S. Rheological properties of xanthan-modified fish gelatin and its potential to replace mammalian gelatin in low-fat stirred yogurt. LWT-Food Sci. Technol. 2021, 147, 111643. [Google Scholar] [CrossRef]
- Chang, L.; Li, X.Y.; Yao, Y.; Li, M.Q.; Niu, R.M.; Du, S.K. Structural and physicochemical properties of starch from non-waxy and waxy proso millets. Food Sci. 2025, 46, 88–94. [Google Scholar]
- Li, W.; Zheng, J.; Chen, Y.H.; Zhang, F.S. Effects of ultrasonic treatment on gelatinization, rheological and textural properties of pea starch. Food Mach. 2018, 34, 32–37. [Google Scholar]
- Li, H.Y.; Prakash, S.; Nicholson, T.M.; Fitzgerald, M.A.; Gilbert, R.G. The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chem. 2016, 196, 702–711. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, H.H.; Wang, Y.S.; Huang, J.; Shang, M.S. Digestion properties of sodium alginate-high amylose corn starch-conjugated linoleic acid ternary complex. Mod. Food Sci. Technol. 2016, 32, 100–105+110. [Google Scholar]
- Li, C.L.; Dhital, S.; Gidley, M.J. High-amylose wheat tortillas with reduced in vitro digestion and enhanced resistant starch content. Food Hydrocoll. 2022, 137, 108321. [Google Scholar] [CrossRef]
- Zhang, B.J.; Li, X.X.; Liu, J.; Xie, F.W.; Chen, L. Supramolecular structure of A- and B-type granules of wheat starch. Food Hydrocoll. 2013, 31, 68–73. [Google Scholar] [CrossRef]
- Kim, A.N.; Rahman, M.S.; Lee, K.Y.; Choi, S.G. Superheated steam pretreatment of rice flours: Gelatinization behavior and functional properties during thermal treatment. Food Biosci. 2021, 41, 101013. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, Z.; Wu, Y.Y.; Prakash, S.; Wan, J. Dissolution behaviour of corn starch with different amylose content in ionic liquids. Int. J. Biol. Macromol. 2023, 228, 207–215. [Google Scholar] [CrossRef]
- Zeng, F.; Ma, F.; Kong, F.S.; Gao, Q.Y.; Yu, S.J. Physicochemical properties and digestibility of hydrothermally treated waxy rice starch. Food Chem. 2015, 172, 92–98. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Xu, X.; Zhang, L.H.; Meng, L.H.; Tang, X.Z. Effects of high-amylose corn starch addition on the structure, cooking quality, and digestibility of extruded buckwheat noodles. Food Sci. 2023, 44, 116–124. [Google Scholar]
- Wang, S.J.; Chao, C.; Cai, J.J.; Niu, B.; Copeland, L.; Wang, S. Starch-lipid and starch-lipid-protein complexes: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1056–1079. [Google Scholar] [CrossRef] [PubMed]
- Guo, A.L.; Zhou, X.H.; Yao, Y.Y.; Zhao, G.M.; Liu, M.Y.; Zhou, C.X.; Li, H.J. Physicochemical properties and starch quality of different corn varieties. J. Chin. Cereals Oils Assoc. 2022, 37, 39–47. [Google Scholar]
- Fashi, A.; Delavar, A.F.; Zamani, A.; Noshiranzadeh, N.; Zahraei, H. Study on structural and physicochemical properties of modified corn starch: Comparison of ultrasound, stirring, and lactic acid treatments. Starch-Stärke 2023, 75, 2200109. [Google Scholar] [CrossRef]
