Open AccessArticle
Vibration Control of Wheels in Distributed Drive Electric Vehicle Based on Electro-Mechanical Braking
by
Yinggang Xu, Zheng Zhu, Zhaonan Li, Xiangyu Wang, Liang Li and Heng Wei
Machines 2025, 13(8), 730; https://doi.org/10.3390/machines13080730 (registering DOI) - 17 Aug 2025
Abstract
Electro-Mechanical Braking (EMB), as a novel brake-by-wire technology, is rapidly being implemented in vehicle chassis systems. Nevertheless, the integrated design of the EMB caliper contributes to an increased unsprung mass in Distributed Drive Electric Vehicles (DDEVs). Experimental results indicate that when the Anti-lock
[...] Read more.
Electro-Mechanical Braking (EMB), as a novel brake-by-wire technology, is rapidly being implemented in vehicle chassis systems. Nevertheless, the integrated design of the EMB caliper contributes to an increased unsprung mass in Distributed Drive Electric Vehicles (DDEVs). Experimental results indicate that when the Anti-lock Braking System (ABS) is activated, these factors can induce high-frequency wheel oscillations. To address this issue, this study proposes an anti-oscillation control strategy tailored for EMB systems. Firstly, a quarter-vehicle model is established that incorporates the dynamics of the drive motor, suspension, and tire, enabling analysis of the system’s resonant behavior. The Discrete Fourier Transform (DFT) is applied to the difference between wheel speed and vehicle speed to extract the dominant frequency components. Then, an Adaptive Braking Intensity Field Regulation (ABIFR) strategy and a Model Predictive and Logic Control (MP-LC) framework are developed. These methods modulate the amplitude and frequency of braking torque reductions executed by the ABS to suppress high-frequency wheel oscillations, while ensuring sufficient braking force. Experimental validation using a real vehicle demonstrates that the proposed method increases the Mean Fully Developed Deceleration (MFDD) by 14.8% on low-adhesion surfaces and 15.2% on high-adhesion surfaces. Furthermore, the strategy significantly suppresses 12–13 Hz high-frequency oscillations, restoring normal ABS control cycles and enhancing both braking performance and ride comfort.
Full article