Open AccessArticle
Acoustic-Based Machine Main State Monitoring for High-Speed CNC Drilling
by
Pimolkan Piankitrungreang, Kantawatchr Chaiprabha, Worathris Chungsangsatiporn, Chanat Ratanasumawong, Peemdej Chancharoen and Ratchatin Chancharoen
Machines 2025, 13(5), 372; https://doi.org/10.3390/machines13050372 (registering DOI) - 29 Apr 2025
Abstract
This paper introduces an acoustic-based monitoring system for high-speed CNC drilling, aimed at optimizing processes and enabling real-time machine state detection. High-fidelity acoustic sensors capture sound signals during drilling operations, allowing the identification of critical events such as tool engagement, material breakthrough, and
[...] Read more.
This paper introduces an acoustic-based monitoring system for high-speed CNC drilling, aimed at optimizing processes and enabling real-time machine state detection. High-fidelity acoustic sensors capture sound signals during drilling operations, allowing the identification of critical events such as tool engagement, material breakthrough, and tool withdrawal. Advanced signal processing techniques, including spectrogram analysis and Fast Fourier Transform, extract dominant frequencies and acoustic patterns, while machine learning algorithms like DBSCAN clustering classify operational states such as cutting, breakthrough, and returning. Experimental studies on materials including acrylic, PTFE, and hardwood reveal distinct acoustic profiles influenced by material properties and drilling conditions. Smoother sound patterns and lower dominant frequencies characterize PTFE drilling, whereas hardwood produces higher frequencies and rougher patterns due to its density and resistance. These findings demonstrate the correlation between acoustic emissions and machining dynamics, enabling non-invasive real-time monitoring and predictive maintenance. As AI power increases, it is expected to extract in-situ process information and achieve higher resolution, enhancing precision in data interpretation and decision-making. A key contribution of this project is the creation of an open sound library for drilling processes, fostering collaboration and innovation in intelligent manufacturing. By integrating big data concepts and intelligent algorithms, the system supports continuous monitoring, anomaly detection, and process optimization. This AI-ready hardware enhances the accuracy and efficiency of drilling operations, improving quality, reducing tool wear, and minimizing downtime. The research establishes acoustic monitoring as a transformative approach to advancing CNC drilling processes and intelligent manufacturing systems.
Full article