Periradicular Temperature Changes and Risk Management During Heat-Inducing Endodontic Disinfection Procedures In Vitro
Abstract
:1. Introduction
2. Materials and Methods
- SiroLaser Blue (λ445 nm, 0.6 W, continuous wave mode, power density 0.00149 W/cm2; EasyTip 200 µm Endo, exposure time 4 × 10 s, 5 s pause between laser-activated cycles)
- SiroLaser Blue (λ445 nm, 3 W, pulsed, duty cycle 50%, 10 Hz, power density 0.8 W/cm2, EasyTip 200 µm Endo, exposure time 4 × 10 s, 5 s pause between laser-activated cycles)
- SiroLaser Blue (λ445 nm, 3 W, pulsed, duty cycle 75%, 10 Hz, power density 0.8 W/cm2, EasyTip 200 µm Endo, exposure time 4 × 10 s, 5 s pause between laser-activated cycles)
- SiroLaser Blue (λ970 nm, 2 W, pulsed, duty cycle 50%, 10 Hz, power density 0.12 W/cm2, EasyTip 200 µm Endo, exposure time 4 × 10 s, 5 s pause between laser-activated cycles
- SiroLaser Blue (λ970 nm, 2 W, pulsed, duty cycle 75%, 10 Hz, power density 0.12 W/cm2, EasyTip 200 µm Endo, exposure time 4 × 10 s, 5 s pause between laser-activated cycles)
- Wilgoon experimental plasma device (Long-Yao Reisen & Handel GmbH, Leipzig, Germany; intensity level 9, 2.5 W, 3.7 V, power density 0.23 W/cm2; 850 mAh lithium polymer battery; cannula (B. Braun Sterican®, Melsungen, Germany, standard cannula, Ø 0.80 × 40 mm), exposure time 4 × 10 s, paused 5 s)
- Heat plugger (BeeFill 2in1 device (VDW Dental, Munich, Germany), heated to 200.0 °C, exposure time 4 × 10 s, paused 5 s)
- Sodium hypochlorite 3% (60.0 °C, heated by a thermal bath, exposure time 60 s)
3. Results
3.1. Temperature Changes with Disinfection Techniques Relative to Fluid Circulation Rate (L1)
3.2. Temperature Changes at Different Fluid Circulation Rates Relative to Disinfection Techniques (L1)
3.3. Temperature Changes in the Coronal Third of the Root (P1)
3.4. Temperature Changes in the Coronal Third of the Root (P2)
3.5. Temperature Changes in the Coronal Third of the Root (P3)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karamifar, K.; Tondari, A.; Saghiri, M.A. Endodontic Periapical Lesion: An Overview on the Etiology, Diagnosis and Current Treatment Modalities. Eur. Endod. J. 2020, 5, 54–67. [Google Scholar] [CrossRef]
- Zehnder, M.; Belibasakis, G.N. On the dynamics of root canal infections-what we understand and what we don’t. Virulence 2015, 6, 216–222. [Google Scholar] [CrossRef]
- Galler, K.M.; Weber, M.; Korkmaz, Y.; Widbiller, M.; Feuerer, M. Inflammatory Response Mechanisms of the Dentine-Pulp Complex and the Periapical Tissues. Int. J. Mol. Sci. 2021, 22, 1480. [Google Scholar] [CrossRef]
- Lin, L.M.; Pascon, E.A.; Skribner, J.; Gangler, P.; Langeland, K. Clinical, radiographic, and histologic study of endodontic treatment failures. Oral Surg. Oral Med. Oral Pathol. 1991, 71, 603–611. [Google Scholar] [CrossRef]
- Sjogren, U.; Figdor, D.; Persson, S.; Sundqvist, G. Influence of infection at the time of root filling on the outcome of endodontic treatment of teeth with apical periodontitis. Int. Endod. J. 1997, 30, 297–306. [Google Scholar] [CrossRef]
