Advances in 3D Printing Applications for Personalized Orthopedic Surgery: From Anatomical Modeling to Patient-Specific Implants
Abstract
:1. Introduction
2. Summary of 3D Printing Technology
3. Clinical Applications in Orthopedic Surgery
3.1. Patient-Specific Implants and Prostheses
3.2. Preoperative Planning and Surgical Guides
3.3. Custom-Made Orthotics and External Devices
3.4. Spine Surgery
3.5. Oncologic Orthopedic Surgery
4. Applications in Traumatology and Fracture Management
4.1. Upper Limbs
4.2. Acetabulum and Pelvis
4.3. Lower Limbs
4.4. Ligament Reconstruction
5. Benefits and Limitations
5.1. Benefits
5.2. Limitations
6. Future Perspectives
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
2D | two-dimensional |
3D | three-dimensional |
ACL | anterior cruciate ligament |
AM | additive manufacturing |
CAD | computer-aided design |
CBL | case- based learning |
CT | computer tomography |
DICOM | Digital Imaging and Communications in Medicine |
DIW | direct ink writing |
EBM | electron beam melting |
FDM | fused deposition modeling |
LHS | length of hospital stay |
LIG | laser-induced graphene |
LOM | laminated object manufacturing |
MDCT | multi-row computed tomography |
MR | magnetic resonance |
MSCs | mesenchymal stem cells |
PAH | peptide amphiphile hydrogel |
PSIs | patient-specific instruments |
PSL | plastic sheet lamination |
RP | rapid prototyping |
SLA | stereolithography |
SLM | selective laser melting |
UAM | ultrasonic additive manufacturing |
References
- Lindeque, B.G.P.; Eltorai, A.E.M.; Nguyen, E.; Daniels, A.H. Three-Dimensional Printing in Orthopedic Surgery. Orthopedics 2015, 38, 684–687. [Google Scholar] [CrossRef]
- Cong, B.; Zhang, H. Innovative 3D printing technologies and advanced materials revolutionizing orthopedic surgery: Current applications and future directions. Front. Bioeng. Biotechnol. 2025, 13, 1542179. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.C. 3D-printed patient-specific applications in orthopedics. Orthop. Res. Rev. 2016, 8, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Wang, B.; Yang, L.; Kadakia, A.R. Applications of 3D Printing Technology in Orthopedic Treatment. BioMed Res. Int. 2021, 2021, 9892456. [Google Scholar] [CrossRef]
- Weidert, S.; Andress, S.; Suero, E.; Becker, C.; Hartel, M.; Behle, M.; Willy, C. 3D-Druck in der unfallchirurgischen Fort- und Weiterbildung. Unfallchirurg 2019, 122, 444–451. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, Y.; Huang, X. The Application of CT 3D Reconstruction and 3D Printing Technology Combined with CBL Teaching Mode in the Clinical Teaching of Joint Orthopedics. Adv. Med. Educ. Pract. 2025, 16, 535–543. [Google Scholar] [CrossRef]
- Meng, M.; Wang, J.; Huang, H.; Liu, X.; Zhang, J.; Li, Z. 3D printing metal implants in orthopedic surgery: Methods, applications and future prospects. J. Orthop. Transl. 2023, 42, 94–112. [Google Scholar] [CrossRef]
- Li, B.; Zhang, M.; Lu, Q.; Zhang, B.; Miao, Z.; Li, L.; Zheng, T.; Liu, P. Application and Development of Modern 3D Printing Technology in the Field of Orthopedics. BioMed Res. Int. 2022, 2022, 8759060. [Google Scholar] [CrossRef]
- Liu, Z.; Xin, W.; Ji, J.; Xu, J.; Zheng, L.; Qu, X.; Yue, B. 3D-Printed Hydrogels in Orthopedics: Developments, Limitations, and Perspectives. Front. Bioeng. Biotechnol. 2022, 10, 845342. [Google Scholar] [CrossRef]
