Previous Issue
Volume 16, December
 
 

Microbiol. Res., Volume 17, Issue 1 (January 2026) – 1 article

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
19 pages, 3676 KB  
Article
Lysinibacillus as Microbial Nanofactories: Genomic Mechanisms for Green Synthesis of Silver Nanoparticles (AgNPs)
by José Luis Aguirre-Noyola, Gustavo Cuaxinque-Flores, Jorge David Cadena-Zamudio, Marco A. Ramírez-Mosqueda, Lorena Jacqueline Gómez-Godínez and Juan Ramos-Garza
Microbiol. Res. 2026, 17(1), 1; https://doi.org/10.3390/microbiolres17010001 - 19 Dec 2025
Abstract
The green synthesis of silver nanoparticles (AgNPs) by bacteria is a strategic route for sustainable nanobiotechnology; however, the genomic and biochemical mechanisms that make it possible remain poorly defined. In this study, bacteria native to silver-bearing mine tailings in Taxco (Mexico) were isolated, [...] Read more.
The green synthesis of silver nanoparticles (AgNPs) by bacteria is a strategic route for sustainable nanobiotechnology; however, the genomic and biochemical mechanisms that make it possible remain poorly defined. In this study, bacteria native to silver-bearing mine tailings in Taxco (Mexico) were isolated, capable of tolerating up to 5 mM of AgNO3 and producing extracellular AgNPs. Spectroscopic (430–450 nm) and structural (XRD, fcc cubic phase) characterization confirmed the formation of AgNPs with average sizes of 17–21 nm. FTIR evidence showed the participation of extracellular proteins and polysaccharides as reducing and stabilizing agents. Genomic analyses assigned the isolates as Lysinibacillus fusiformis 31HCl and L. xylanilyticus G1-3. Genome mining revealed extensive repertoires of genes involved in uptake, transport, efflux and detoxification of metals, including P-type ATPases, RND/ABC/CDF transporters, Fe/Ni/Zn uptake systems, and metal response regulators. Notably, homologues of the silP gene, which encode Ag+ translocator ATPases, were identified, suggesting convergent adaptation to silver-rich environments. Likewise, multiple nitroreductases (YodC, YdjA, YfKO) were detected, candidates for mediating electron transfer from NAD(P)H to Ag+. These findings support the role of Lysinibacillus as microbial nanofactories equipped with specialized molecular determinants for silver tolerance and AgNP assembly, providing a functional framework for microorganism-based nanobiotechnology applications. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop