Seasonal Surveillance of Urban Water Quality in Southern Brazil Reveals Persistent Carbapenem Resistance Genes Despite Compliance with Bacteriological Standards
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Sampling Sites
2.2. Physicochemical Analyses
2.3. Microbiological Analyses
2.4. Water Quality Index (WQI) Determination
2.5. Interpretation of Physicochemical and Microbiological Analyses
2.6. Detection of Carbapenem Resistance Genes
3. Results and Discussion
3.1. Physicochemical Analyses
3.2. Microbiological Analyses
3.3. Determination of the Water Quality Index (WQI)
3.4. Detection of Carbapenem Resistance Genes
3.5. Limitations of the Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fundação Nacional de Saúde (FUNASA). Manual Prático de Análise de Água, 4th ed.; Coordenação de Comunicação Social: Brasília, Brazil, 2013. Available online: https://bvsms.saude.gov.br/bvs/publicacoes/analise_agua_bolso.pdf (accessed on 13 April 2025).
- Franco, B.D.G.d.M.; Landgraf, M. Microbiologia de Alimentos, 1st ed.; Editora Atheneu: Rio de Janeiro, Brazil, 2008. [Google Scholar]
- Secretaria Estadual de Saúde de São Paulo (SES/SP). Doenças Relacionadas à Água ou de Transmissão Hídrica: Perguntas e Respostas e Dados Estatísticos; Secretaria Estadual de Saúde de São Paulo (SES/SP): São Paulo, Brazil, 2009. Available online: https://www.saude.sp.gov.br/resources/cve-centro-de-vigilancia-epidemiologica/areas-de-vigilancia/doencas-transmitidas-por-agua-e-alimentos/doc/2009/2009dta_pergunta_resposta.pdf (accessed on 13 April 2025).
- Hu, Y.; Jiang, L.; Sun, X.; Wu, J.; Ma, L.; Zhou, Y.; Lin, K.; Luo, Y.; Cui, C. Risk assessment of antibiotic resistance genes in the drinking water system. Sci. Total Environ. 2021, 800, 149650. [Google Scholar] [CrossRef]
- Johnson, C.L.; Setterfield, M.A.; Hassanain, W.A.; Wipat, A.; Pocock, M.; Faulds, K.; Graham, D.; Keegan, N. Multiplex detection of the big five carbapenemase genes using solid-phase recombinase polymerase amplification. Analyst 2024, 149, 1527–1536. [Google Scholar] [CrossRef]
- Hanna, N.; Tamhankar, A.J.; Stålsby Lundborg, C. Antibiotic concentrations and antibiotic resistance in aquatic environments of the WHO Western Pacific and South-East Asia regions: A systematic review and probabilistic environmental hazard assessment. Lancet Planet. Health 2023, 7, e45–e54. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Antibacterial Agents in Clinical Development: An Analysis of the Antibacterial Clinical Development Pipeline; World Health Organization: Geneva, Switzerland, 2020; Available online: https://www.who.int/publications-detail-redirect/9789240000193 (accessed on 13 April 2025).
- Sanganyado, E.; Gwenzi, W. Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks. Sci. Total Environ. 2019, 669, 785–797. [Google Scholar] [CrossRef] [PubMed]
- Agência Nacional de Vigilância Sanitária (ANVISA). Resistência Antimicrobiana é Ameaça Global; Agência Nacional de Vigilância Sanitária (ANVISA): Brasília, Brazil, 2019. Available online: https://www.gov.br/anvisa/pt-br/assuntos/noticias-anvisa/2019/resistencia-antimicrobiana-e-ameaca-global-diz-oms (accessed on 13 April 2025).
- Ministério da Saúde. Plano de Ação Nacional de Prevenção e Controle da Resistência aos Antimicrobianos no Âmbito da Saúde Única 2018–2022 (PAN-BR); Ministério da Saúde: Brasília, Brazil, 2018. Available online: https://bvsms.saude.gov.br/bvs/publicacoes/plano_prevencao_resistencia_antimicrobianos.pdf (accessed on 13 April 2025).
- Hegarty, B.; Dai, Z.; Raskin, L.; Pinto, A.; Wigginton, K.; Duhaime, M. A Snapshot of the Global Drinking Water Virome: Diversity and Metabolic Potential Vary with Residual Disinfectant Use. Water Res. 2022, 30, 118484. [Google Scholar] [CrossRef]
- Aschidamini Prandi, B.; Mangini, A.T.; Santiago Neto, W.; Jarenkow, A.; Violet-Lozano, L.; Campos, A.A.S.; Colares, E.R.D.C.; Buzzetto, P.R.O.; Azambuja, C.B.; Trombin, L.C.B.; et al. Wastewater-Based Epidemiological Investigation of SARS-CoV-2 in Porto Alegre, Southern Brazil. Sci. One Health 2023, 3, 100008. [Google Scholar] [CrossRef]
- Chapron, C.D.; Ballester, N.A.; Fontaine, J.H.; Frades, C.N.; Margolin, A.B. Detection of Astroviruses, Enteroviruses, and Adenovirus Types 40 and 41 in Surface Waters Collected and Evaluated by the Information Collection Rule and an Integrated Cell Culture-Nested PCR Procedure. Appl. Environ. Microbiol. 2000, 66, 2520–2525. [Google Scholar] [CrossRef]
- Prado, T.; Miagostovich, M.P. Virologia ambiental e saneamento no Brasil: Uma revisão narrativa. Cad. Saúde Pública 2014, 30, 1367–1378. [Google Scholar] [CrossRef] [PubMed]
- DMAE. Informações sobre a água. Departamento Municipal de Água e Esgotos de Porto Alegre. Available online: https://prefeitura.poa.br/dmae/informacoes-agua (accessed on 13 April 2025).
- DMAE. Informações educação ambiental—Informações sobre o esgoto, o tratamento e os cuidados. Departamento Municipal de Água e Esgotos de Porto Alegre. Available online: https://prefeitura.poa.br/sites/default/files/usu_doc/sites/dmae/Folder%20%C3%A1gua%20-%20compressed%20(1).pdf (accessed on 13 April 2025).
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef]
- Smith, C.J.; Osborn, A.M. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol. Ecol. 2009, 67, 6–20. [Google Scholar] [CrossRef] [PubMed]
- Manaia, C.M.; Macedo, G.; Fatta-Kassinos, D.; Nunes, O.C. Antibiotic resistance in urban aquatic environments: Can it be controlled? Appl. Microbiol. Biotechnol. 2016, 100, 1543–1557. [Google Scholar] [CrossRef]
- Paruch, L. Molecular Diagnostic Tools Applied for Assessing Microbial Water Quality. Int. J. Environ. Res. Public Health 2022, 19, 5128. [Google Scholar] [CrossRef]
- Rompré, A.; Servais, P.; Baudart, J.; de-Roubin, M.R.; Laurent, P. Detection and Enumeration of Coliforms in Drinking Water: Current Methods and Emerging Approaches. J. Microbiol. Methods 2002, 49, 31–54. [Google Scholar] [CrossRef]
- Abebe, T.A.; Gebreyes, D.S.; Abebe, B.A.; Yitayew, B. Antibiotic-Resistant Bacteria and Resistance Genes in Drinking Water Source in North Shoa Zone, Amhara Region, Ethiopia. Front. Public Health 2024, 12, 1422137. [Google Scholar] [CrossRef] [PubMed]
- Caliskan-Aydogan, O.; Alocilja, E.C. A Review of Carbapenem Resistance in Enterobacterales and Its Detection Techniques. Microorganisms 2023, 11, 1491. [Google Scholar] [CrossRef] [PubMed]
- Rose, J.B.; Hofstra, N.; Hollmann, E.; Katsivelis, P.; Medema, G.J.; Murphy, H.M.; Naughton, C.C.; Verbyla, M.E. Global microbial water quality data and predictive analytics: Key to health and meeting SDG 6. PLoS Water 2023, 2, e0000166. [Google Scholar] [CrossRef]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- CETESB—Companhia Ambiental do Estado de São Paulo. Índice de Qualidade das Águas (IQA): Métodos e Aplicações; CETESB: São Paulo, Brazil, 2023. Available online: https://cetesb.sp.gov.br/aguasinteriores/wp-content/uploads/sites/12/2022/11/Apendice-E-Indices-de-Qualidade-das-Aguas.pdf (accessed on 13 April 2025).
