Cardiac Edema Is Associated with White Matter Hyperintensities in Patients with Inflammatory Arthritides: A Combined Brain/Heart MRI Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Control Groups
2.2. Combined Brain/Heart Magnetic Resonance Imaging
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanghavi, N.; Ingrassia, J.P.; Korem, S.; Ash, J.; Pan, S.; Wasserman, A. Cardiovascular Manifestations in Rheumatoid Arthritis. Cardiol. Rev. 2024, 32, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Süß, P.; Rothe, T.; Hoffmann, A.; Schlachetzki, J.C.M.; Winkler, J. The Joint-Brain Axis: Insights From Rheumatoid Arthritis on the Crosstalk Between Chronic Peripheral Inflammation and the Brain. Front. Immunol. 2020, 11, 612104. [Google Scholar] [CrossRef]
- Gabriel, S.E. Why do people with rheumatoid arthritis still die prematurely? Ann. Rheum. Dis. 2008, 67 (Suppl. S3), iii30–iii34. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Ma, W.; Liu, H.; Li, C.; Zhang, Y.; Liu, J.; Liang, Y.; Zhang, S.; Wu, Z.; Zang, C.; et al. Stroke risk in arthritis: A systematic review and meta-analysis of cohort studies. PLoS ONE 2021, 16, e0248564. [Google Scholar] [CrossRef]
- Peters, M.J.; Symmons, D.P.; McCarey, D.; Dijkmans, B.A.; Nicola, P.; Kvien, T.K.; McInnes, I.B.; Haentzschel, H.; Gonzalez-Gay, M.A.; Provan, S.; et al. EULAR evidence-based recommendations for cardiovascular risk management in patients with rheumatoid arthritis and other forms of inflammatory arthritis. Ann. Rheum. Dis. 2010, 69, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Yurkovich, M.; Vostretsova, K.; Chen, W.; Aviña-Zubieta, J.A. Overall and cause-specific mortality in patients with systemic lupus erythematosus: A meta-analysis of observational studies. Arthritis Care Res. 2014, 66, 608–616. [Google Scholar] [CrossRef]
- Wardlaw, J.M.; Smith, C.; Dichgans, M. Mechanisms of sporadic cerebral small vessel disease: Insights from neuroimaging. Lancet Neurol. 2013, 12, 483–497. [Google Scholar] [CrossRef]
- Conen, D.; Rodondi, N.; Müller, A.; Beer, J.H.; Ammann, P.; Moschovitis, G.; Auricchio, A.; Hayoz, D.; Kobza, R.; Shah, D.; et al. Relationships of Overt and Silent Brain Lesions with Cognitive Function in Patients with Atrial Fibrillation. J. Am. Coll. Cardiol. 2019, 73, 989–999. [Google Scholar] [CrossRef]
- Wiseman, S.J.; Ralston, S.H.; Wardlaw, J.M. Cerebrovascular Disease in Rheumatic Diseases: A Systematic Review and Meta-Analysis. Stroke 2016, 47, 943–950. [Google Scholar] [CrossRef]
- Mavrogeni, S.; Pepe, A.; Nijveldt, R.; Ntusi, N.; Sierra-Galan, L.M.; Bratis, K.; Wei, J.; Mukherjee, M.; Markousis-Mavrogenis, G.; Gargani, L.; et al. Cardiovascular magnetic resonance in autoimmune rheumatic diseases: A clinical consensus document by the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2022, 23, e308–e322. [Google Scholar] [CrossRef]
- Markousis-Mavrogenis, G.; Mitsikostas, D.D.; Koutsogeorgopoulou, L.; Dimitroulas, T.; Katsifis, G.; Argyriou, P.; Apostolou, D.; Velitsista, S.; Vartela, V.; Manolopoulou, D.; et al. Combined Brain-Heart Magnetic Resonance Imaging in Autoimmune Rheumatic Disease Patients with Cardiac Symptoms: Hypothesis Generating Insights from a Cross-sectional Study. J. Clin. Med. 2020, 9, 447. [Google Scholar] [CrossRef]