- Mazurek-Popczyk, J.; Palka, L.; Arkusz, K.; Dalewski, B.; Baldy-Chudzik, K. Personalized, 3D- printed fracture fixation plates versus commonly used orthopedic implant materials- biomaterials characteristics and bacterial biofilm formation. Injury 2021, 53, 938–946. [Google Scholar] [CrossRef]
- Ling, K.; Wang, W.; Liu, J. Current developments in 3D printing technology for orthopedic trauma: A review. Medicine 2025, 104, e41946. [Google Scholar] [CrossRef] [PubMed]
- Timofticiuc, I.A.; Călinescu, O.; Iftime, A.; Dragosloveanu, S.; Caruntu, A.; Scheau, A.E.; Badarau, I.A.; Didilescu, A.C.; Caruntu, C.; Scheau, C. Biomaterials Adapted to Vat Photopolymerization in 3D Printing: Characteristics and Medical Applications. J. Funct. Biomater. 2023, 15, 7. [Google Scholar] [CrossRef] [PubMed]
- Winarso, R.; Anggoro, P.W.; Ismail, R.; Jamari, J.; Bayuseno, A.P. Application of fused deposition modeling (FDM) on bone scaffold manufacturing process: A review. Heliyon 2022, 8, e11701. [Google Scholar] [CrossRef] [PubMed]
- Baniasadi, H.; Abidnejad, R.; Fazeli, M.; Lipponen, J.; Niskanen, J.; Kontturi, E.; Seppälä, J.; Rojas, O.J. Innovations in hydrogel-based manufacturing: A comprehensive review of direct ink writing technique for biomedical applications. Adv. Colloid Interface Sci. 2024, 324, 103095. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.; Adams, S.B., Jr. 3D Printing Materials and Technologies for Orthopaedic Applications. J. Orthop. Trauma 2024, 38, S9–S12. [Google Scholar] [CrossRef]
- Saleh Alghamdi, S.; John, S.; Roy Choudhury, N.; Dutta, N.K. Additive Manufacturing of Polymer Materials: Progress, Promise and Challenges. Polymers 2021, 13, 753. [Google Scholar] [CrossRef]
- Joshua, R.J.N.; Raj, S.A.; Sultan, M.T.H.; Łukaszewicz, A.; Józwik, J.; Oksiuta, Z.; Dziedzic, K.; Tofil, A.; Shahar, F.S. Powder Bed Fusion 3D Printing in Precision Manufacturing for Biomedical Applications: A Comprehensive Review. Materials 2024, 17, 769. [Google Scholar] [CrossRef]
- Wu, Y.; Lu, Y.; Zhao, M.; Bosiakov, S.; Li, L. A Critical Review of Additive Manufacturing Techniques and Associated Biomaterials Used in Bone Tissue Engineering. Polymers 2022, 14, 2117. [Google Scholar] [CrossRef]
- Woo, S.H.; Sung, M.J.; Park, K.S.; Yoon, T.R. Three-dimensional-printing Technology in Hip and Pelvic Surgery: Current Landscape. Hip Pelvis 2020, 32, 1–10. [Google Scholar] [CrossRef]
- Kumar, P.; Vatsya, P.; Rajnish, R.K.; Hooda, A.; Dhillon, M.S. Application of 3D Printing in Hip and Knee Arthroplasty: A Narrative Review. Indian J. Orthop. 2020, 55 (Suppl. 1), 14–26. [Google Scholar] [CrossRef]
- Honigmann, P.; Oonk, J.; Dobbe, J.; Strackee, S.; Streekstra, G.; Haefeli, M. Patient-specific scaphoid prosthesis: Surgical technique. Arch. Orthop. Trauma Surg. 2024, 145, 55. [Google Scholar] [CrossRef] [PubMed]
- Ebel, F.; Schön, S.; Sharma, N.; Guzman, R.; Mariani, L.; Thieringer, F.M.; Soleman, J. Clinical and patient-reported outcome after patient-specific 3D printer-assisted cranioplasty. Neurosurg. Rev. 2023, 46, 93. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.; Du, X.; Smit, T.; Bissacco, E.G.; Seiler, D.; de Wild, M.; Ferguson, S.J. 3D-printed LEGO®-inspired titanium scaffolds for patient-specific regenerative medicine. Biomater. Adv. 2023, 154, 213617. [Google Scholar] [CrossRef] [PubMed]
- Moya, D.; Gobbato, B.; Valente, S.; Roca, R. Uso de planificación preoperatoria e impresión 3D en ortopedia y traumatología: Ingresando en una nueva era [Use of preoperative planning and 3D printing in orthopedics and traumatology: Entering a new era]. Acta Ortop. Mex. 2022, 36, 39–47. (In Spanish) [Google Scholar] [CrossRef]