- Friedman, S.; Mor, C. The success of endodontic therapy—healing and functionality. J. Calif. Dent. Assoc. 2004, 32, 493–503. [Google Scholar] [CrossRef]
- Basrani, B.; Lemonie, C. Chlorhexidine gluconate. Aust. Endod. J. 2005, 31, 48–52. [Google Scholar] [CrossRef]
- Haapasalo, M.; Shen, Y.; Wang, Z.; Gao, Y. Irrigation in endodontics. Br. Dent. J. 2014, 216, 299–303. [Google Scholar] [CrossRef]
- Zehnder, M. Root canal irrigants. J. Endod. 2006, 32, 389–398. [Google Scholar] [CrossRef]
- Rödig, T. Aktuelle Konzepte der Wurzelkanaldesinfektion. In Wissen Kompakt; SpringerLink: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Donnermeyer, D.; Schafer, E.; Burklein, S. Real-time intracanal temperature measurement comparing mechanically and laser-activated irrigation to syringe irrigation. Aust. Endod. J. 2021, 47, 59–66. [Google Scholar] [CrossRef]
- Mohammadi, Z. Sodium hypochlorite in endodontics: An update review. Int. Dent. J. 2008, 58, 329–341. [Google Scholar] [CrossRef]
- Coelho, P.G.; Granjeiro, J.M.; Romanos, G.E.; Suzuki, M.; Silva, N.R.; Cardaropoli, G.; Thompson, V.P.; Lemons, J.E. Basic research methods and current trends of dental implant surfaces. J. Biomed. Mater. Res. B Appl. Biomater. 2009, 88, 579–596. [Google Scholar] [CrossRef]
- Braun, A.; Kecsmar, S.; Krause, F.; Berthold, M.; Frentzen, M.; Frankenberger, R.; Schelle, F. Effect of simulated pulpal fluid circulation on intrapulpal temperature following irradiation with an Nd:YVO4 laser. Lasers Med. Sci. 2015, 30, 1197–1202. [Google Scholar] [CrossRef]
- Braun, A.; Kettner, M.; Berthold, M.; Wenzler, J.S.; Heymann, P.G.B.; Frankenberger, R. Efficiency of soft tissue incision with a novel 445-nm semiconductor laser. Lasers Med. Sci. 2018, 33, 27–33. [Google Scholar] [CrossRef]
- Al-Maliky, M.A.; Frentzen, M.; Meister, J. Laser-assisted prevention of enamel caries: A 10-year review of the literature. Lasers Med. Sci. 2020, 35, 13–30. [Google Scholar] [CrossRef]
- Asnaashari, M.; Safavi, N. Disinfection of Contaminated Canals by Different Laser Wavelengths, while Performing Root Canal Therapy. J. Lasers Med. Sci. 2013, 4, 8–16. [Google Scholar]
- Kreisler, M.; Christoffers, A.B.; Willershausen, B.; d’Hoedt, B. Effect of low-level GaAlAs laser irradiation on the proliferation rate of human periodontal ligament fibroblasts: An in vitro study. J. Clin. Periodontol. 2003, 30, 353–358. [Google Scholar] [CrossRef]
- Vatkar, N.A.; Hegde, V.; Sathe, S. Vitality of Enterococcus faecalis inside dentinal tubules after five root canal disinfection methods. J. Conserv. Dent. 2016, 19, 445–449. [Google Scholar] [CrossRef]
- Gutknecht, N.; Franzen, R.; Schippers, M.; Lampert, F. Bactericidal effect of a 980-nm diode laser in the root canal wall dentin of bovine teeth. J. Clin. Laser Med. Surg. 2004, 22, 9–13. [Google Scholar] [CrossRef]
- Gutknecht, N.A.T.; Slaus, G.; Bottenberg, P.; Rosseel, P.; Lauwers, S.; Lampert, F. Clinical comparison of the bacterial effect of thediode laser and 5% sodium hypochlorite in necrotic root canals. J. Oral Laser Appl. 2002, 2, 151–157. [Google Scholar]