- Fulton, W.F. Arterial Anastomoses in the Coronary Circulation. I. Anatomical Features in Normal and Diseased Hearts Demonstrated by Stereoarteriography. Scott. Med. J. 1963, 143, 420–434. [Google Scholar] [CrossRef] [PubMed]
- Moroni, F.; Ammirati, E.; Hainsworth, A.H.; Camici, P.G. Association of White Matter Hyperintensities and Cardiovascular Disease: The Importance of Microcirculatory Disease. Circ. Cardiovasc. Imaging 2020, 13, e010460. [Google Scholar] [CrossRef]
- Noel Bairey Merz Pepine, C.J.; Walsh, M.N.; Fleg, J.L. Ischemia and No Obstructive Coronary Artery Disease (INOCA): Developing Evidence-Based Therapies and Research Agenda for the Next Decade. Circulation 2017, 135, 1075–1092. [Google Scholar] [CrossRef] [PubMed]
- Pantoni, L. Cerebral small vessel disease: From pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010, 9, 689–701. [Google Scholar] [CrossRef]
- Markousis-Mavrogenis, G.; Pepe, A.; Lupi, A.; Apostolou, D.; Argyriou, P.; Velitsista, S.; Vartela, V.; Quaia, E.; Mavrogeni, S.I. Combined brain-heart MRI identifies cardiac and white matter lesions in patients with systemic lupus erythematosus and/or antiphospholipid syndrome: A pilot study. Eur. J. Radiol. 2024, 176, 111500. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.M.; Schulz-Menger, J.; Holmvang, G.; Kramer, C.M.; Carbone, I.; Sechtem, U.; Kindermann, I.; Gutberlet, M.; Cooper, L.T.; Liu, P.; et al. Cardiovascular Magnetic Resonance in Nonischemic Myocardial Inflammation: Expert Recommendations. J. Am. Coll. Cardiol. 2018, 72, 3158–3176. [Google Scholar] [CrossRef]
- André, R.; Cottin, V.; Saraux, J.L.; Blaison, G.; Bienvenu, B.; Cathebras, P.; Dhote, R.; Foucher, A.; Gil, H.; Lapoirie, J.; et al. Central nervous system involvement in eosinophilic granulomatosis with polyangiitis (Churg-Strauss): Report of 26 patients and review of the literature. Autoimmun. Rev. 2017, 16, 963–969. [Google Scholar] [CrossRef]
- González-Suárez, I.; Arpa, J.; Ríos-Blanco, J.J. Brain microvasculature involvement in ANCA positive vasculitis. Cerebrovasc. Dis. 2016, 41, 313–321. [Google Scholar] [CrossRef]
- Rodrigues, M.; Galego, O.; Costa, C.; Jesus, D.; Carvalho, P.; Santiago, M.; Malcata, A.; Inês, L. Central nervous system vasculitis in systemic lupus erythematosus: A case series report in a tertiary referral centre. Lupus 2017, 26, 1440–1447. [Google Scholar] [CrossRef]
- Koçer, N.; Islak, C.; Siva, A.; Saip, S.; Akman, C.; Kantarci, O.; Hamuryudan, V. CNS involvement in Neuro-Behcet syndrome: An MR study. Am. J. Neuroradiol. 1999, 20, 1015–1024. [Google Scholar] [PubMed]
- Lacomis, D. Neurosarcoidosis. Curr. Neuropharmacol. 2011, 9, 429–443. [Google Scholar] [CrossRef] [PubMed]
- MacÊdo, P.J.O.M.; Da Silveira, V.C.; Ramos, L.T.; Nóbrega, F.R.; Vasconcellos, L.F.R. Isolated central nervous system vasculitis as a manifestation of neurosarcoidosis. J. Stroke Cerebrovasc. Dis. 2016, 25, 89–92. [Google Scholar] [CrossRef]
- Satizabal, C.L.; Zhu, Y.C.; Mazoyer, B.; Dufouil, C.; Tzourio, C. Circulating IL-6 and CRP are associated with MRI findings in the elderly: The 3C-Dijon Study. Neurology 2012, 78, 720–727. [Google Scholar] [CrossRef]
- Fornage, M.; Chiang, Y.A.; Omeara, E.S.; Psaty, B.M.; Reiner, A.P.; Siscovick, D.S.; Tracy, R.P.; Longstreth, W.T. Biomarkers of inflammation and MRI-defined small vessel disease of the brain: The cardiovascular health study. Stroke 2008, 39, 1952–1959. [Google Scholar] [CrossRef]