- Segaran, N.; Saini, G.; Mayer, J.L.; Naidu, S.; Patel, I.; Alzubaidi, S.; Oklu, R. Application of 3D Printing in Preoperative Planning. J. Clin. Med. 2021, 10, 917. [Google Scholar] [CrossRef]
- Au, S.W.; Li, D.T.S.; Su, Y.X.; Leung, Y.Y. Accuracy of self-designed 3D-printed patient-specific surgical guides and fixation plates for advancement genioplasty. Int. J. Comput. Dent. 2022, 25, 369–376. [Google Scholar] [CrossRef]
- Brachet, A.; Bełżek, A.; Furtak, D.; Geworgjan, Z.; Tulej, D.; Kulczycka, K.; Karpiński, R.; Maciejewski, M.; Baj, J. Application of 3D Printing in Bone Grafts. Cells 2023, 12, 859. [Google Scholar] [CrossRef]
- Zubrzycki, J.; Karpiński, R.; Jaworski, L.; AMAwsiewicz Smidova, N. Analiza strukturalna miednicy przed i po zabiegu endoprotezoplastyki stawu biodrowego. NAUKA I Technol. 2018, 17, 165–172. [Google Scholar] [CrossRef]
- Choo, Y.J.; Boudier-Revéret, M.; Chang, M.C. 3D printing technology applied to orthosis manufacturing: Narrative review. Ann. Palliat. Med. 2020, 9, 4262–4270. [Google Scholar] [CrossRef]
- Hassan, B.B.; Wong, M.S. Contemporary and Future Development of 3D Printing Technology in the Field of Assistive Technology, Orthotics and Prosthetics. Can. Prosthet. Orthot. J. 2023, 6, 42225. [Google Scholar] [CrossRef]
- Raschke, S.U. 3D Printing in Prosthetics, Orthotics and Assistive Technology: Myth and Reality. Can. Prosthet. Orthot. J. 2023, 6, 42222. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, A.R. Exploring the Future of Prosthetics and Orthotics: Harnessing the Potential of 3D Printing. Can. Prosthet. Orthot. J. 2023, 6, 42140. [Google Scholar] [CrossRef] [PubMed]
- Cornejo, J.; Cornejo-Aguilar, J.A.; Vargas, M.; Helguero, C.G.; Milanezi de Andrade, R.; Torres-Montoya, S.; Asensio-Salazar, J.; Rivero Calle, A.; Martínez Santos, J.; Damon, A.; et al. Anatomical Engineering and 3D Printing for Surgery and Medical Devices: International Review and Future Exponential Innovations. Biomed. Res. Int. 2022, 2022, 6797745. [Google Scholar] [CrossRef] [PubMed]
- Hajnal, B.; Pokorni, A.J.; Turbucz, M.; Bereczki, F.; Bartos, M.; Lazary, A.; Eltes, P.E. Clinical applications of 3D printing in spine surgery: A systematic review. Eur. Spine J. 2025, 34, 454–471. [Google Scholar] [CrossRef]
- Wong, R.M.Y.; Wong, P.Y.; Liu, C.; Chung, Y.L.; Wong, K.C.; Tso, C.Y.; Chow, S.K.; Cheung, W.H.; Yung, P.S.; Chui, C.S.; et al. 3D printing in orthopaedic surgery: A scoping review of randomized controlled trials. Bone Jt. Res. 2021, 10, 807–819. [Google Scholar] [CrossRef]
- Pan, A.; Ding, H.; Hai, Y.; Liu, Y.; Hai, J.J.; Yin, P.; Han, B. The Value of Three-Dimensional Printing Spine Model in Severe Spine Deformity Correction Surgery. Glob. Spine J. 2023, 13, 787–795. [Google Scholar] [CrossRef]
- Iqbal, J.; Zafar, Z.; Skandalakis, G.; Kuruba, V.; Madan, S.; Kazim, S.F.; A Bowers, C. Recent advances of 3D-printing in spine surgery. Surg. Neurol. Int. 2024, 15, 297. [Google Scholar] [CrossRef]
- Spałek, M.J.; Bochyńska, A.; Borkowska, A.; Mroczkowski, P.; Szostakowski, B. Challenges and solutions in 3D printing for oncology: A narrative review. Chin. Clin. Oncol. 2024, 13, 49. [Google Scholar] [CrossRef]
- Kotrych, D.; Angelini, A.; Bohatyrewicz, A.; Ruggieri, P. 3D printing for patient-specific implants in musculoskeletal oncology. EFORT Open Rev. 2023, 8, 331–339. [Google Scholar] [CrossRef]