- Conselho Nacional do Meio Ambiente (CONAMA). Resolução No. 357, de 17 de Março de 2005; Ministério do Meio Ambiente: Brasília, Brazil, 2005. Available online: https://conama.mma.gov.br/?id=450&option=com_sisconama&task=arquivo.download (accessed on 13 April 2025).
- Ministério da Saúde. Portaria GM/MS No. 888, de 4 de Maio de 2021; Ministério da Saúde: Brasília, Brazil, 2021; pp. 1–29. Available online: https://www.in.gov.br/en/web/dou/-/portaria-gm/ms-n-888-de-4-de-maio-de-2021-318461562 (accessed on 13 April 2025).
- Ministério da Saúde. Portaria de Consolidação No. 5, de 28 de Setembro de 2017; Ministério da Saúde: Brasília, Brazil, 2017; pp. 1–856. Available online: https://portalsinan.saude.gov.br/images/documentos/Legislacoes/Portaria_Consolidacao_5_28_SETEMBRO_2017.pdf (accessed on 13 April 2025).
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef]
- Mahon, B.M.; Brehony, C.; Cahill, N.; McGrath, E.; O’Connor, L.; Varley, A.; Cormican, M.; Ryan, S.; Hickey, P.; Keane, S.; et al. Detection of OXA-48-like-producing Enterobacterales in Irish recreational water. Sci. Total Environ. 2019, 690, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Mentasti, M.; Prime, K.; Sands, K.; Khan, S.; Wootton, M. Rapid detection of IMP, NDM, VIM, KPC and OXA-48-like carbapenemases from Enterobacteriales and Gram-negative non-fermenter bacteria by real-time PCR and melt-curve analysis. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 2029–2036. [Google Scholar] [CrossRef]
- Ministério da Saúde. Vigilância e Controle da Qualidade da Água para Consumo Humano; Série B; Ministério da Saúde: Brasília, Brazil, 2006. Available online: https://bvsms.saude.gov.br/bvs/publicacoes/vigilancia_controle_qualidade_agua.pdf (accessed on 13 April 2025).
- Valente, J.P.S.; Padilha, P.M.; Silva, A.M.M. Oxigênio dissolvido (OD), demanda bioquímica de oxigênio (DBO) e demanda química de oxigênio (DQO) como parâmetros de poluição no ribeirão Lavapés/Botucatu-SP. Eclética Química 1997, 22, 49–66. [Google Scholar] [CrossRef]
- von Sperling, M.; Verbyla, M.E.; Oliveira, S.M.A.C. Assessment of Treatment Plant Performance and Water Quality Data: A Guide for Students, Researchers and Practitioners; IWA Publishing: London, UK, 2017. [Google Scholar] [CrossRef]
- Uddin, M.G.; Nash, S.; Olbert, A.I. A review of water quality index models and their use for assessing surface water quality. Ecol. Indic. 2021, 122, 107218. [Google Scholar] [CrossRef]
- Davies-Colley, R.J.; Bell, R.G.; Donnison, A.M. Sunlight inactivation of enterococci and fecal coliforms in sewage effluent diluted in seawater. Appl. Environ. Microbiol. 1994, 60, 2049–2058. [Google Scholar] [CrossRef]
- Bahlaoui, M.A.; Baleux, B.; Troussellier, M. Dynamics of pollution-indicator and pathogenic bacteria in high-rate oxidation wastewater treatment ponds. Water Res. 1997, 31, 630–638. [Google Scholar] [CrossRef]
- Amos, G.C.; Hawkey, P.M.; Gaze, W.H.; Wellington, E.M. Waste water effluent contributes to the dissemination of CTX-M-15 in the natural environment. J. Antimicrob. Chemother. 2014, 69, 1785–1791. [Google Scholar] [CrossRef]
- Rizzo, L.; Manaia, C.; Merlin, C.; Schwartz, T.; Dagot, C.; Ploy, M.C.; Michael, I.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci. Total Environ. 2013, 447, 345–360. [Google Scholar] [CrossRef]
