Congenital Rubella Syndrome in the Post-Elimination Era: Why Vigilance Remains Essential
Abstract
:1. Introduction
2. Method
3. Etiology
4. Epidemiology
5. Pathophysiology
- Sensorineural hearing loss: Results from the destruction of cochlear hair cells and the organ of Corti, along with vascular damage to inner ear structures. Inflammation and secondary hypoxia contribute to irreversible bilateral hearing loss, the most common sequela of CRS [21].
- Congenital cataracts: Caused by direct infection of the lens cells during development. The rubella virus disrupts the normal differentiation of lens fibers, leading to early-onset bilateral opacification [22].
- Congenital heart defects: Especially patent ductus arteriosus and pulmonary artery stenosis, arise from infection of endothelial and mesenchymal cells during cardiac embryogenesis. Vascular injury and impaired remodeling of cardiac structures result in abnormal formation of the great vessels [23].
- “Salt and pepper” retinopathy: Derives from retinal cell destruction and pigmentary changes secondary to viral infection and vascular damage [24].
- Microcephaly and neurodevelopmental delay: Occur due to infection of neuronal progenitor cells, triggering neuronal apoptosis and disrupting cortical cell migration [25]. Moreover, persistent inflammation in the central nervous system contributes to progressive brain injury.
6. Clinical Manifestations
7. Diagnosis
8. Maternal Screening
9. Fetal and Intrauterine Assessment
10. Postnatal Evaluation
11. Differential Diagnosis
12. Postnatal Findings
13. Prognosis
14. Short- and Long-Term Follow-Up
15. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ben Moussa, M.L.; Hamdoun, M.; Cherni, H.; Bahri, O. Rubella seroprevalence among women of childbearing age in Tunis, Tunisia. BMC Infect. Dis. 2025, 25, 470. [Google Scholar] [CrossRef]
- Soares-Marangoni, D.A.; Arguelho, A.O.; Mendonça, A.S.G.B.; Wiesiolek, C.C.; Lima-Alvarez, C.D.; dos Chiquetti, E.M.; Oliveira, E.F.; Medeiros, M.J.; Pereira, S.A.; Hasue, R.H. STORCH Brazil: Multicenter cohort study protocol to investigate neurodevelopmental paths and functioning in infants exposed to STORCH in Brazil. BMC Pediatr. 2025, 25, 217. [Google Scholar] [CrossRef]
- World Health Organization. Rubella; WHO: Geneva, Switzerland, 14 May 2024; Available online: https://www.who.int/news-room/fact-sheets/detail/rubella (accessed on 25 April 2025).
- Abdalla, O.; Ahmed, N.; El-Hag Mukhtar, H.A.; Reef, S.; Hagan, J.; Grant, G. Evaluation of simplified surveillance for congenital rubella syndrome in Sudan, 2014–2017. Vaccines 2024, 12, 1447. [Google Scholar] [CrossRef]
- Pastor, D.; Bravo-Alcántara, P.; Durón Tirso, C.P.; Ortiz, C.; Rey-Benito, G. Successes and challenges in achieving and sustaining the elimination of measles, rubella, and congenital rubella syndrome in the Americas, 2013–2023. Rev. Panam. Salud Publica 2024, 48, e140. [Google Scholar] [CrossRef]
- World Health Organization. Immunization Agenda 2030: A Global Strategy to Leave No One Behind; WHO: Geneva, Switzerland, 2020; Available online: https://www.immunizationagenda2030.org/images/documents/VisionStratagiy/BLS20116_IA_Visual-ID-DesignLayout_spread_009_WEB.pdf (accessed on 25 April 2025).
- Durón, R.; Pastor, D.; Whittembury, Á.; Lemos, D.R.Q. Lessons learned in the implementation of measles and rubella vaccination campaigns in the Americas. Rev. Panam. Salud Publica 2025, 49, e24. [Google Scholar] [CrossRef]
- Gómez, L.A.; Montoya, G.; Rivera, H.M.; Hernández, J.C. Características de la estructura molecular de las proteínas E del virus del Zika y E1 del virus de la rubéola y posibles implicaciones en el neurotropismo y en las alteraciones del sistema nervioso. Biomédica 2017, 37 (Suppl. S1), 121–132. [Google Scholar] [CrossRef]
- Shukla, S.; Maraqa, N.F. Congenital Rubella. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025; [Updated 8 August 2023]; January 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK560821/ (accessed on 8 August 2023).