- McCulloch, R.A.; Frisoni, T.; Kurunskal, V.; Maria Donati, D.; Jeys, L. Computer Navigation and 3D Printing in the Surgical Management of Bone Sarcoma. Cells 2021, 10, 195. [Google Scholar] [CrossRef]
- Nyirjesy, S.C.; Heller, M.; von Windheim, N.; Gingras, A.; Kang, S.Y.; Ozer, E.; Agrawal, A.; Old, M.O.; Seim, N.B.; Carrau, R.L.; et al. The role of computer aided design/computer assisted manufacturing (CAD/CAM) and 3- dimensional printing in head and neck oncologic surgery: A review and future directions. Oral Oncol. 2022, 132, 105976. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, J.; Li, H.; Ye, J.; Chen, J.; Liu, J.; Xiao, M. Comparing the effectiveness of 3D printing technology in the treatment of clavicular fracture between surgeons with different experiences. BMC Musculoskelet. Disord. 2022, 23, 1003. [Google Scholar] [CrossRef] [PubMed]
- van Doremalen, R.F.M.; van der Linde, R.A.; Kootstra, J.J.; van Helden, S.H.; Hekman, E.E.G. Can 3D-printing avoid discomfort-related implant removal in midshaft clavicle fractures? A four-year follow-up. Arch. Orthop. Trauma Surg. 2021, 141, 1899–1907. [Google Scholar] [CrossRef]
- Shuang, F.; Hu, W.; Shao, Y.; Li, H.; Zou, H. Treatment of Intercondylar Humeral Fractures With 3D-Printed Osteosynthesis Plates. Medicine 2016, 95, e2461. [Google Scholar] [CrossRef]
- Zheng, W.; Su, J.; Cai, L.; Lou, Y.; Wang, J.; Guo, X.; Tang, J.; Chen, H. Application of 3D-printing technology in the treatment of humeral intercondylar fractures. Orthop. Traumatol. Surg. Res. 2018, 104, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhou, R.; Song, C.; Lu, J.; Lu, J. Application of 3D printing technology in preoperative planning and treatment of proximal humerus fractures: A retrospective study. BMC Musculoskelet. Disord. 2024, 25, 962. [Google Scholar] [CrossRef] [PubMed]
- Maini, L.; Mishra, A.; Agarwal, G.; Verma, T.; Sharma, A.; Tyagi, A. 3D printing in designing of anatomical posterior column plate. J. Clin. Orthop. Trauma 2018, 9, 236–240. [Google Scholar] [CrossRef]
- Maini, L.; Sharma, A.; Jha, S.; Tiwari, A. Three-dimensional printing and patient-specific pre-contoured plate: Future of acetabulum fracture fixation? Eur. J. Trauma Emerg. Surg. 2018, 44, 215–224. [Google Scholar] [CrossRef]
- Cai, L.; Zhang, Y.; Chen, C.; Lou, Y.; Guo, X.; Wang, J. 3D printing-based minimally invasive cannulated screw treatment of unstable pelvic fracture. J. Orthop. Surg. Res. 2018, 13, 71. [Google Scholar] [CrossRef]
- Hung, C.C.; Shen, P.H.; Wu, J.L.; Cheng, Y.W.; Chen, W.L.; Lee, S.H.; Yeh, T.T. Association between 3D Printing-Assisted Pelvic or Acetabular Fracture Surgery and the Length of Hospital Stay in Nongeriatric Male Adults. J. Pers. Med. 2022, 12, 573. [Google Scholar] [CrossRef]
- Duan, S.; Xu, R.; Liang, H.; Sun, M.; Liu, H.; Zhou, X.; Wen, H.; Cai, Z. Study on the efficacy of 3D printing technology combined with customized plates for the treatment of complex tibial plateau fractures. J. Orthop. Surg. Res. 2024, 19, 562. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Zhang, H.; Chen, B.; Yang, L.; Xu, R.; Duan, S.; Cai, Z. 3D printing technology combined with personalized plates for complex distal intra-articular fractures of the trimalleolar ankle. Sci. Rep. 2023, 13, 22667. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Poch, N.; Fillat-Gomà, F.; Gamundi, M.; Grillo, G.; Yela-Verdú, C.; Gil-Gonzalez, S.; Pelfort, X. 3D printing technology is a more accurate tool than an experienced surgeon in performing femoral bone tunnels in multi-ligament knee injuries. J. Exp. Orthop. 2025, 12, e70159. [Google Scholar] [CrossRef]