- Moritz, A.; Jakolitsch, S.; Goharkhay, K.; Schoop, U.; Kluger, W.; Mallinger, R.; Sperr, W.; Georgopoulos, A. Morphologic changes correlating to different sensitivities of Escherichia coli and enterococcus faecalis to Nd:YAG laser irradiation through dentin. Lasers Surg. Med. 2000, 26, 250–261. [Google Scholar] [CrossRef]
- Franzen, R.; Gutknecht, N.; Falken, S.; Heussen, N.; Meister, J. Bactericidal effect of a Nd:YAG laser on Enterococcus faecalis at pulse durations of 15 and 25 ms in dentine depths of 500 and 1000 mum. Lasers Med. Sci. 2011, 26, 95–101. [Google Scholar] [CrossRef]
- Wenzler, J.S.; Falk, W.; Frankenberger, R.; Braun, A. Impact of Adjunctive Laser Irradiation on the Bacterial Load of Dental Root Canals: A Randomized Controlled Clinical Trial. Antibiotics 2021, 10, 1557. [Google Scholar] [CrossRef]
- Ehlbeck, J.; Schnabel, U.; Polak, M.; Winter, J.; Von Woedtke, T.; Brandenburg, R.; Von dem Hagen, T.; Weltmann, K.D. Low temperature atmospheric pressure plasma sources for microbial decontamination. J. Phys. D Appl. Phys. 2011, 44, 013002. [Google Scholar] [CrossRef]
- Chang, Y.T.; Chen, G. Oral bacterial inactivation using a novel low-temperature atmospheric-pressure plasma device. J. Dent. Sci. 2016, 11, 65–71. [Google Scholar] [CrossRef]
- Barbieri, D.; Boselli, M.; Cavrini, F.; Colombo, V.; Gherardi, M.; Landini, M.P.; Laurita, R.; Liguori, A.; Stancampiano, A. Investigation of the antimicrobial activity at safe levels for eukaryotic cells of a low power atmospheric pressure inductively coupled plasma source. Biointerphases 2015, 10, 029519. [Google Scholar] [CrossRef]
- Külzer, L.; Saban, T.; Braun, A.; Wenzler, J.-S. In Vitro Evaluation of Root Surface Temperature Using Different Endodontic Filling Techniques. Appl. Sci. 2024, 14, 9830. [Google Scholar] [CrossRef]
- World Medical, A. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Huiz Peeters, H.; Suardita, K.; Mooduto, L.; Gutknecht, N. Extrusion of Irrigant in Open Apex Teeth with Periapical Lesions Following Laser-Activated Irrigation and Passive Ultrasonic Irrigation. Iran. Endod. J. 2018, 13, 169–175. [Google Scholar] [CrossRef]
- Katalinic, I.; Budimir, A.; Bosnjak, Z.; Jakovljevic, S.; Anic, I. The photo-activated and photo-thermal effect of the 445/970 nm diode laser on the mixed biofilm inside root canals of human teeth in vitro: A pilot study. Photodiagn. Photodyn. Ther. 2019, 26, 277–283. [Google Scholar] [CrossRef]
- Meister, J.; Franzen, R.; Apel, C. Grundlagen der Laserzahnheilkunde Teil III: Die LichtGewebe-Wechselwirkung. Laser Zahnheilkd. 2004, 3, 199–204. [Google Scholar]
- Gutknecht, N.; Franzen, R.; Meister, J.; Vanweersch, L.; Mir, M. Temperature evolution on human teeth root surface after diode laser assisted endodontic treatment. Lasers Med. Sci. 2005, 20, 99–103. [Google Scholar] [CrossRef]
- Eriksson, A.; Albrektsson, T.; Grane, B.; McQueen, D. Thermal injury to bone. A vital-microscopic description of heat effects. Int. J. Oral Surg. 1982, 11, 115–121. [Google Scholar] [CrossRef]
- Azmaz, N.T.; Bozkurt, S.B.; Hakki, S.S.; Belli, S. Warm Gutta-Percha Techniques Regulate Cell Viability, Heat Shock, and Mineralized Tissue-associated Proteins of Cementoblasts. J. Endod. 2020, 46, 957–963. [Google Scholar] [CrossRef]
- Livada, R.; Hosn, K.; Shiloah, J.; Anderson, K.M. Management of heat-induced bone necrosis following thermal removal of gutta-percha. Quintessence Int. 2018, 49, 535–542. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, X.; Wang, Q.; Wang, Y.; Tang, L.; Huang, D. Effect of heat stress on the expression levels of receptor activator of NF-kappaB ligand and osteoprotegerin in human periodontal ligament cells. Int. Endod. J. 2012, 45, 68–75. [Google Scholar] [CrossRef]
- Lau, X.E.; Liu, X.; Chua, H.; Wang, W.J.; Dias, M.; Choi, J.J.E. Heat generated during dental treatments affecting intrapulpal temperature: A review. Clin. Oral Investig. 2023, 27, 2277–2297. [Google Scholar] [CrossRef]
- Sauk, J.J.; Norris, K.; Foster, R.; Moehring, J.; Somerman, M.J. Expression of heat stress proteins by human periodontal ligament cells. J. Oral Pathol. 1988, 17, 496–499. [Google Scholar] [CrossRef]
- Kimura, Y.; Wilder-Smith, P.; Matsumoto, K. Lasers in endodontics: A review. Int. Endod. J. 2000, 33, 173–185. [Google Scholar] [CrossRef]
- Soyenkoff, B.C.; Okun, J.H. Thermal conductivity measurements of dental tissues with the aid of thermistors. J. Am. Dent. Assoc. 1958, 57, 23–30. [Google Scholar] [CrossRef]
- Cen, R.; Wang, R.; Cheung, G.S.P. Periodontal Blood Flow Protects the Alveolar Bone from Thermal Injury during Thermoplasticized Obturation: A Finite Element Analysis Study. J. Endod. 2018, 44, 139–144. [Google Scholar] [CrossRef]
- Birn, H. The vascular supply of the periodontal membrane. An investigation of the number and size of perforations in the alveolar wall. J. Periodontal Res. 1966, 1, 51–68. [Google Scholar] [CrossRef]
- Walling, J.; Kirchhoff, T.; Berthold, M.; Wenzler, J.S.; Braun, A. Impact of thermal photodynamic disinfection on root dentin temperature in vitro. Photodiagn. Photodyn. Ther. 2021, 35, 102476. [Google Scholar] [CrossRef]
- Silva, H. Tobacco Use and Periodontal Disease-The Role of Microvascular Dysfunction. Biology 2021, 10, 441. [Google Scholar] [CrossRef]
- Sreedevi, M.; Ramesh, A.; Dwarakanath, C. Periodontal status in smokers and nonsmokers: A clinical, microbiological, and histopathological study. Int. J. Dent. 2012, 2012, 571590. [Google Scholar] [CrossRef]
- Scardina, G.; Citarrella, R.; Messina, P. Diabetic Microagiopathy of Oral Mucosa Depends on Disease Duration and Therapy. Med. Sci. Monit. 2017, 23, 5613–5619. [Google Scholar] [CrossRef]
- da Fonseca Alvarez, A.; Moura-Netto, C.; Daliberto Frugoli, A.; Fernando, C.; Aranha, A.C.; Davidowicz, H. Temperature changes on the root surfaces of mandibular incisors after an 810-nm high-intensity intracanal diode laser irradiation. J. Biomed. Opt. 2012, 17, 015006. [Google Scholar] [CrossRef]
- Stanusi, A.S.; Popa, D.L.; Ionescu, M.; Cumpata, C.N.; Petrescu, G.S.; Tuculina, M.J.; Daguci, C.; Diaconu, O.A.; Gheorghita, L.M.; Stanusi, A. Analysis of Temperatures Generated during Conventional Laser Irradiation of Root Canals-A Finite Element Study. Diagnostics 2023, 13, 1757. [Google Scholar] [CrossRef]
