Urinalysis and Antimicrobial Susceptibility of Bacteria Isolated from Urine of Dogs and Cats in Poland in 2023: Associations Between Urine Parameters and Bacteriuria
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimen Collection
2.2. Study Population Characteristics
2.3. Urinalysis and UACR
2.4. Bacterial Culture and Molecular Biology Testing
2.5. Antimicrobial Susceptibility Testing
2.6. Statistical Data Analysis
3. Results
3.1. Urinalysis and Urine Albumin-Creatinine Ratio (UACR)
3.2. Bacteriological Culture Results
3.3. Antimicrobial Susceptibility
3.4. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ling, G.V. Therapeutic strategies involving antimicrobial treatment of the canine urinary tract. J. Am. Vet. Med. Assoc. 1984, 185, 1162–1164. [Google Scholar] [CrossRef] [PubMed]
- Komala, M.; Kumar, K.S. Urinary tract infection: Causes, symptoms, diagnosis and its management. Indian J. Res. Pharm. Biotechnol. 2013, 1, 226–233. [Google Scholar]
- Pereira, A.; Jota Baptista, C.; Oliveira, P.A.; Coelho, A.C. Urinary tract bacterial infections in small animal practice: Clinical and epidemiological aspects. Vet. Stanica 2024, 55, 703–720. [Google Scholar] [CrossRef]
- Lekcharoensuk, C.; Osborne, C.; Lulich, J. Epidemiologic study of risk factors for lower urinary tract diseases in cats. J. Am. Vet. Med. Assoc. 2001, 218, 1429–1435. [Google Scholar] [CrossRef]
- Litster, A.; Moss, S.; Platell, J.; Trott, D.J. Occult bacterial lower urinary tract infections in cats—Urinalysis and culture findings. Vet. Microbiol. 2009, 136, 130–134. [Google Scholar] [CrossRef]
- Dorsch, R.; Teichmann-Knorrn, S.; Sjetne Lund, H. Urinary tract infection and subclinical bacteriuria in cats: A clinical update. J. Feline Med. Surg. 2019, 21, 1023–1038. [Google Scholar] [CrossRef]
- Weese, J.S.; Blondeau, J.; Boothe, D.; Guardabassi, L.; Gumley, N.; Papich, M.; Jessen, L.R.; Lappin, M.; Rankin, S.; Westropp, J.L.; et al. International Society for Companion Animal Infectious Diseases (ISCAID) guidelines for the diagnosis and management of bacterial urinary tract infections in dogs and cats. Vet. J. 2019, 247, 8–25. [Google Scholar] [CrossRef]
- Sykes, J.E.; Westropp, J.L. Bacterial infections of the genitourinary tract. In Canine and Feline Infectious Diseases; Sykes, J.E., Ed.; Elsevier Saunders: St. Louis, MO, USA, 2014; pp. 871–885. [Google Scholar]
- Nicolle, L.E.; Bradley, S.; Colgan, R.; Rice, J.C.; Schaeffer, A.; Hooton, T.M. Infectious Diseases Society of America guidelines for the diagnosis and treatment of asymptomatic bacteriuria in adults. Clin. Infect. Dis. 2005, 40, 643–654. [Google Scholar] [CrossRef]
- Wood, M.W. Lower urinary tract infections. In Textbook of Veterinary Internal Medicine, 8th ed.; Ettinger, S.J., Feldman, E.C., Côté, E., Eds.; Elsevier: St. Louis, MO, USA, 2017; pp. 1992–1996. [Google Scholar]