- Liu, A.; Xue, G.H.; Sun, M.; Shao, H.F.; Ma, C.Y.; Gao, Q.; Gou, Z.R.; Yan, S.G.; Liu, Y.M.; He, Y. 3D Printing Surgical Implants at the clinic: A Experimental Study on Anterior Cruciate Ligament Reconstruction. Sci. Rep. 2016, 6, 21704. [Google Scholar] [CrossRef] [PubMed]
- Alemayehu, D.G.; Zhang, Z.; Tahir, E.; Gateau, D.; Zhang, D.F.; Ma, X. Preoperative Planning Using 3D Printing Technology in Orthopedic Surgery. Biomed. Res. Int. 2021, 2021, 7940242. [Google Scholar] [CrossRef]
- Murphy, S.V.; De Coppi, P.; Atala, A. Opportunities and challenges of translational 3D bioprinting. Nat. Biomed. Eng. 2020, 4, 370–380. [Google Scholar] [CrossRef]
- Cheo, F.Y.; Soeharno, H.; Woo, Y.L. Cost-effective office 3D printing process in orthopaedics and its benefits: A case presentation and literature review. Proc. Singap. Healthc. 2024, 33, 20101058241227338. [Google Scholar] [CrossRef]
- O’Connor, O.; Patel, R.; Thahir, A.; Sy, J.; Jou, E. The use of Three-Dimensional Printing in Orthopaedics: A Systematic Review and Meta-analysis. Arch. Bone Jt. Surg. 2024, 12, 441–456. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, G.; Johnson, B.N.; Jia, X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater. 2019, 84, 16–33. [Google Scholar] [CrossRef]
- Barakeh, W.; Zein, O.; Hemdanieh, M.; Sleem, B.; Nassereddine, M. Enhancing Hip Arthroplasty Outcomes: The Multifaceted Advantages, Limitations, and Future Directions of 3D Printing Technology. Cureus 2024, 16, e60201. [Google Scholar] [CrossRef]
- Wixted, C.M.; Peterson, J.R.; Kadakia, R.J.; Adams, S.B. Three-dimensional Printing in Orthopaedic Surgery: Current Applications and Future Developments. JAAOS Glob. Res. Rev. 2021, 5, e20.00230-11. [Google Scholar] [CrossRef]
3D Printing Technology | Subtypes | Working Principle | Advantages | References |
---|---|---|---|---|
Vat Photopolymerization | stereolithography, digital light projector, liquid crystal display, two-photon polymerization | liquid resin monomers or oligomers are polymerized upon exposure to a specific light source |
| [12] |
Material Extrusion | fused deposition modeling (FDM), direct ink writing (DIW), pellet extrusion, paste extrusion | FDM uses thermoplastic or viscoelastic materials, extruded through a nozzle and deposited into layers onto a substrate, using a heated printhead | low cost and energy consumption, high spatial resolution, ability to produce complex constructs | [13,14] |
Direct Ink Writing | constitutes subtype of material extrusion technology itself | the working principle is similar to that of FDM, but the extrusion is pneumatic or mechanical, at a mild temperature | high accuracy and spatial resolution, possibility to use hydrogel materials | [14] |
Powder Bed Fusion | selective heat sintering, selective laser sintering, selective laser melting, electron beam melting, multi-jet fusion | selectively fuses each layer of powdered material using a heat source (laser or an electron beam) | diverse range of possible materials, precision, ability to handle complex geometries | [15] |
