Background/Objectives: The aim of this study was to investigate the effects of periodontal blood flow on the periapical region during various endodontic disinfection procedures. The hypothesis that periodontal blood flow reduces the increase in root surface temperature during disinfection procedures was tested.
Methods: One hundred and twenty extracted human teeth were shortened to 11 mm and the root canal was prepared using the F4 ProTaper Gold system. The specimens were covered with wax and then sealed in a thermoforming sheet, leaving a gap of 0.2 mm. Cannulas were attached to simulate stable fluid circulation. Thermographic evaluation was carried out using an infrared camera. The following methods were chosen for disinfection: I, λ445 nm diode laser (0.6 W, cw); II, λ445 nm diode laser, 3 W, pulsed, duty cycle 50%, 10 Hz; III, λ445 nm diode laser, 3 W, pulsed, duty cycle 75%, 10 Hz; IV, λ970 nm diode laser, 2 W, pulsed, duty cycle 50%, 10 Hz; V, λ970 nm diode laser, 2 W, pulsed, duty cycle 75%, 10 Hz; VI, experimental plasma device (2.5 W, 3.7 V); VII, heat plugger (200.0 °C); VIII, NaOCl 3% (60 °C). The results were analyzed statistically using the Kruskal–Wallis test. When there were significant differences between the groups (
p < 0.05), the pairwise Mann–Whitney test with sequential Bonferroni correction was applied.
Results: The smallest temperature changes, with a median value of 0.82 °C (max. 2.02 °C, min. 0.15 °C, IQR 0.87 °C), were observed using the laser at a setting of λ445 nm, 0.6 W cw, and a circulation rate of 6 mL/min. The highest temperature changes were measured at a fluid circulation rate of 0 mL/min with a laser setting of λ445 nm, 3 W, pulsed, duty cycle 75% with a median value of 21.7 °C (max. 25.02 °C, min. 20.29 °C, IQR 2.04 °C).
Conclusions: Disinfection procedures with laser, NaOCl, and an experimental plasma device can lead to an increase in root surface temperature. With the exception of the heat plugger, no significant temperature changes were observed. This study was conducted in vitro, which may limit the direct applicability of the results to clinical scenarios. Nevertheless, the simulation of blood flow showed a thermally protective effect, suggesting that clinical protocols should consider this variable when selecting thermal disinfection methods. These results support the hypothesis that periodontal blood flow may have a potentially positive influence on temperature changes during disinfection procedures.
Full article