- Grant, G.B.; Zimmerman, L. Decreases in Congenital Rubella Syndrome Reflect Concerted Efforts Toward Rubella and Measles Elimination. Int. J. Infect. Dis. 2023, 137, 162. [Google Scholar] [CrossRef]
- Ou, A.C.; Zimmerman, L.A.; Alexander, J.P., Jr.; Crowcroft, N.S.; O’Connor, P.M.; Knapp, J.K. Progress Toward Rubella and Congenital Rubella Syndrome Elimination—Worldwide, 2012–2022. MMWR Morb. Mortal. Wkly. Rep. 2024, 73, 162–167. [Google Scholar] [CrossRef]
- Silva, M.C.; Oliveira, J.P.; Sousa, A.R. Congenital rubella syndrome. Rev. Bras. Anál. Clin. 2019, 51, 157–163. [Google Scholar] [CrossRef]
- Costa, G.F.; Silva, R.S.; Oliveira, A.S.; Sousa, L.A.; Ramos, A.M.F.; Dias, M.A.M. Challenges and strategies in measles vaccination: Control and eradication. Res. Soc. Dev. 2024, 13, e46563. [Google Scholar] [CrossRef]
- Lebo, E.; Vynnycky, E.; Alexander, J.P., Jr.; Ferrari, M.J.; Winter, A.K.; Frey, K.; Papadopoulos, T.; Grant, G.B.; O’Connor, P.; Reef, S.E.; et al. Estimated Current and Future Congenital Rubella Syndrome Incidence with and Without Rubella Vaccine Introduction—19 Countries, 2019–2055. MMWR Morb. Mortal. Wkly. Rep. 2025, 74, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Hemmi, T.; Ainai, A.; Hashiguchi, T.; Tobiume, M.; Kanno, T.; Iwata-Yoshikawa, N.; Iida, S.; Sato, Y.; Miyamoto, S.; Ueno, A.; et al. Intranasal vaccination induced cross-protective secretory IgA antibodies against SARS-CoV-2 variants with reducing the potential risk of lung eosinophilic immunopathology. Vaccine 2022, 40, 5892–5903. [Google Scholar] [CrossRef] [PubMed]
- Best, J.M. Rubella. In Vaccines, 6th ed.; Plotkin, S.A., Orenstein, W.A., Offit, P.A., Eds.; Elsevier: Philadelphia, PA, USA, 2013; pp. 688–717. [Google Scholar]
- Banatvala, J.E.; Brown, D.W.G. Rubella. Lancet 2004, 363, 1127–1137. [Google Scholar] [CrossRef] [PubMed]
- Chong, P.F.; Kishimoto, K.; Nishino, I. Congenital rubella syndrome: A review of pathophysiology and management. Pediatr. Neurol. 2016, 62, 3–10. [Google Scholar] [CrossRef]
- Best, J.M.; Banatvala, J.E. Rubella. In Infectious Diseases of the Fetus and Newborn Infant, 7th ed.; Remington, J.S., Klein, J.O., Eds.; Elsevier; Saunders: Philadelphia, PA, USA, 2011; pp. 861–898. [Google Scholar]
- Frey, T.K. Molecular biology of rubella virus. Adv. Virus Res. 1994, 44, 69–160. [Google Scholar] [CrossRef]
- Cohen, B.E.; Durstenfeld, A.; Roehm, P.C. Viral causes of hearing loss: A review for hearing health professionals. Trends Hear. 2014, 18, 2331216514541361. [Google Scholar] [CrossRef]
- Drew, W.L. Congenital infections: Rubella and cytomegalovirus. In Infectious Diseases of the Fetus and Newborn Infant, 6th ed.; Remington, J.S., Klein, J.O., Eds.; Saunders: Philadelphia, PA, USA, 2006; pp. 734–759. [Google Scholar]