- Huang, J.H.; Wang, Z.; Fan, L.; Ma, S. A review of wheat starch analyses: Methods, techniques, structure and function. Int. J. Biol. Macromol. 2022, 203, 130–142. [Google Scholar] [CrossRef]
- Wang, K.; Wang, W.H.; Ye, R.; Xiao, J.D.; Liu, Y.W.; Ding, J.S.; Zhang, S.J.; Liu, A.J. Mechanical and barrier properties of maize starch-gelatin composite films: Effects of amylose content. J. Sci. Food Agric. 2017, 97, 3613–3622. [Google Scholar] [CrossRef]
- Lv, X.X.; Hong, Y.; Zhou, Q.W.; Jiang, C.C. Structural features and digestibility of corn starch with different amylose content. Front. Nutr. 2021, 8, 692673. [Google Scholar] [CrossRef]
- Yang, Z.L.; Zhang, Y.Y.; Wu, Y.W.; Ouyang, J. Factors influencing the starch digestibility of starchy foods: A review. Food Chem. 2023, 406, 135009. [Google Scholar] [CrossRef]
- Jin, Y.L. Research progress on determination methods and influencing factors of GI value and the physiological functions of low GI foods. Mod. Food Sci. Technol. 2024, 40, 350–360. [Google Scholar]
HACS Addition/% | Amylose Content (%) | WSI (%) | SP (%) |
---|---|---|---|
0 | 3.82 ± 0.30 g | 22.90 ± 0.75 a | 19.63 ± 0.54 a |
5 | 7.09 ± 0.12 f | 18.43 ± 0.49 b | 18.35 ± 1.77 ab |
10 | 9.47 ± 0.28 e | 14.72 ± 0.97 c | 17.49 ± 0.79 bc |
15 | 11.75 ± 0.52 d | 12.00 ± 0.01 d | 16.22 ± 0.72 cd |
20 | 12.67 ± 0.21 c | 10.37 ± 0.15 e | 16.03 ± 0.38 cd |
25 | 14.99 ± 0.30 b | 8.70 ± 0.26 f | 15.12 ± 0.22 de |
30 | 16.78 ± 0.87 a | 6.17 ± 0.15 g | 14.02 ± 0.38 e |
HACS Addition/% | To (°C) | Tp (°C) | Tc (°C) | ΔH (J/g) |
---|---|---|---|---|
0 | 62.23 ± 0.12 g | 86.55 ± 0.37 g | 95.43 ± 0.30 f | 14.82 ± 0.52 g |
5 | 74.37 ± 0.18 f | 93.54 ± 0.21 f | 105.52 ± 0.35 e | 16.23 ± 2.55 f |
10 | 76.35 ± 0.27 e | 98.29 ± 0.26 e | 106.66 ± 0.20 d | 16.91 ± 0.49 e |
15 | 78.30 ± 0.24 d | 100.33 ± 0.46 d | 109.35 ± 0.36 c | 17.26 ± 0.40 d |
20 | 84.60 ± 0.33 c | 102.15 ± 0.90 c | 112.56 ± 0.31 b | 17.55 ± 2.46 c |
25 | 87.46 ± 0.22 b | 103.39 ± 0.48 b | 114.44 ± 0.32 a | 17.71 ± 0.77 b |
30 | 92.74 ± 0.11 a | 105.23 ± 0.38 a | 114.79 ± 0.22 a | 18.34 ± 1.00 a |
HACS Addition/% | PV/ (mPa·s) | TV/ (mPa·s) | FV/ (mPa·s) | BD/ (mPa·s) | SB/ (mPa·s) |
---|---|---|---|---|---|
0 | 3386.00 ± 54.00 a | 1781.50 ± 35.50 a | 2387.50 ± 37.50 a | 1604.50 ± 18.50 a | 606.00 ± 2.00 a |
5 | 3090.00 ± 3.00 b | 1756.50 ± 7.50 a | 2268.00 ± 7.00 b | 1333.50 ± 10.50 b | 511.50 ± 0.50 b |
10 | 2825.00 ± 10.00 c | 1599.50 ± 2.50 c | 2048.50 ± 2.50 d | 1225.50 ± 12.50 c | 449.00 ± 5.00 cd |
15 | 2761.00 ± 8.00 d | 1635.50 ± 8.50 b | 2091.50 ± 2.50 c | 1125.50 ± 16.50 d | 456.00 ± 6.00 c |
20 | 2586.50 ± 6.50 e | 1577.00 ± 8.00 c | 2016.50 ± 0.50 e | 1009.50 ± 14.50 e | 439.50 ± 7.50 d |
25 | 2521.50 ± 14.40 f | 1586.00 ± 10.00 c | 2003.00 ± 1.00 e | 935.50 ± 4.50 f | 417.00 ± 9.00 e |