- Ferro, G.; Guarino, F.; Castiglione, S.; Rizzo, L. Antibiotic resistance spread potential in urban wastewater effluents disinfected by UV/H2O2 process. Sci. Total Environ. 2016, 560–561, 29–35. [Google Scholar] [CrossRef]
- Mahmoud, N.E.; Altayb, H.N.; Gurashi, R.M. Detection of carbapenem-resistant genes in Escherichia coli isolated from drinking water in Khartoum, Sudan. J. Environ. Public Health 2020, 2020, 2571293. [Google Scholar] [CrossRef]
- Tafoukt, R.; Touati, A.; Leangapichart, T.; Bakour, S.; Rolain, J.M. Characterization of OXA-48-like-producing Enterobacteriaceae isolated from river water in Algeria. Water Res. 2017, 120, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Brooks, J.P.; Adeli, A.; McLaughlin, M.R. Microbial ecology, bacterial pathogens, and antibiotic resistant genes in swine manure wastewater as influenced by three swine management systems. Water Res. 2014, 57, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.; Yu, S.; Rysz, M.; Luo, Y.; Yang, F.; Li, F.; Hou, J.; Mu, Q.; Alvarez, P.J.J. Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants. Water Res. 2015, 85, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Tsvetanova, Z.; Boshnakov, R. Antimicrobial Resistance of Waste Water Microbiome in an Urban Waste Water Treatment Plant. Water 2025, 17, 39. [Google Scholar] [CrossRef]
- Peng, J.; Wang, D.; He, P.; Wei, P.; Zhang, L.; Lan, W.; Zhang, X.; Guan, J.; Chen, Y.; Li, W.; et al. Seasonal dynamics of antibiotic resistance genes and mobile genetic elements in a subtropical coastal ecosystem: Implications for environmental health risks. Environ. Res. 2024, 257, 119298. [Google Scholar] [CrossRef]
- Barrantes-Jiménez, K.; Mendoza-Guido, B.; Morales-Mora, E.; Rivera-Montero, L.; Montiel-Mora, J.; Chacón-Jiménez, L.; Rojas-Jiménez, K.; Arias-Andrés, M. Influence of Seasonality and Pollution on the Presence of Antibiotic Resistance Genes and Potentially Pathogenic Bacteria in a Tropical Urban River. Antibiotics 2025, 14, 798. [Google Scholar] [CrossRef]
- Ramalho, R.; Mezzomo, L.C.; Machado, W.; da Silva Morais Hein, C.; Müller, C.Z.; da Silva, T.C.B.; Jank, L.; Lamas, A.E.; da Costa Ballestrin, R.A.; Wink, P.L.; et al. The occurrence of antimicrobial residues and antimicrobial resistance genes in urban drinking water and sewage in Southern Brazil. Braz. J. Microbiol. 2022, 53, 1483–1489. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Ye, C.; Chen, S.; Zhang, S.; Yu, X. Viable but non-culturable E. coli induced by low level chlorination have higher persistence to antibiotics than their culturable counterparts. Environ. Pollut. 2017, 230, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, X.; Deng, X.; Zheng, S.; Zhang, W.; He, J.Z.; Yu, X.; Feng, M.; Ye, C. Viable but non-culturable state formation and resuscitation of different antibiotic-resistant Escherichia coli induced by UV/chlorine. Water Res. 2024, 261, 122011. [Google Scholar] [CrossRef]
- Oliver, J.D. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol. Rev. 2010, 34, 415–425. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Y.; Wang, Y.; Liu, X.; Li, M.; Fang, H.; Kong, M. Effect of antibiotics, antibiotic-resistant bacteria, and extracellular antibiotic resistance genes on the fate of ARGs in marine sediments. Sci. Total Environ. 2023, 891, 164305. [Google Scholar] [CrossRef] [PubMed]