- Braun, A.; Hagelauer, F.J.; Wenzler, J.; Heimer, M.; Frankenberger, R.; Stein, S. Microcrack Analysis of Dental Hard Tissue After Root Canal Irradiation with a 970-nm Diode Laser. Photomed. Laser Surg. 2018, 36, 621–628. [Google Scholar] [CrossRef]
- Beer, F.; Farmakis, E.T.; Kopic, J.; Kurzmann, C.; Moritz, A. Temperature Development on the External Root Surface During Laser-Assisted Endodontic Treatment Applying a Microchopped Mode of a 980 nm Diode Laser. Photomed. Laser Surg. 2017, 35, 206–212. [Google Scholar] [CrossRef]
- Muniz, A.B.; Vegian, M.; Pereira Leite, L.D.; da Silva, D.M.; Moreira Milhan, N.V.; Kostov, K.G.; Koga-Ito, C.Y. Non-Thermal Atmospheric Pressure Plasma Application in Endodontics. Biomedicines 2023, 11, 1401. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, K.; Ye, G.; Liang, Y.; Pan, H.; Wang, G.; Zhao, Y.; Pan, J.; Zhang, J.; Fang, J. Evaluation of Cold Plasma Treatment and Safety in Disinfecting 3-week Root Canal Enterococcus faecalis Biofilm In Vitro. J. Endod. 2015, 41, 1325–1330. [Google Scholar] [CrossRef]
- Eggers, B.; Marciniak, J.; Deschner, J.; Stope, M.B.; Mustea, A.; Kramer, F.J.; Nokhbehsaim, M. Cold Atmospheric Plasma Promotes Regeneration-Associated Cell Functions of Murine Cementoblasts In Vitro. Int. J. Mol. Sci. 2021, 22, 5280. [Google Scholar] [CrossRef]
- Duske, K.; Koban, I.; Kindel, E.; Schroder, K.; Nebe, B.; Holtfreter, B.; Jablonowski, L.; Weltmann, K.D.; Kocher, T. Atmospheric plasma enhances wettability and cell spreading on dental implant metals. J. Clin. Periodontol. 2012, 39, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Eggers, B.; Wagenheim, A.M.; Jung, S.; Kleinheinz, J.; Nokhbehsaim, M.; Kramer, F.J.; Sielker, S. Effect of Cold Atmospheric Plasma (CAP) on Osteogenic Differentiation Potential of Human Osteoblasts. Int. J. Mol. Sci. 2022, 23, 2503. [Google Scholar] [CrossRef]
- Walters, J.D.; Rawal, S.Y. Severe periodontal damage by an ultrasonic endodontic device: A case report. Dent. Traumatol. 2007, 23, 123–127. [Google Scholar] [CrossRef]
- Sweatman, T.L.; Baumgartner, J.C.; Sakaguchi, R.L. Radicular temperatures associated with thermoplasticized gutta-percha. J. Endod. 2001, 27, 512–515. [Google Scholar] [CrossRef]
- Sonntag, D.; Raab, W.H.; Martin, E.; Keppel, R. Intracanal use of heated rinsing solutions: A pilot study. Quintessence Int. 2017, 48, 281–285. [Google Scholar] [CrossRef]
- Kafantari, N.; Gulabivala, K.; Georgiou, G.; Knowles, J.; Ng, Y.L. Effect of Heated Sodium Hypochlorite on the Viscoelastic Properties of Dentin Evaluated Using Dynamic Mechanical Analysis. J. Endod. 2019, 45, 1155–1160. [Google Scholar] [CrossRef]
- Yared, G.; Al Asmar Ramli, G. Antibacterial Ability of Sodium Hypochlorite Heated in the Canals of Infected Teeth: An Ex Vivo Study. Cureus 2020, 12, e6975. [Google Scholar] [CrossRef]
- Kivanc, B.H.; Arisu, H.D.; Saglam, B.C.; Akca, G.; Gurel, M.A.; Gorgul, G. Evaluation of antimicrobial and thermal effects of diode laser on root canal dentin. Niger. J. Clin. Pract. 2017, 20, 1527–1530. [Google Scholar] [CrossRef] [PubMed]