30 | 2317.50 ± 10.50 g | 1502.00 ± 2.00 d | 1897.00 ± 9.00 f | 815.50 ± 8.50 g | 395.00 ± 7.00 f |
HACS Addition/% | G′ | G″ | Tanδ |
---|---|---|---|
0 | 17.28 ± 0.10 f | 8.71 ± 0.03 c | 0.5 ± 0.00 ab |
5 | 18.18 ± 0.54 e | 8.66 ± 0.03 c | 0.48 ± 0.00 c |
10 | 19.32 ± 0.23 d | 8.77 ± 0.35 c | 0.45 ± 0.00 d |
15 | 19.81 ± 0.06 cd | 9.08 ± 0.23 c | 0.46 ± 0.01 d |
20 | 20.22 ± 0.13 c | 9.92 ± 0.09 b | 0.49 ± 0.00 bc |
25 | 21.24 ± 0.54 b | 10.80 ± 0.18 a | 0.51 ± 0.02 a |
30 | 23.00 ± 0.12 a | 11.19 ± 0.35 a | 0.49 ± 0.01 c |
HACS Addition/% | R1047 cm−1/1022 cm−1 | R1022 cm−1/995 cm−1 |
---|---|---|
0 | 0.69 ± 0.00 e | 2.60 ± 0.00 a |
5 | 0.73 ± 0.01 d | 2.38 ± 0.00 b |
10 | 0.74 ± 0.00 d | 2.19 ± 0.00 c |
15 | 0.80 ± 0.00 c | 2.16 ± 0.00 d |
20 | 0.80 ± 0.00 c | 2.05 ± 0.00 e |
25 | 0.85 ± 0.01 b | 1.67 ± 0.00 f |
30 | 0.97 ± 0.04 a | 1.50 ± 0.03 g |
HACS Addition/% | D10 (μm) | D50 (μm) | D90 (μm) | D (4,3) (μm) | D (3,2) (μm) |
---|---|---|---|---|---|
0 | 1.98 ± 0.01 c | 7.05 ± 0.03 d | 636.50 ± 6.34 b | 118.13 ± 2.37 b | 4.78 ± 0.02 d |
5 | 2.11 ± 0.02 a | 8.13 ± 0.12 a | 634.07 ± 7.54 b | 119.20 ± 2.72 ab | 5.24 ± 0.05 a |
10 | 2.04 ± 0.00 b | 7.36 ± 0.03 c | 640.13 ± 0.50 ab | 119.30 ± 0.20 ab | 4.92 ± 0.01 c |
15 | 2.06 ± 0.01 b | 7.52 ± 0.09 b | 636.20 ± 7.11 b | 119.37 ± 3.96 ab | 5.00 ± 0.05 b |
20 | 2.12 ± 0.01 a | 8.03 ± 0.06 a | 636.0 ± 9.66 b | 120.27 ± 3.77 ab | 5.25 ± 0.03 a |
25 | 2.06 ± 0.01 b | 7.36 ± 0.05 c | 642.73 ± 8.40 ab | 122.10 ± 3.55 ab | 4.95 ± 0.03 bc |
30 | 1.96 ± 0.01 d | 7.04 ± 0.04 d | 649.60 ± 1.85 a | 124.20 ± 0.92 a | 4.78 ± 0.02 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Guo, Y.; Zhu, Z.; Ding, Y.; Yang, Y.; Wang, D.; Li, Z.; Guo, Y.; Chen, X. Research on Physicochemical Properties and In Vitro Digestive Characteristics of High-Amylose Corn Starch–Ultrasound-Treated Waxy Rice Flour Blends. Foods 2025, 14, 2920. https://doi.org/10.3390/foods14162920
Wang Y, Guo Y, Zhu Z, Ding Y, Yang Y, Wang D, Li Z, Guo Y, Chen X. Research on Physicochemical Properties and In Vitro Digestive Characteristics of High-Amylose Corn Starch–Ultrasound-Treated Waxy Rice Flour Blends. Foods. 2025; 14(16):2920. https://doi.org/10.3390/foods14162920
Chicago/Turabian StyleWang, Yuxing, Yu Guo, Zhiting Zhu, Yan Ding, Yuchan Yang, Dongxu Wang, Zhanming Li, Yuanxin Guo, and Xiaoman Chen. 2025. "Research on Physicochemical Properties and In Vitro Digestive Characteristics of High-Amylose Corn Starch–Ultrasound-Treated Waxy Rice Flour Blends" Foods 14, no. 16: 2920. https://doi.org/10.3390/foods14162920
APA StyleWang, Y., Guo, Y., Zhu, Z., Ding, Y., Yang, Y., Wang, D., Li, Z., Guo, Y., & Chen, X. (2025). Research on Physicochemical Properties and In Vitro Digestive Characteristics of High-Amylose Corn Starch–Ultrasound-Treated Waxy Rice Flour Blends. Foods, 14(16), 2920. https://doi.org/10.3390/foods14162920