- Grant, D.C.; Nappier, M.T.; Corrigan, V.K. Diagnostic accuracy of a point-of-care test using voided urine samples for detection of bacteriuria in dogs with signs of lower urinary tract disease. J. Vet. Intern. Med. 2021, 35, 993–996. [Google Scholar] [CrossRef]
- Sørensen, T.M.; Holmslykke, M.; Nordlund, M.; Siersma, V.; Jessen, L.R. Pre-test probability of urinary tract infection in dogs with clinical signs of lower urinary tract disease. Vet. J. 2019, 247, 65–70. [Google Scholar] [CrossRef]
- Llido, M.; Vachon, C.; Dickinson, M.; Beauchamp, G.; Dunn, M. Transurethral cystoscopy in dogs with recurrent urinary tract infections: Retrospective study (2011–2018). J. Vet. Intern. Med. 2020, 34, 790–796. [Google Scholar] [CrossRef] [PubMed]
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.L.; Holmes, M.A.; Baines, S.J. Prevalence and antimicrobial resistance of canine urinary tract pathogens. Vet. Rec. 2013, 173, 549. [Google Scholar] [CrossRef] [PubMed]
- Teh, H. A review of the current concepts in canine urinary tract infections. Aust. Vet. J. 2022, 100, 56–62. [Google Scholar] [CrossRef]
- Bonten, M.; Johnson, J.R.; van den Biggelaar, A.H.J.; Georgalis, L.; Geurtsen, J.; de Palacios, P.I.; Gravenstein, S.; Verstraeten, T.; Hermans, P.; Poolman, J.T. Epidemiology of Escherichia coli bacteremia: A systematic literature review. Clin. Infect. Dis. 2021, 72, 1211–1219. [Google Scholar] [CrossRef]
- Yousefi, A.; Torkan, S. Uropathogenic Escherichia coli in the urine samples of Iranian dogs: Antimicrobial resistance pattern and distribution of antibiotic resistance genes. Biomed. Res. Int. 2017, 2017, 4180490. [Google Scholar] [CrossRef]
- Jańczak, D.; Górecki, P.; Stryjek, R.; Zasada, A. Multidrug Resistance of Escherichia coli Isolated from the Urinary Bladder of Dogs and Cats with Suspected Urinary Tract Infections. Ann. Agric. Environ. Med. 2024, 31, 178–184. [Google Scholar] [CrossRef]
- Lund, H.S.; Skogtun, G.; Sørum, H.; Eggertsdóttir, A.V. Antimicrobial susceptibility in bacterial isolates from Norwegian cats with lower urinary tract disease. J. Feline Med. Surg. 2015, 17, 507–515. [Google Scholar] [CrossRef]
- Hansen-Jones, C.L.; Hill, K.E.; Cogger, N. Feline urinary tract pathogens in western Canada: Prevalence of bacterial species and antimicrobial resistance from 2012 to 2018. Can. Vet. J. 2023, 64, 558–564. [Google Scholar]
- Hernando, E.; Vila, A.; D’Ippolito, P.; Rico, A.J.; Rodon, J.; Roura, X. Prevalence and characterization of urinary tract infection in owned dogs and cats from Spain. Top. Companion Anim. Med. 2021, 43, 100512. [Google Scholar] [CrossRef]
- Osman, M.; Altier, C.; Cazer, C. Antimicrobial resistance among canine enterococci in the northeastern United States, 2007–2020. Front. Microbiol. 2023, 13, 1025242. [Google Scholar] [CrossRef] [PubMed]
- Temmerman, R.; Berlamont, H.; El Garch, F.; Rose, M.; Simjee, S.; Meschi, S.; de Jong, A. Antimicrobial susceptibility of canine and feline urinary tract infection pathogens isolated from animals with clinical signs in European veterinary practices during the period 2013–2018. Antibiotics 2024, 13, 500. [Google Scholar] [CrossRef] [PubMed]