- Slaughter, R.J.; Watts, M.; Vale, J.A.; Grieve, J.R.; Schep, L.J. The clinical toxicology of sodium hypochlorite. Clin. Toxicol. 2019, 57, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Sarda, R.A.; Shetty, R.M.; Tamrakar, A.; Shetty, S.Y. Antimicrobial efficacy of photodynamic therapy, diode laser, and sodium hypochlorite and their combinations on endodontic pathogens. Photodiagn. Photodyn. Ther. 2019, 28, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Katalinic, I.; Pranjic, A.; Budimir, A.; Kanizaj, L.; Bago, I.; Rajic, V. Antimicrobial effect of 2.5% sodium hypochlorite irradiated with the 445 Nm diode laser against bacterial biofilms in root canal—In vitro pilot study. Lasers Med. Sci. 2025, 40, 202. [Google Scholar] [CrossRef]
Flow Rate | |||
---|---|---|---|
0 mL/min | 2.6 mL/min | 7 mL/min | |
(I) λ445 nm (3 W, cw) | |||
Median | 0.22 | 1.3 | 2.35 |
Minimum | 0.00 | 0.82 | 1.3 |
Maximum | 0.91 | 4.33 | 4.01 |
Interquartile range | 0.67 | 1.39 | 0.5 |
n | 5 | 5 | 5 |
(II) λ445 nm, 3 W, duty cycle 50%, 10 Hz | |||
Median | 13.11 | 1.92 | 1.01 |
Minimum | 5.48 | 0.00 | 0.6 |
Maximum | 21.44 | 6.67 | 1.41 |
Interquartile range | 14.88 | 2.06 | 0.36 |
n | 5 | 5 | 5 |
(III) λ445 nm, 3 W, duty cycle 75%, 10 Hz | |||
Median | 21.15 | 9.57 | 5.44 |
Minimum | 1.84 | 4.5 | 2.86 |
Maximum | 22.83 | 11.6 | 11.64 |
Interquartile range | 1.21 | 1.56 | 3.83 |
n | 5 | 5 | 5 |
(IV) λ970 nm, 2 W, duty cycle 50%, 10 Hz | |||
Median | 0.14 | 0.87 | 0.67 |
Minimum | 0.00 | 0.35 | 0.19 |
Maximum | 0.52 | 1.85 | 1.1 |
Interquartile range | 0.3 | 0.76 | 0.31 |
n | 5 | 5 | 5 |
(V) λ970 nm, 2 W, duty cycle 75%, 10 Hz | |||
Median | 0.43 | 2.46 | 1.17 |
Minimum | 0.00 | 0.72 | 0.99 |
Maximum | 7.5 | 3.91 | 2.31 |
Interquartile range | 6.53 | 1.81 | 0.29 |
n | 5 | 5 | 5 |
(VI) PlasmaPen | |||
Median | 3.17 | 2.44 | 1.73 |
Minimum | 1.23 | 0.91 | 1.58 |
Maximum | 8.28 | 5.21 | 5.03 |
Interquartile range | 2.89 | 1.43 | 0.65 |
n | 5 | 5 | 5 |
(VII) Heatplugger | |||
Median | 14.2 | 7.52 | 1.02 |
Minimum | 2.71 | 6.17 | 0.65 |
Maximum | 23.1 | 12.33 | 1.75 |
Interquartile range | 16.26 | 1.49 | 0.5 |
n | 5 | 5 | 5 |
(V) Sodium hypochlorite 60 °C | |||
Median | 7.65 | 2.49 | 1.45 |
Minimum | 7.06 | 0.95 | 0.85 |
Maximum | 10.63 | 3.68 | 2.66 |
Interquartile range | 1.93 | 0.96 | 1.26 |
n | 5 | 5 | 5 |
P1 (Coronal Third) | P2 (Middle Third) | P3 (Apical Third) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Groups | Median | Min | Max | IQR | n | Median | Min | Max | IQR | n | Median | Min | Max | IQR | n |
Flow rate 0 mL/min | |||||||||||||||
(I) | 0.00 | 0.00 | 0.11 | 0.00 | 5 | 0.03 | 0.00 | 1.5 | 0.68 | 5 | 3.88 | 0.22 | 4.85 | 2.67 | 5 |
(II) | 2.65 | 0.00 | 7.07 | 2.79 | 5 | 11.82 | 5.93 | 22.12 | 13.02 | 5 | 35.52 | 8.23 | 63.31 | 36.63 | 5 |
(III) | 19.85 | 9.99 | 37.98 | 19.67 | 5 | 21.7 | 20.29 | 25.02 | 2.04 | 5 | 11.26 | 7.05 | 28.21 | 18.45 | 5 |
(IV) | 0.00 | 0.00 | 1.62 | 0.02 | 5 | 0.35 | 0.00 | 0.53 | 0.42 | 5 | 0.44 | 0.16 | 3.15 | 0.97 | 5 |
(V) | 1.66 | 0.04 | 14.26 | 12.7 | 5 | 0.88 | 0.00 | 8.34 | 7.97 | 5 | 0.27 | 0.00 | 0.61 | 0.03 | 5 |