Sheet Lamination | laminated object manufacturing (LOM), ultrasonic additive manufacturing (UAM), plastic sheet lamination (PSL), laser-induced graphene (LIG) | bonds successive material layers using heat and adhesive to form a consolidated structure | low cost, fast manufacturing of large elements | [16] |
Clinical Area | Application | Key Outcomes | Technologies Used/Materials | References |
---|---|---|---|---|
Preoperative Planning | 3D models for surgical planning | 82% of studies report improved surgical outcomes | SLA, FDM, CT/MRI-based modeling | [25] |
Craniofacial Surgery | 3D-printed surgical guides for genioplasty | No complications at 6 months | CAD-designed guides, in-house printing | [26] |
Orthotics | 3D-printed orthoses | Superior or equal biomechanical/kinematic outcomes; improved comfort, reduced pain, and increased compliance | 3D scanning and CAD, mobile scanning, digital design | [29] |
Scoliosis/Spinal Orthoses | 3D-printed spinal braces | Comparable or better Cobb angle correction; reduced lead time; high customization | Stratasys machine and FDM technique/nylon (PA12) | [30] |
Prosthetics | Diagnostic sockets and custom orthoses | Shorter production time; focus shifted to patient care | FDM, CAD/CAM technology/polylactic acid and Acrylonitrile Butadiene Styrene | [32] |
Surgical Instruments | Cutting and drilling guides and navigation jigs | Increased precision in resections and osteotomies; reduced operative time | Sterilizable materials, rapid prototyping | [36] |
Spine Surgery | Patient-specific drill guides and implants | Improved pedicle screw accuracy (88%); reduced time, pain, and blood loss | SLM, EBM/titanium | [34,35] |
Severe Spinal Deformity | 3D spine models for planning complex osteotomies | Higher screw accuracy (72.5%), more 3-column osteotomies (85.7%), and reduced blood loss | Full-scale spine models | [36] |
Orthopedic Oncology | Tumor resection guides and custom implants | Better functional outcomes, osseointegration, and fewer complications | EBM, SLM, porous titanium implants | [38,39] |
Head and Neck Oncology | Navigation-assisted resections and reconstruction | Optimal margins, minimized tissue trauma, and improved dental rehab integration | CAD/CAM technology, PSIs/ titanium guides/plates | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prządka, M.; Pająk, W.; Kleinrok, J.; Pec, J.; Michno, K.; Karpiński, R.; Baj, J. Advances in 3D Printing Applications for Personalized Orthopedic Surgery: From Anatomical Modeling to Patient-Specific Implants. J. Clin. Med. 2025, 14, 3989. https://doi.org/10.3390/jcm14113989
Prządka M, Pająk W, Kleinrok J, Pec J, Michno K, Karpiński R, Baj J. Advances in 3D Printing Applications for Personalized Orthopedic Surgery: From Anatomical Modeling to Patient-Specific Implants. Journal of Clinical Medicine. 2025; 14(11):3989. https://doi.org/10.3390/jcm14113989
Chicago/Turabian StylePrządka, Marcin, Weronika Pająk, Jakub Kleinrok, Joanna Pec, Karolina Michno, Robert Karpiński, and Jacek Baj. 2025. "Advances in 3D Printing Applications for Personalized Orthopedic Surgery: From Anatomical Modeling to Patient-Specific Implants" Journal of Clinical Medicine 14, no. 11: 3989. https://doi.org/10.3390/jcm14113989
APA StylePrządka, M., Pająk, W., Kleinrok, J., Pec, J., Michno, K., Karpiński, R., & Baj, J. (2025). Advances in 3D Printing Applications for Personalized Orthopedic Surgery: From Anatomical Modeling to Patient-Specific Implants. Journal of Clinical Medicine, 14(11), 3989. https://doi.org/10.3390/jcm14113989