- Coyle, P.K. Transmission, pathogenesis, and neurological complications of rubella. In Harrison’s Principles of Internal Medicine, 20th ed.; Kasper, D.L., Fauci, A.S., Hauser, S.L., Jameson, J.L., Loscalzo, J., Eds.; McGraw-Hill: New York, NY, USA, 2018. [Google Scholar]
- Pattathil, N.; Arjmand, P. Salt-and-pepper retinopathy: Multimodal imaging of rubella retinopathy. Can. J. Ophthalmol. 2022, 58, e28. [Google Scholar] [CrossRef]
- Wright, P.F.; Greenberg, S.B. Viral infections of the fetus and neonate. In Nelson Textbook of Pediatrics, 21st ed.; Kliegman, R.M., Stanton, B.F., St. Geme, J.W., Schor, N.F., Eds.; Elsevier: Philadelphia, PA, USA, 2020; pp. 1375–1377. [Google Scholar]
- World Health Organization (WHO). Rubella vaccines: WHO position paper. Wkly. Epidemiol. Rec. 2011, 86, 301–316. [Google Scholar]
- Stratton, K.; Wright, P.F. Congenital infections. In Feigin and Cherry’s Textbook of Pediatric Infectious Diseases, 8th ed.; Feigin, R.D., Cherry, J.D., Demmler-Harrison, G.J., Kaplan, S.L., Eds.; Elsevier: Philadelphia, PA, USA, 2019; pp. 791–858. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Clinical Overview of Rubella; CDC: Atlanta, GA, USA, 2024. Available online: https://www.cdc.gov/rubella/hcp/clinical-overview/index.html (accessed on 15 July 2024).
- Pan American Health Organization. Immunization in the Americas: 2020 Summary; PAHO: Washington, DC, USA, 2020. [Google Scholar]
- Winter, A.K.; Moss, W.J. Rubella. Lancet 2022, 399, 1336–1346. [Google Scholar] [CrossRef] [PubMed]
- Reef, S.E.; Plotkin, S.; Cordero, J.F. Rubella. In Plotkin’s Vaccines, 7th ed.; Plotkin, S.A., Orenstein, W.A., Offit, P.A., Edwards, K.M., Eds.; Elsevier: Philadelphia, PA, USA, 2018; pp. 970–1000. [Google Scholar]
- Santos, R.P.; Dognani, A.B.; Gonçalves, F.D.S.; Lima, I.G.; Silva, J.M.; Quadros, S.F.P.; Neri, H.V.N. From prevention to treatment: A detailed review of congenital rubella syndrome. Rev. Iberoam. Humanid. Ciênc. Educ. 2024, 10, 1144–1152. [Google Scholar] [CrossRef]
- Armah, N.B.; Sagoe, K.W.; Nuamah, M.; Yawson, A.E.; Nartey, E.T.; Essuman, V.A.; Yao, N.A.; Baidoo, K.K.; Fynn, J.A.; Tetteh, D.; et al. Rubella virus IgM and IgG antibodies with avidity in pregnant women and outcomes at a tertiary facility in Ghana. PLoS ONE 2022, 17, e0279733. [Google Scholar] [CrossRef] [PubMed]
- Boucoiran, I.; Castillo, E. No. 368-Rubella in pregnancy. J. Obstet. Gynaecol. Can. 2018, 40, 1646–1656. [Google Scholar] [CrossRef] [PubMed]
- Australian Government Department of Health and Aged Care. Australian Immunisation Handbook: Serological Testing for Immunity to Rubella Is Recommended Before or After Receiving Rubella-Containing Vaccine in Certain Circumstances. Canberra: Department of Health; 2024. Available online: https://immunisationhandbook.health.gov.au/recommendations/serological-testing-for-immunity-to-rubella-is-recommended-before-or-after-receiving-rubella-containing-vaccine-in-certain-circumstances (accessed on 27 May 2025).
- Bosma, T.J.; Corbett, K.M.; Eckstein, M.B.; O’Shea, S.; Vijayalakshmi, P.; Banatvala, J.E.; Morton, K.; Best, J.M. Use of PCR for prenatal and postnatal diagnosis of congenital rubella. J. Clin. Microbiol. 1995, 33, 2881–2887. [Google Scholar] [CrossRef] [PubMed]
- Tanemura, M.; Suzumori, K.; Yagami, Y.; Katow, S. Diagnosis of fetal rubella infection with reverse transcription and nested polymerase chain reaction: A study of 34 cases diagnosed in fetuses. Am. J. Obstet. Gynecol. 1996, 174, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Yazigi, A.; De Pecoulas, A.E.; Vauloup-Fellous, C.; Grangeot-Keros, L.; Ayoubi, J.M.; Picone, O. Fetal and neonatal abnormalities due to congenital rubella syndrome: A review of literature. J. Matern. Fetal Neonatal Med. 2017, 30, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Migliucci, A.; Di Fraja, D.; Sarno, L.; Acampora, E.; Mazzarelli, L.L.; Quaglia, F.; Mallia Milanes, G.; Buffolano, W.; Napolitano, R.; Simioli, S.; et al. Prenatal diagnosis of congenital rubella infection and ultrasonography: A preliminary study. Minerva Ginecol. 2011, 63, 485–489. [Google Scholar]
- Nagasawa, K.; Ishiwada, N.; Ogura, A.; Ogawa, T.; Takeuchi, N.; Hishiki, H.; Shimojo, N. Congenital Rubella Syndrome: A Case Report on Changes in Viral Load and Rubella Antibody Titers. Pediatrics 2016, 137, e20153333. [Google Scholar] [CrossRef]
- Uchino, K.; Miyoshi, T.; Mori, Y.; Komase, K.; Okayama, F.; Shibata, Y.; Yoshida, H.; Numata, T.; Takeda, M.; Tanaka, T. Comparison of virological and serological methods for laboratory confirmation of rubella. J. Clin. Virol. 2020, 123, 104257. [Google Scholar] [CrossRef]
- Herini, E.S.; Triono, A.; Iskandar, K.; Nuady, A.; Pujiastuti, L.H.; Marcellus; Nugrahanto, A.P.; Kamal, M.; Gunadi. Phylogenetic analysis of congenital rubella virus from Indonesia: A case report. BMC Pediatr. 2022, 22, 713. [Google Scholar] [CrossRef]
- Thompson, K.M.; Simons, E.A.; Badizadegan, K.; Reef, S.E.; Cooper, L.Z. Characterization of the Risks of Adverse Outcomes Following Rubella Infection in Pregnancy. Risk Anal. 2016, 36, 1315–1331. [Google Scholar] [CrossRef]
- Dos Santos, A.L.S.; Rosolen, B.B.; Ferreira, F.C.; Chiancone, I.S.; Pereira, S.S.; Pontes, K.F.M.; Traina, E.; Werner, H.; Granese, R.; Araujo Júnior, E. Intrauterine Zika Virus Infection: An Overview of the Current Findings. J. Pers. Med. 2025, 15, 98. [Google Scholar] [CrossRef] [PubMed]
- Petersen, L.R.; Jamieson, D.J.; Powers, A.M.; Honein, M.A. Zika Virus. N. Engl. J. Med. 2016, 374, 1552–1563. [Google Scholar] [CrossRef] [PubMed]
- Gregory, C.J.; Oduyebo, T.; Brault, A.C.; Brooks, J.T.; Chung, K.W.; Hills, S.; Kuehnert, M.J.; Mead, P.; Meaney-Delman, D.; Rabe, I.; et al. Modes of Transmission of Zika Virus. J. Infect. Dis. 2017, 216 (Suppl. S10), S875–S883. [Google Scholar] [CrossRef]
- Toizumi, M.; Motomura, H.; Vo, H.M.; Takahashi, K.; Pham, E.; Nguyen, H.A.; Le, T.H.; Hashizume, M.; Ariyoshi, K.; Dang, D.A.; et al. Mortality associated with pulmonary hypertension in congenital rubella syndrome. Pediatrics 2014, 134, e519–e526. [Google Scholar] [CrossRef]
- Meyer, B.I.; Liao, A.; Sanda, G.E.; Craven, C.; Wells, J.R.; Hendrick, A.M.; Yan, J.; Jain, N. Fundus imaging features of congenital rubella retinopathy. Graefes Arch. Clin. Exp. Ophthalmol. 2024, 262, 777–788. [Google Scholar] [CrossRef]
- Bukowska, D.M.; Wan, S.L.; Chew, A.L.; Chelva, E.; Tang, I.; Mackey, D.A.; Chen, F.K. Fundus Autofluorescence in Rubella Retinopathy: Correlation with Photoreceptor Structure and Function. Retina 2017, 37, 124–134. [Google Scholar] [CrossRef]
- Toizumi, M.; Nguyen, G.T.; Motomura, H.; Nguyen, T.H.; Pham, E.; Kaneko, K.I.; Uematsu, M.; Nguyen, H.A.; Dang, D.A.; Hashizume, M.; et al. Sensory defects and developmental delay among children with congenital rubella syndrome. Sci. Rep. 2017, 7, 46483. [Google Scholar] [CrossRef] [PubMed]
- Chattannavar, G.; Bansal, A.; Kekunnaya, R. Facial dysmorphism in congenital rubella syndrome. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2024, 28, 103791. [Google Scholar] [CrossRef]
- Toizumi, M.; Vo, H.M.; Dang, D.A.; Moriuchi, H.; Yoshida, L.M. Clinical manifestations of congenital rubella syndrome: A review of our experience in Vietnam. Vaccine 2019, 37, 202–209. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Rubella and congenital rubella syndrome: Global progress, 2000–2021. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 633–638. [Google Scholar] [CrossRef]
- Landry, S.H.; Smith, K.E.; Swanson, M.W. Early developmental assessment and intervention. Dev. Rev. 2000, 20, 504–527. [Google Scholar] [CrossRef]
- Gilbert, C.; Foster, A. Childhood blindness in the context of VISION 2020—The right to sight. Bull. World Health Organ. 2001, 79, 227–232. [Google Scholar] [PubMed]
- Centers for Disease Control and Prevention (CDC). Rubella and congenital rubella syndrome control and elimination—Global progress, 2000–2018. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 505–509. [Google Scholar] [CrossRef]
- Desmond, M.M.; Fisher, E.S.; Vorderman, A.L.; Schaffer, H.G.; Andrew, L.P.; Zion, T.E.; Catlin, F.I. The longitudinal course of congenital rubella encephalitis in nonretarded children. J. Pediatr. 1978, 93, 584–591. [Google Scholar] [CrossRef]
- World Health Organization. Rubella vaccines: WHO position paper—July 2020. Wkly. Epidemiol. Rec. 2020, 95, 306–324. [Google Scholar]
- Brasil Ministério da Saúde. Manual de Vigilância Epidemiológica de Eventos Adversos Pós-Vacinação, 5th ed.; Ministério da Saúde: Brasília, Brazil, 2022. [Google Scholar]
- Rivière, G.; Leroy, V. Congenital infections and the need for long-term follow-up. Pediatr. Neonatol. 2017, 58, 117–124. [Google Scholar] [CrossRef]
Clinical Condition | Clinical Manifestation |
---|---|
Acute rubella infection (symptomatic) | - Low-grade fever |
- Erythematous maculopapular rash with cephalocaudal progression | |
- Lymphadenopathy (retroauricular, cervical, occipital) | |
- Arthralgia and arthritis, especially in adult women - Purpuric rash (blueberry muffin rash) | |
- Idiopathic thrombocytopenic purpura (rare) [28,29,30] | |
Acute rubella infection (asymptomatic) | - Absence of clinical signs in approximately 25–50% of cases [26] |
Congenital Rubella Syndrome (CRS) | - Congenital cataracts |
- Sensorineural hearing loss | |
- Congenital heart defects (e.g., patent ductus arteriosus, pulmonary artery stenosis) | |
- Pigmentary retinopathy | |
- Neurodevelopmental delay | |
- Behavioral disorders | |
- Endocrine dysfunctions (e.g., congenital hypothyroidism, type 1 diabetes mellitus) [26,28,30,31] |
Intrauterine Findings | Description | Imaging Methods |
---|---|---|
Intrauterine growth restriction | Fetal size below expectations for gestational age | US |
Microcephaly | Fetal head circumference below normal | US, MRI |
Ventriculomegaly/calcifications | Cerebral ventricle dilation or intracranial calcifications | US, MRI |
Hydrops fetalis | Fluid accumulation in fetal compartments and subcutaneous tissue | US |
Congenital heart disease | ASD, VSD, PDA | Doppler US, fetal cardiac MRI |
Hepatosplenomegaly | Enlarged liver and spleen | US |
Pleural effusion/ascites | Fluid accumulation in pleural or abdominal cavities | US |