- Ishimori, M.L.; Martin, R.; Berman, D.S.; Goykhman, P.; Shaw, L.J.; Shufelt, C.; Slomka, P.J.; Thomson, L.E.; Schapira, J.; Yang, Y.; et al. Myocardial ischemia in the absence of obstructive coronary artery disease in systemic lupus erythematosus. JACC Cardiovasc. Imaging 2011, 4, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Wu, L.M.; Wang, Z.; Shen, J.Y.; Su, X.; Wang, C.Q.; Gong, X.R.; Yan, Q.R.; He, Q.; Zhang, W.; et al. Early Detection of Silent Myocardial Impairment in Drug-Naive Patients with New-Onset Systemic Lupus Erythematosus: A Three-Center Prospective Study. Arthritis Rheumatol. 2018, 70, 2014–2024. [Google Scholar] [CrossRef]
- Gu, Y.; Gutierrez, J.; Meier, I.B.; Guzman, V.A.; Manly, J.J.; Schupf, N.; Brickman, A.M.; Mayeux, R. Circulating inflammatory biomarkers are related to cerebrovascular disease in older adults. Neurol. Neuroimmunol. Neuroinflamm. 2018, 6, e521. [Google Scholar] [CrossRef]
- Yokoe, I.; Kobayashi, H.; Kobayashi, Y.; Nishiwaki, A.; Sugiyama, K.; Nagasawa, Y.; Ikumi, N.; Karasawa, H.; Okumura, Y.; Kitamura, N.; et al. Impact of biological treatment on left ventricular dysfunction determined by global circumferential, longitudinal and radial strain values using cardiac magnetic resonance imaging in patients with rheumatoid arthritis. Int. J. Rheum. Dis. 2020, 23, 1363–1371. [Google Scholar] [CrossRef]
- Koivuniemi, R.; Kuuliala, A.; Kivistö, S.; Holmström, M.; Hämäläinen, M.; Moilanen, E.; Rajamäki, K.; Kautiainen, H.; Eklund, K.K.; Leirisalo-Repo, M. Induction of remission in female rheumatoid arthritis patients is associated with stabilization of myocardial abnormalities: A prospective cardiac magnetic resonance follow-up study. Scand. J. Rheumatol. 2021, 50, 104–112. [Google Scholar] [CrossRef]
Variable | IAs | Disease Controls | p-Value |
---|---|---|---|
Group Size | 25 | 31 | N/A |
Demographics | |||
Age (Years) | 45 [39, 51] | 53 [40, 57] | 0.266 |
Female Sex | 16 (64.0%) | 7 (22.6%) | 0.004 * |
Disease Type | N/A | ||
Coronary Artery Disease | 5 (16.1%) | ||
Myocarditis | 5 (16.1%) | ||
Arrhythmia | 3 (9.7%) | ||
Duchenne Muscular Dystrophy | 3 (9.7%) | ||
Hypertensive Cardiomyopathy | 3 (9.7%) | ||
Atrial Septal Defect | 2 (6.5%) | ||
Non-compaction Cardiomyopathy | 2 (6.5%) | ||
Amyloidosis | 1 (3.2%) | ||
ARVC | 1 (3.2%) | ||
DCM | 1 (3.2%) | ||
MD | 1 (3.2%) | ||
Myocardial Infarction | 1 (3.2%) | ||
Myopericarditis | 14 (56.0%) | 1 (3.2%) | |
PPCM | 5 (20.0%) | 1 (3.2%) | |
Takotsubo Syndrome | 3 (12.0%) | 1 (3.2%) | |
2 (8.0%) | |||
Rheumatoid Arthritis | 1 (4.0%) | ||
Ankylosing Spondylitis | |||
Juvenile Rheumatoid Arthritis | |||
Mixed Connective Tissue Disease | |||
Eneteropathic Arthritis | |||
Cardiac MRI Findings | |||
LVEDV (mL) | 129 [101, 147] | 127 [108, 163] | 0.207 |
LVESV (mL) | 47 [36, 57] | 50 [38, 64] | 0.364 |
LVEF (%) | 64 [61, 68] | 63 [57, 69] | 0.458 |
RVEDV (mL) | 115 [90, 136] | 133 [111, 161] | 0.140 |
RVESV (mL) | 40 [31, 44] | 48 [35, 64] | 0.048 * |
RVEF (%) | 65 [61, 70] | 61 [55, 64] | 0.012 * |
EGE | 2.7 [2.0, 3.6] | 2.5 [2.0, 3.0] | 0.557 |
LGE (% LV Mass) | 0.0 [0.0, 4.0] | 4.0 [0.0, 6.0] | 0.010 * |
Native T1 Mapping (ms) ** | 1056 [992, 1097] | 1034 [999, 1057] | 0.564 |
Post-Contrast T1 Mapping (ms) ** | 397 [351, 405] | 420 [370, 437] | 0.044 * |
T2 Mapping (ms) ** | 53 [49, 62] | 53 [49, 55] | 0.515 |
ECV (%) ** | 29 [28, 31] | 26 [25, 28] | 0.004 * |