(VI) | 2.66 | 0.63 | 5.51 | 1.49 | 5 | 2.7 | 0.25 | 8.88 | 3.59 | 5 | 7.47 | 1.11 | 10.05 | 2.79 | 5 |
(VII) | 25.58 | 12.01 | 31.12 | 16.39 | 5 | 18.69 | 2.98 | 29.07 | 17.94 | 5 | 0.03 | 0.00 | 8.51 | 5.7 | 5 |
(VIII) | 9.65 | 7.31 | 12.54 | 2.75 | 5 | 7.45 | 7.00 | 12.0 | 0.88 | 5 | 7.55 | 6.31 | 9.45 | 1.31 | 5 |
Flow rate 2.6 mL/min | |||||||||||||||
(I) | 0.4 | 0.26 | 4.1 | 3.07 | 5 | 1.74 | 1.42 | 4.53 | 1.69 | 5 | 0.46 | 0.15 | 3.92 | 1.48 | 5 |
(II) | 4.23 | 1.8 | 6.13 | 0.66 | 5 | 2.3 | 0.00 | 8.57 | 3.29 | 5 | 0.56 | 0.00 | 4.67 | 0.63 | 5 |
(III) | 10.94 | 6.59 | 16.95 | 5.44 | 5 | 10.6 | 1.89 | 14.92 | 3.29 | 5 | 8.06 | 0.28 | 10.03 | 6.85 | 5 |
(IV) | 2.99 | 0.54 | 5.13 | 2.26 | 5 | 0.54 | 0.19 | 0.92 | 0.36 | 5 | 0.85 | 0.05 | 1.12 | 0.67 | 5 |
(V) | 4.29 | 3.12 | 4.61 | 1.48 | 5 | 3.39 | 1.21 | 5.6 | 2.8 | 5 | 6.76 | 0.00 | 11.91 | 6.76 | 5 |
(VI) | 6.13 | 3.21 | 13.1 | 2.57 | 5 | 2.21 | 0.94 | 4.38 | 2.14 | 5 | 0.41 | 0.17 | 0.79 | 0.2 | 5 |
(VII) | 13.53 | 12.45 | 20.28 | 2.26 | 5 | 6.64 | 4.96 | 12.56 | 2.3 | 5 | 2.5 | 1.67 | 6.08 | 0.53 | 5 |
(VIII) | 3.33 | 2.79 | 6.1 | 1.61 | 5 | 2.16 | 0.96 | 3.78 | 0.56 | 5 | 1.7 | 0.31 | 2.24 | 0.38 | 5 |
Flow rate 7 mL/min | |||||||||||||||
(I) | 3.22 | 1.39 | 12.7 | 0.85 | 5 | 3.48 | 1.98 | 3.86 | 0.83 | 5 | 0.82 | 0.15 | 2.02 | 0.87 | 5 |
(II) | 1.84 | 0.9 | 2.24 | 0.28 | 5 | 1.2 | 0.52 | 1.71 | 0.39 | 5 | 1.21 | 0.81 | 1.61 | 0.39 | 5 |
(III) | 11.28 | 8.04 | 29.47 | 8.29 | 5 | 5.3 | 2.84 | 13.16 | 2.34 | 5 | 1.62 | 0.98 | 2.59 | 0.21 | 5 |
(IV) | 1.1 | 0.75 | 2.65 | 0.54 | 5 | 0.67 | 0.2 | 0.93 | 0.53 | 5 | 1.48 | 0.4 | 2.36 | 1.38 | 5 |
(V) | 1.15 | 0.83 | 2.35 | 0.61 | 5 | 1.17 | 0.85 | 2.63 | 0.78 | 5 | 1.87 | 1.27 | 3.05 | 1.2 | 5 |
(VI) | 2.68 | 0.95 | 4.97 | 1.13 | 5 | 1.67 | 1.2 | 6.91 | 0.96 | 5 | 1.57 | 0.1 | 4.23 | 0.37 | 5 |
(VII) | 3.01 | 2.89 | 4.96 | 0.09 | 5 | 0.9 | 0.52 | 1.48 | 0.59 | 5 | 0.9 | 0.19 | 1.57 | 1.2 | 5 |
(VIII) | 1.3 | 8.77 | 0.69 | 5.36 | 5 | 1.66 | 1.02 | 2.44 | 0.67 | 5 | 0.87 | 0.48 | 1.19 | 0.25 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saban, T.; Külzer, L.; Braun, A.; Wenzler, J.-S. Periradicular Temperature Changes and Risk Management During Heat-Inducing Endodontic Disinfection Procedures In Vitro. J. Clin. Med. 2025, 14, 3997. https://doi.org/10.3390/jcm14113997
Saban T, Külzer L, Braun A, Wenzler J-S. Periradicular Temperature Changes and Risk Management During Heat-Inducing Endodontic Disinfection Procedures In Vitro. Journal of Clinical Medicine. 2025; 14(11):3997. https://doi.org/10.3390/jcm14113997
Chicago/Turabian StyleSaban, Theresia, Lea Külzer, Andreas Braun, and Johannes-Simon Wenzler. 2025. "Periradicular Temperature Changes and Risk Management During Heat-Inducing Endodontic Disinfection Procedures In Vitro" Journal of Clinical Medicine 14, no. 11: 3997. https://doi.org/10.3390/jcm14113997
APA StyleSaban, T., Külzer, L., Braun, A., & Wenzler, J.-S. (2025). Periradicular Temperature Changes and Risk Management During Heat-Inducing Endodontic Disinfection Procedures In Vitro. Journal of Clinical Medicine, 14(11), 3997. https://doi.org/10.3390/jcm14113997