- Orujov, P.; Celik, B.; Kekec, A.I.; Diren Sigirci, B. Presence of enterococci in cats with urinary tract infections and antibiotic resistance profiles. Indian J. Anim. Res. 2024, 58, 1–7. [Google Scholar] [CrossRef]
- Seidel, E.J.; Hess, R.S.; Cole, S.J.; McClosky, M.E. Clinical differences in enterococcal bacteriuria compared with other bacteriuria in cats. J. Feline Med. Surg. 2022, 24, e546–e550. [Google Scholar] [CrossRef]
- Sokhn, E.S.; Salami, A.; El Roz, A.; Salloum, L.; Bahmad, H.F.; Ghssein, G. Antimicrobial Susceptibilities and Laboratory Profiles of Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis Isolates as Agents of Urinary Tract Infection in Lebanon: Paving the Way for Better Diagnostics. Med. Sci. 2020, 8, 32. [Google Scholar] [CrossRef]
- Gupta, K.; Hooton, T.M.; Naber, K.G.; Wullt, B.; Colgan, R.; Miller, L.G.; Moran, G.J.; Nicolle, L.E.; Raz, R.; Schaeffer, A.J.; et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin. Infect. Dis. 2011, 52, e103–e120. [Google Scholar] [CrossRef]
- Abou Heidar, N.F.; Degheili, J.A.; Yacoubian, A.A.; Khauli, R.B. Management of urinary tract infection in women: A practical approach for everyday practice. Urol. Ann. 2019, 11, 339–346. [Google Scholar] [CrossRef]
- Sutter, C.M.; Dear, J.D.; Fine, J.R.; Pires, J.; Sykes, J.E.; Segev, G.; Westropp, J.L. Evaluation of a rapid immunoassay for bacteriuria in dogs. J. Vet. Intern. Med. 2023, 37, 1015–1020. [Google Scholar] [CrossRef]
- Jackson, C.R.; Fedorka-Cray, P.J.; Barrett, J.B. Use of a genus- and species-specific multiplex PCR for identification of enterococci. J. Clin. Microbiol. 2004, 42, 3558–3565. [Google Scholar] [CrossRef]
- Sasaki, T.; Tsubakishita, S.; Tanaka, Y.; Sakusabe, A.; Ohtsuka, M.; Hirotaki, S.; Kawakami, T.; Fukata, T.; Hiramatsu, K. Multiplex-PCR method for species identification of coagulase-positive staphylococci. J. Clin. Microbiol. 2010, 48, 765–769. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 4th ed.; CLSI Supplement VET08; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; CLSI Report VET01S ED5; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 29th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019. [Google Scholar]
- Pintarić, S.; Matanović, K.; Martinec, B.Š. Fluoroquinolone susceptibility in Pseudomonas aeruginosa isolates from dogs—Comparing disk diffusion and microdilution methods. Vet. Arhiv 2017, 87, 291–300. [Google Scholar] [CrossRef]
- Cohen, J. A Power Primer. In Methodological Issues and Strategies in Clinical Research, 4th ed.; Kazdin, A.E., Ed.; American Psychological Association: Washington, DC, USA, 2016; pp. 279–284. [Google Scholar]
- Weese, J.S.; Blondeau, J.M.; Boothe, D.; Breitschwerdt, E.B.; Guardabassi, L.; Hillier, A.; Lloyd, D.H.; Papich, M.G.; Rankin, S.C.; Turnidge, J.D.; et al. Antimicrobial use guidelines for treatment of urinary tract disease in dogs and cats: Antimicrobial Guidelines Working Group of the International Society for Companion Animal Infectious Diseases. Vet. Med. Int. 2011, 2011, 263768. [Google Scholar] [CrossRef] [PubMed]
- Simerville, J.A.; Maxted, W.C.; Pahira, J.J. Urinalysis: A Comprehensive Review. Am. Fam. Physician 2005, 71, 1153–1162. [Google Scholar] [PubMed]
- Devillé, W.L.J.M.; Yzermans, J.C.; van Duijn, N.P.; Bezemer, P.D.; van der Windt, D.A.W.M.; Bouter, L.M. The Urine Dipstick Test Useful to Rule Out Infections. A Meta-Analysis of the Accuracy. BMC Urol. 2004, 4, 4. [Google Scholar] [CrossRef]
- Martínez-Ruzafa, I.; Kruger, J.M.; Miller, R.; Swenson, C.L.; Bolin, C.A.; Kaneene, J.B. Clinical Features and Risk Factors for Development of Urinary Tract Infections in Cats. J. Feline Med. Surg. 2012, 14, 729–740. [Google Scholar] [CrossRef]
- Forrester, S.D.; Lees, G.E.; Brown, S.A.; Bunch, S.E. Diagnostic Approach to Hematuria in Dogs and Cats. Vet. Clin. N. Am. Small Anim. Pract. 2004, 34, 849–866. [Google Scholar] [CrossRef]
- Bailiff, N.L.; Nelson, R.W.; Feldman, E.C.; Griffey, S.M.; Gregory, C.R.; Osborne, C.A.; Polzin, D.J.; Willits, N. Frequency and Risk Factors for Urinary Tract Infection in Cats with Diabetes Mellitus. J. Vet. Intern. Med. 2006, 20, 850–855. [Google Scholar] [CrossRef]
- Fransen, F.; Melchers, M.J.B.; Lagarde, C.M.C.; Meletiadis, J.; Mouton, J.W. Pharmacodynamics of nitrofurantoin at different pH levels against pathogens involved in urinary tract infections. J. Antimicrob. Chemother. 2017, 72, 3366–3373. [Google Scholar] [CrossRef]
- Wood, S.J.; Kuzel, T.M.; Shafikhani, S.H. Pseudomonas aeruginosa: Infections, Animal Modeling, and Therapeutics. Pathogens 2023, 12, 199. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Regulation (EU) 2022/1255 of 19 July 2022 Designating Antimicrobials or Groups of Antimicrobials Reserved for Treatment of Certain Infections in Humans, Under Regulation (EU) 2019/6. Off. J. Eur. Union 2022, L 191, 58–64. Available online: https://eur-lex.europa.eu/eli/reg_impl/2022/1255/oj/eng (accessed on 10 September 2025).
- De Marchi, L.; Vernaccini, M.; Meucci, V.; Briganti, A.; Lippi, I.; Marchetti, V.; Intorre, L. Six-Year Prescription Pattern of Antimicrobial Use in Cats at the Veterinary Teaching Hospital of the University of Pisa. Animals 2024, 14, 521. [Google Scholar] [CrossRef]
- Tillotson, G.S. Trojan Horse Antibiotics—A Novel Way to Circumvent Gram-Negative Bacterial Resistance? Infect. Dis. (Auckl.) 2016, 9, 45–52. [Google Scholar] [CrossRef]
- Ezzeddine, Z.; Ghssein, G. Towards new antibiotics classes targeting bacterial metallophores. Microb. Pathog. 2023, 182, 106221. [Google Scholar] [CrossRef]






| Primers Name | Primers Sequences (5′-3′) | PCR Product (bp) | Staphylococcus Species |
|---|---|---|---|
| au-F3 | TCGCTTGCTATGATTGTGG | 359 | S. aureus |
| au-nucR | GCCAATGTTCTACCATAGC | ||
| in-F | CATGTCATATTATTGCGAATGA | 430 | S. intermedius |
| in-R3 | AGGACCATCACCATTGACATATTGAAACC | ||
| sch-F | AATGGCTACAATGATAATCACTAA | 526 | S. schleiferi subsp. coagulans S. schleiferi subsp. schleiferi |
| sch-R | CATATCTGTCTTTCGGCGCG | ||
| dea-F | TGAAGGCATATTGTAGAACAA | 661 | S. delphini group A |
| dea-R | CGRTACTTTTCGTTAGGTCG | ||
| hy-F1 | CATTATATGATTTGAACGTG | 793 | S. hyicus |
| hy-R1 | GAATCAATATCGTAAAGTTGC | ||
| pse-F2 | TRGGCAGTAGGATTCGTTAA | 926 | S. pseudintermedius |
| pse-R5 | CTTTTGTGCTYCMTTTTGG | ||
| deb-F | GGAAGRTTCGTTTTTCCTAGAC | 1135 | S. delphini group B |
| deb-R4 | TATGCGATTCAAGAACTGA |
| Primers Name | Primers Sequences (5′-3′) | PCR Product (bp) | Enterococcus Species |
|---|---|---|---|
| FL1 | ACTTATGTGACTAACTTAACC | 360 | E. faecalis (A) |
| FL2 | TAATGGTGAATCTTGGTTTGG | ||
| FM1 | GAAAAAACAATAGAAGAATTAT | 215 | E. faecium (A) |
| FM2 | TGCTTTTTTGAATTCTTCTTTA | ||
| GA1 | TTACTTGCTGATTTTGATTCG | 173 | E. gallinarum (B) |
| GA2 | TGAATTCTTCTTTGAAATCAG | ||
| CO1 | GAATTTGGTACCAAGACAGTT | 284 | E. columbae (B) |
| CO2 | GCTAATTTACCGTTATCGACT | ||
| DI1 | GAACTAGCAGAAAAAAGTGTG | 284 | E. dispar (A) |
| DI2 | GATAATTTACCGTTATTTACC | ||
| AV1 | GCTGCGATTGAAAAATATCCG | 368 | E. avium (C) |
| AV2 | AAGCCAATGATCGGTGTTTTT | ||
| CA1 | TCCTGAATTAGGTGAAAAAAC | 288 | E. casseliflavus (C) |
| CA2 | GCTAGTTTACCGTCTTTAACG | ||
| HI1 | CTTTCTGATATGGATGCTGTC | 187 | E. hirae (C) |
| HI1 | TAAATTCTTCCTTAAATGTTG |
| Antibiotic | Interpretive Criteria Source | Enterobacterales | Staphylococcus | Streptococcus | Enterococcus | Pseudomonas |
|---|---|---|---|---|---|---|
| PEN-penicillin | VET08/VET01S | + | + | + | ||
| AMP-ampicillin | VET08/VET01S | + | + | + | + | |
| AUG-amoxicillin/clavulanic acid | VET08/VET01S | + | + | + | ||
| PIP-piperacillin EU | CLSI M100 | + | ||||
| TAZ-piperacillin/tazobactam EU | CLSI M100 | + | ||||
| TIC-ticarcillin EU | CLSI M100 | + | ||||
| TCC-ticarcillin/clavulanic acid EU | CLSI M100 | + | ||||
| IMP-imipenem EU | CLSI M100 | + | + | |||
| MEM-meropenem EU | CLSI M100 | + | ||||
| ATM-aztreonam | CLSI M100 | + | ||||
| CEF-cefalexin | VET08/VET01S | + | + | |||
| CEC-cefaclor | VET08/VET01S | + | + | |||
| CVN-cefovecin | VET08/VET01S | + | + | + | ||
| CTZ-ceftazidime | CLSI M100 | + | + | |||
| CFP-cefepime | CLSI M100 | + | ||||
| AMK-amikacin | VET08/VET01S | + | + | + | ||
| GME-gentamicin | VET08/VET01S | + | + | + | + | |
| STR-streptomycin | VET08/VET01S | + | + | |||
| TOB-tobramycin | VET08/VET01S | + | ||||
| CHL-chloramphenicol | VET08/VET01S | + | + | + | ||
| FFC-florphenicol | VET08/VET01S | + | + | + | + | |
| CIP-ciprofloxacin | Ref. [36] | + | + | + | + | |
| ENR-enrofloxacin | Ref. [36] | + | + | + | ||
| MAR-marbofloxacin | Ref. [36] | + | + | + | + | |
| OFX-ofloxacin | CLSI M100 | + | ||||
| PRA-pradofloxacin | VET08/VET01S | + | ||||
| AZM-azithromycin | VET08/VET01S | + | ||||
| ERY-erythromycin | VET08/VET01S | + | + | + | ||
| RIF-rifampicin | CLSI M100 | + | ||||
| CD-clindamycin | VET08/VET01S | + | ||||
| LIN-linezolid EU | CLSI M100 | + | + | + | ||
| PXB-polymyxin B | CLSI M100 | + | ||||
| STX-sulfamethoxazole/TMP | VET08/VET01S | + | + | + | ||
| DOX-doxycycline | VET08/VET01S | + | + | + | + | |
| TET-tetracycline | VET08/VET01S | + | + | + | + | |
| NFE-nitrofurantoin | VET08/VET01S | + | + | + |
| Dogs | Cats | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Urinalysis | Negative Bacteria Culture | Positive Bacteria Culture | Urinalysis | Negative Bacteria Culture | Positive Bacteria Culture | ||||
| n = 317 | % | n = 309 | % | n = 591 | % | n = 262 | % | ||
| SG | SG | ||||||||
| <1.015 | 65 | 20.5 | 104 | 33.7 | <1.025 | 155 | 26.2 | 135 | 51.5 |
| 1.015–1.045 | 230 | 72.6 | 193 | 62.5 | 1.025–1.065 | 429 | 72.6 | 87 | 33.2 |
| >1.045 | 22 | 6.9 | 12 | 3.9 | >1.065 | 7 | 1.2 | 40 | 15.3 |
| pH | pH | ||||||||
| <6 | 14 | 4.4 | 24 | 7.8 | <6 | 17 | 2.9 | 6 | 2.3 |
| 6–7.5 | 266 | 83.9 | 227 | 73.5 | 6–6.5 | 398 | 67.3 | 179 | 68.3 |
| >7.5 | 37 | 11.7 | 58 | 18.8 | >6.5 | 176 | 29.8 | 77 | 29.4 |
| NO2 | NO2 | ||||||||
| negative | 301 | 95.0 | 218 | 70.6 | negative | 584 | 98.8 | 257 | 98.1 |
| positive | 16 | 5.0 | 91 | 29.4 | positive | 7 | 1.2 | 5 | 1.9 |
| glucose | glucose | ||||||||
| positive | 15 | 4.7 | 6 | 1.9 | positive | 29 | 4.9 | 10 | 3.8 |
| negative | 302 | 95.3 | 303 | 98.1 | negative | 562 | 95.1 | 252 | 96.2 |
| protein | protein | ||||||||
| undetectable | 152 | 47.9 | 16 | 5.2 | undetectable | 249 | 42.1 | 20 | 7.6 |
| >15–100 | 111 | 35.1 | 51 | 16.5 | >15–100 | 233 | 39.4 | 73 | 27.9 |
| >100 | 54 | 17.0 | 242 | 78.3 | >100 | 109 | 18.4 | 169 | 64.5 |
| UACR | UACR | ||||||||
| <0.5 | 118/165 * | 71.5 | 89/160 * | 55.6 | <0.4 | 295/390 * | 66.4 | 123/177 * | 69.5 |
| >0.5 | 47/165 * | 28.5 | 71/160 * | 44.4 | >0.4 | 95/390 * | 24.4 | 54/177 * | 30.5 |
| leukocytes | leukocytes | ||||||||
| <5 hpf | 289 | 91.2 | 69 | 22.3 | <5 hpf | 583 | 98.6 | 38 | 14.5 |
| >5 hpf | 28 | 8.8 | 240 | 77.7 | >5 hpf | 8 | 1.4 | 224 | 85.5 |
| erythrocytes | erythrocytes | ||||||||
| <5 hpf | 254 | 80.1 | 261 | 84.5 | <5 hpf | 416 | 70.4 | 47 | 17.9 |
| >5 hpf | 64 | 20.2 | 48 | 15.5 | >5 hpf | 175 | 29.6 | 215 | 82.1 |
| bacteria | bacteria | ||||||||
| few hpf | 188 | 59.0 | 52 | 16.8 | few hpf | 417 | 70.6 | 67 | 25.6 |
| numerous hpf | 129 | 41.0 | 257 | 83.2 | numerous hpf | 174 | 29.4 | 195 | 74.4 |
| crystals | crystals | ||||||||
| struvite | 44 | 13. | 70 | 22.7 | struvite | 115 | 19.5 | 53 | 20.2 |
| oxalate | 8 | 2.5 | 4 | 1.3 | oxalate | 7 | 1.2 | 6 | 2.3 |
| uric acid | 1 | 0.3 | 0 | 0 | uric acid | 0 | 0 | 0 | 0 |
| bilirubin | 0 | 0 | 10 | 3.2 | bilirubin | 0 | 0 | 0 | 0 |
| Bacterial Species | Dogs | Cats |
|---|---|---|
| Escherichia coli | 322 | 186 |
| Proteus mirabilis | 87 | 15 |
| Klebsiella pneumoniae | 24 | 5 |
| Enterobacter cloacae | 22 | 3 |
| Citrobacter spp. | 4 | 0 |
| Serratia marcescens | 0 | 2 |
| Staphylococcus aureus | 11 | 2 |
| Staphylococcus coagulans | 0 | 2 |
| Staphylococcus pseudintermedius | 85 | 8 |
| Staphylococcus felis | 0 | 61 |
| Staphylococcus saprophyticus | 12 | 2 |
| Enterococcus faecium | 7 | 17 |
| Enterococcus faecalis | 47 | 51 |
| Streptococcus canis | 33 | 0 |
| Pseudomonas spp. | 12 | 7 |
| Total number of isolates | 666 | 361 |
| Bacteria | Dogs | Cats |
|---|---|---|
| E. coli and P. mirabilis | 42 | 0 |
| E. coli and E. faecalis | 31 | 16 |
| S. canis and S. pseudintermedius | 24 | 0 |
| E. coli and S. saprophyticus | 10 | 0 |
| E. coli and S. pseudintermedius | 9 | 0 |
| S. aureus and K. pneumoniae | 7 | 0 |
| E. faecalis and P. mirabilis | 6 | 0 |
| E. coli and S. felis | 0 | 3 |
| Total number of animals with mixed infections | 129 | 19 |
| Parameter | Species Group | Test | Statistic | p-Value (* p < 0.05) | Effect Size/Direction |
|---|---|---|---|---|---|
| Season vs. bacteriuria | Dogs + Cats | Chi-square | χ2(3) = 7.97 | 0.047 * | Cramér’s V = 0.092 (small) |
| Season vs. bacteriuria | Dogs | Chi-square | — | 0.242 | Not significant |
| Age vs. no. of strains | Dogs | Spearman | r_s(723) = 0.189 | <0.001 * | Positive correlation |
| Age vs. no. of strains | Cats | Spearman | r_s(778) = 0.113 | 0.002 * | Positive correlation |
| Pyuria vs. bacteriuria | Dogs + Cats | Chi-square | χ2(1) = 710.48 | <0.001 * | phi = 0.695 (strong) |
| Pyuria vs. bacteriuria | Dogs | Chi-square | χ2(1) = 298.10 | <0.001 * | phi = 0.694 (strong) |
| Pyuria vs. bacteriuria | Cats | Chi-square | χ2(1) = 382.04 | <0.001 * | phi = 0.672 (strong) |
| Hematuria vs. bacteriuria | Dogs | Chi-square | χ2(1) = 4.58 | 0.032 * | phi = 0.090 (weak inverse) |
| Nitrite positivity vs. bacteriuria | Dogs + Cats | Chi-square | χ2(1) = 66.09 | <0.001 * | phi = 0.325 |
| Nitrite positivity vs. bacteriuria | Dogs | Chi-square | χ2(1) = 65.30 | <0.001 * | phi = 0.323 |
| Nitrite positivity vs. bacteriuria | Cats | Chi-square/Fisher | χ2(1) = 0.69 | 0.41/0.42 | phi = 0.03 (not significant) |
| Species | Profile Indicating High Likelihood of Infection and Need for Culture | Provisional Organism Expectation (Cautious) | Empiric Option After Sampling (Short Course if Uncomplicated) |
|---|---|---|---|
| Dog | Older female with dysuria/pollakiuria, pyuria present, USG < 1.020, pH ≤ 7.0, no crystals | Enterobacterales dominated by Escherichia coli | First-line (if uncomplicated): amoxicillin (preferred) or trimethoprim–sulfonamide (TMS), guided by local AST; avoid empirical fluoroquinolones. Consider nitrofurantoin only when amoxicillin/TMS are not appropriate and lower-tract disease is likely (and Proteus is unlikely) [7,19,24]. |
| Dog | Any sex with pyuria, USG low-normal, pH ≥ 7.5 with struvite | Proteus mirabilis (±staphylococci) | Amoxicillin (preferred) or a first-generation oral cephalosporin; consider amoxicillin–clavulanate if prior antimicrobial exposure or β-lactamase risk; avoid nitrofurantoin (predictable Proteus non-susceptibility) [7,24]. |
| Dog | Systemic signs (fever, flank pain) or relapse after recent fluoroquinolone | Enterobacterales; Pseudomonas spp. possible | Hospital management; parenteral anti-pseudomonal β-lactam or aminoglycoside only if severity dictates; de-escalate promptly to culture [7,45]. |
| Cat | Senior female with subtle lower urinary signs, pyuria present, USG < 1.030, nitrite may be negative | Escherichia coli; Enterococcus spp. considered in seniors | First-line (if uncomplicated): amoxicillin (preferred) or trimethoprim–sulfonamide (TMS), guided by local AST. Consider nitrofurantoin only when amoxicillin/TMS are not appropriate and lower-tract disease is likely (and Proteus is unlikely) [6,7,19,24]. |
| Cat | Any age with pyuria and pH ≥ 7.5 with struvite | Proteus spp. or staphylococci are more likely than baseline | Amoxicillin (preferred) or a first-generation oral cephalosporin; consider amoxicillin–clavulanate if prior antimicrobial exposure or β-lactamase risk; avoid nitrofurantoin [7,24]. |
| Cat or Dog | Pyuria present with cocci on sediment; dermatologic history or prior antibiotics | Streptococcus canis, Staphylococcus spp. | A beta-lactam (e.g., amoxicillin or cephalexin); avoid doxycycline for suspected streptococcal cystitis, given poor activity in the present set. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Jańczak, D.; Górecki, P.; Skrzypek, N.; Sobkiewicz, D.; Paczocha, M.; Chrzanowski, A.; Maj, A.K.; Stryjek, R.; Zasada, A.A.; Golke, A. Urinalysis and Antimicrobial Susceptibility of Bacteria Isolated from Urine of Dogs and Cats in Poland in 2023: Associations Between Urine Parameters and Bacteriuria. Microbiol. Res. 2026, 17, 11. https://doi.org/10.3390/microbiolres17010011
Jańczak D, Górecki P, Skrzypek N, Sobkiewicz D, Paczocha M, Chrzanowski A, Maj AK, Stryjek R, Zasada AA, Golke A. Urinalysis and Antimicrobial Susceptibility of Bacteria Isolated from Urine of Dogs and Cats in Poland in 2023: Associations Between Urine Parameters and Bacteriuria. Microbiology Research. 2026; 17(1):11. https://doi.org/10.3390/microbiolres17010011
Chicago/Turabian StyleJańczak, Dawid, Piotr Górecki, Natalia Skrzypek, Dominika Sobkiewicz, Magda Paczocha, Aleksander Chrzanowski, Aleksandra Kornelia Maj, Rafał Stryjek, Aleksandra Anna Zasada, and Anna Golke. 2026. "Urinalysis and Antimicrobial Susceptibility of Bacteria Isolated from Urine of Dogs and Cats in Poland in 2023: Associations Between Urine Parameters and Bacteriuria" Microbiology Research 17, no. 1: 11. https://doi.org/10.3390/microbiolres17010011
APA StyleJańczak, D., Górecki, P., Skrzypek, N., Sobkiewicz, D., Paczocha, M., Chrzanowski, A., Maj, A. K., Stryjek, R., Zasada, A. A., & Golke, A. (2026). Urinalysis and Antimicrobial Susceptibility of Bacteria Isolated from Urine of Dogs and Cats in Poland in 2023: Associations Between Urine Parameters and Bacteriuria. Microbiology Research, 17(1), 11. https://doi.org/10.3390/microbiolres17010011