Normal Value Cut-off Points for Cardiac MRI Variables | |||
EGE > 4 | 5 (20.0%) | 5 (16.1%) | 0.980 |
LGE > 0% LV Mass | 9 (36.0%) | 21 (67.7%) | 0.036 * |
Native T1 Mapping > 1000 ms ** | 9 (64.3%) | 22 (71.0%) | 0.920 |
ECV > 28% ** | 9 (64.3%) | 7 (22.6%) | 0.018 * |
T2 Ratio > 1.9 ** | 13 (52.0%) | 19 (61.3%) | 0.670 |
T2 Mapping > 50 ms ** | 9 (64.3%) | 19 (61.3%) | 0.999 |
LVEF < 50% | 2 (8.0%) | 6 (19.4%) | 0.410 |
RVEF < 55% | 1 (4.0%) | 2 (6.5%) | 0.999 |
Brain MRI Findings | |||
Any WMH | 15 (60.0%) | 17 (54.8%) | 0.907 |
Lesion Number | 1.0 [0.0, 2.0] | 1.0 [0.0, 1.0] | 0.598 |
Subcortical WMH | 15 (60.0%) | 15 (48.4%) | 0.551 |
Deep WMH | 5 (20.0%) | 6 (19.4%) | 0.999 |
Periventricular WMH | 15 (60.0%) | 15 (48.4%) | 0.551 |
Basal Nuclei WMH | 0 (0.0%) | 1 (3.2%) | 0.999 |
Cortical WMH | 4 (16.0%) | 1 (3.2%) | 0.232 |
Pontine WMH | 0 (0.0%) | 0 (0.0%) | 0.999 |
Brainstem WMH | 0 (0.0%) | 1 (3.2%) | 0.999 |
Mesial Temporal Sclerosis | 0 (0.0%) | 2 (6.5%) | 0.569 |
Variable | Odds Ratio (95% CI) | p-Value |
---|---|---|
T2 Mapping ** | 1.13 (0.93–1.38) | 0.227 |
T2 Ratio (per 0.1 unit change) | 1.29 (1.05–1.59) | 0.016 * |
EGE | 1.35 (0.80–2.27) | 0.258 |
LGE (% of LV mass) | 1.02 (0.76–1.38) | 0.880 |
Native T1 Mapping (per 10 unit change) ** | 1.00 (0.85–1.18) | 0.973 |
ECV ** | 1.19 (0.71–2.01) | 0.506 |
LVEF | 0.91 (0.78–1.05) | 0.196 |
RVEF | 0.99 (0.89–1.11) | 0.957 |
Variable | Odds Ratio (95% CI) | p-Value |
---|---|---|
T2 Mapping ** | 1.16 (0.99–1.34) | 0.057 |
T2 Ratio (per 0.1 unit change) | 1.18 (1.05–1.32) | 0.006 * |
EGE | 1.05 (0.93–1.17) | 0.410 |
LGE (% of LV mass) | 1.05 (0.79–1.41) | 0.717 |
Native T1 Mapping (per 10 unit change) ** | 1.07 (0.94–1.22) | 0.297 |
ECV ** | 1.58 (1.04–2.38) | 0.030 * |
LVEF | 0.96 (0.88–1.04) | 0.291 |
RVEF | 1.01 (0.91–1.11) | 0.919 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markousis-Mavrogenis, G.; Venetsanopoulou, A.; Ntalas, I.; Pagounis, I.; Naka, C.; Toliopoulos, D.; Apostolou, D.; Voulgari, P.; Mavrogeni, S.I. Cardiac Edema Is Associated with White Matter Hyperintensities in Patients with Inflammatory Arthritides: A Combined Brain/Heart MRI Study. J. Clin. Med. 2025, 14, 3726. https://doi.org/10.3390/jcm14113726
Markousis-Mavrogenis G, Venetsanopoulou A, Ntalas I, Pagounis I, Naka C, Toliopoulos D, Apostolou D, Voulgari P, Mavrogeni SI. Cardiac Edema Is Associated with White Matter Hyperintensities in Patients with Inflammatory Arthritides: A Combined Brain/Heart MRI Study. Journal of Clinical Medicine. 2025; 14(11):3726. https://doi.org/10.3390/jcm14113726
Chicago/Turabian StyleMarkousis-Mavrogenis, George, Aliki Venetsanopoulou, Ioannis Ntalas, Ioannis Pagounis, Christina Naka, Dionisis Toliopoulos, Dimitrios Apostolou, Paraskevi Voulgari, and Sophie I. Mavrogeni. 2025. "Cardiac Edema Is Associated with White Matter Hyperintensities in Patients with Inflammatory Arthritides: A Combined Brain/Heart MRI Study" Journal of Clinical Medicine 14, no. 11: 3726. https://doi.org/10.3390/jcm14113726
APA StyleMarkousis-Mavrogenis, G., Venetsanopoulou, A., Ntalas, I., Pagounis, I., Naka, C., Toliopoulos, D., Apostolou, D., Voulgari, P., & Mavrogeni, S. I. (2025). Cardiac Edema Is Associated with White Matter Hyperintensities in Patients with Inflammatory Arthritides: A Combined Brain/Heart MRI Study. Journal of Clinical Medicine, 14(11), 3726. https://doi.org/10.3390/jcm14113726