Cataract and microphthalmia | Lens opacity and small eye dimensions | Ocular US, MRI |
Liver hypoechogenicity | Low echogenic areas suggesting inflammation or infection | US |
Pulmonary artery stenosis | Narrowing of the pulmonary artery | Doppler US, fetal cardiac MRI |
Echogenic bowel | Increased bowel echogenicity, similar to bone | US |
Polyhydramnios | Excess amniotic fluid | US |
Placentomegaly | Thickened placenta for gestational age | US |
Characteristic | Zika Virus | Rubella | Cytomegalovirus (CMV) | Toxoplasmosis |
---|---|---|---|---|
Gestational age period with higher risk | First trimester (7–13 weeks) [45] | First trimester (particularly around the 10th week) [45] | First trimester, with risk persisting across all trimesters [45] | Third trimester (predominantly during the ninth month) [44] |
Adverse perinatal outcomes | Microcephaly (also seen in rubella and CMV), ocular anomalies [46] | Sensorineural hearing loss (as in CMV), cataracts, cardiac anomalies, microcephaly [45] | Sensorineural hearing loss, chorioretinitis (as in toxoplasmosis), microcephaly, cerebral palsy, intellectual disability [45] | Intracranial calcifications (50–80%), hydrocephalus, and chorioretinitis [44] |
Brain calcification pattern | Predominantly subcortical [44] | Periventricular and basal ganglia [44] | Periventricular (similar to rubella) [44] | Not typically described with a specific calcification pattern |
Vaccination availability | No | Yes [11] | No | No |
System | Signs and Symptoms |
---|---|
Vision | - Central serous chorioretinopathy |
- Congenital cataract | |
- Salt-and-pepper retinal pigmentary changes | |
- Microphthalmia | |
- Glaucoma | |
- Irregularly distributed speckled hypoautofluorescence | |
- Macular neovascularization | |
- Myopia | |
- Hyperopia | |
- Strabismus | |
- Nystagmus | |
Hearing | - Sensorineural hearing loss |
Facial Dysmorphisms | - Triangular face |
- Microcephaly | |
- Broad forehead | |
- Low anterior hairline | |
- Whorl on anterior hairline | |
- Prominent nose | |
- Micrognathia | |
Cardiac | - Patent ductus arteriosus (PDA) |
- Pulmonary artery stenosis | |
- Atrial septal defect (ASD) | |
- Ventricular septal defect (VSD) | |
- Cardiomyopathy | |
- Arrhythmias | |
Pulmonary | - Pulmonary hypertension |
Neurodevelopment | - Communication difficulties |
- Language delay | |
- Autism spectrum disorder |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Melo, L.C.; Rugna, M.M.; Durães, T.A.; Pereira, S.S.; Callado, G.Y.; Pires, P.; Traina, E.; Araujo Júnior, E.; Granese, R. Congenital Rubella Syndrome in the Post-Elimination Era: Why Vigilance Remains Essential. J. Clin. Med. 2025, 14, 3986. https://doi.org/10.3390/jcm14113986
De Melo LC, Rugna MM, Durães TA, Pereira SS, Callado GY, Pires P, Traina E, Araujo Júnior E, Granese R. Congenital Rubella Syndrome in the Post-Elimination Era: Why Vigilance Remains Essential. Journal of Clinical Medicine. 2025; 14(11):3986. https://doi.org/10.3390/jcm14113986
Chicago/Turabian StyleDe Melo, Livian Cássia, Marina Macruz Rugna, Talita Almeida Durães, Stefany Silva Pereira, Gustavo Yano Callado, Pedro Pires, Evelyn Traina, Edward Araujo Júnior, and Roberta Granese. 2025. "Congenital Rubella Syndrome in the Post-Elimination Era: Why Vigilance Remains Essential" Journal of Clinical Medicine 14, no. 11: 3986. https://doi.org/10.3390/jcm14113986
APA StyleDe Melo, L. C., Rugna, M. M., Durães, T. A., Pereira, S. S., Callado, G. Y., Pires, P., Traina, E., Araujo Júnior, E., & Granese, R. (2025). Congenital Rubella Syndrome in the Post-Elimination Era: Why Vigilance Remains Essential. Journal of Clinical Medicine, 14(11), 3986. https://doi.org/10.3390/jcm14113986