- Umar, S.A.; Tasduq, S.A. Ozone Layer Depletion and Emerging Public Health Concerns—An Update on Epidemiological Perspective of the Ambivalent Effects of Ultraviolet Radiation Exposure. Front. Oncol. 2022, 12, 866733. [Google Scholar] [CrossRef]



| Water Type | Name 1 | Sampling Point | Geographic Coordinates | Reference Collection Station |
|---|---|---|---|---|
| Raw wastewater | RLN | Guaíba Lake—FEPAM Station (North) | 30.0101° S, 51.2151° W | EBAB Moinhos de Vento 3 |
| Raw wastewater | RLS | Guaíba Lake—FEPAM Station (South) | 30.1977° S, 51.2640° W | EBAB Belém Novo 3 |
| Treated (potable) | TPN | Moinhos de Vento Park | 30.0275° S, 51.2008° W 2 | ETA Moinhos de Vento 4 |
| Treated (potable) | TPS | Inácio Antônio da Silva Square | 30.2112° S, 51.1830° W 2 | ETA Belém Novo 4 |
| Sample 1 | Season | Chloride (mg/L) | BOD (mg/L) | Phosphate (mg/L) | Nitrate (mg/L) | DO (mg/L) | pH | Total Solids (mg/L) | Temperature (°C) | Turbidity (NTU) |
|---|---|---|---|---|---|---|---|---|---|---|
| RLN | Winter | 3.57 | 5.00 | <0.33 | 0.87 | 8.15 | 6.85 | 20.00 | 15.70 | 32.69 |
| Spring | 6.70 | 1.00 | <0.33 | 1.22 | 8.16 | 7.43 | 101.00 | 26.70 | 27.62 | |
| Summer | 9.01 | 5.00 | <0.33 | 1.04 | 5.02 | 6.95 | 84.00 | 28.76 | 17.44 | |
| Autumn | 9.23 | 3.00 | <0.33 | 0.92 | 6.08 | 6.89 | 155.00 | 20.33 | 30.19 | |
| RLS | Winter | 2.35 | 4.00 | <0.33 | 0.63 | 9.05 | 6.92 | 44.00 | 18.09 | 38.21 |
| Spring | 6.21 | 13.00 | <0.33 | 1.25 | 8.61 | 7.86 | 113.00 | 26.80 | 18.90 | |
| Summer | 7.05 | 5.00 | <0.33 | 0.62 | 7.48 | 7.23 | 98.00 | 27.00 | 28.75 | |
| RV 2 | — | ≤250.00 | ≤5.00 | ≤0.03 | ≤10.00 | ≥5.00 | 6–9 | ≤500.00 | <40.00 | ≤100.00 |
| TPN | Winter | 25.40 | 2.00 | <0.33 | 1.29 | 7.77 | 5.29 | 87.00 | 16.80 | 0.34 |
| Spring | 22.30 | <1.00 | <0.33 | 2.07 | 4.94 | 5.63 | 76.00 | 24.80 | <0.02 | |
| Summer | 0.57 | 3.00 | <0.33 | 1.56 | 4.73 | 5.79 | 55.00 | 25.10 | <0.02 | |
| Autumn | 24.10 | 8.00 | <0.33 | 1.80 | 4.69 | 6.28 | 61.00 | 20.90 | <0.02 | |
| TPS | Winter | 15.40 | 1.00 | <0.33 | 1.43 | 8.16 | 5.49 | 61.00 | 18.00 | 0.10 |
| Spring | 14.50 | 1.00 | <0.33 | 1.23 | 8.09 | 6.04 | 69.00 | 26.10 | <0.02 | |
| Summer | 17.70 | 3.00 | <0.33 | 0.83 | 7.41 | 6.01 | 65.00 | 27.10 | <0.02 | |
| Autumn | 16.20 | 7.00 | <0.33 | 1.20 | 8.16 | 6.76 | 65.00 | 21.40 | <0.02 | |
| RV 3 | — | ≤250.00 | NA | NA | ≤10.00 | NA | 6–9 | ≤500.00 | <40.00 | ≤5.00 |
| Sample 1 | Season | Total Coliforms (MPN/100 mL) | Thermotolerant Coliforms (MPN/100 mL) | Escherichia coli (P/A per 100 mL) | Heterotrophic Bacteria (CFU/mL) |
|---|---|---|---|---|---|
| RLN | Winter | 4600 | 1700 | Present | 17,000 |
| Spring | 3500 | 1700 | Present | 570 | |
| Summer | 920 | 220 | Present | 2100 | |
| Autumn | 8400 | 2400 | Present | 2500 | |
| RLS | Winter | 170 | 170 | Present | 2900 |
| Spring | 240 | 22 | Present | 390 | |
| Summer | 49 | 4.5 | Present | 230 | |
| RV 2 | — | NA | ≤1000 | ≤800 | NA |
| TPN | Winter | <1.8 | <1.8 | Absent | 39 |
| Spring | <1.8 | <1.8 | Absent | <10 | |
| Summer | <1.8 | <1.8 | Absent | <10 | |
| Autumn | <1.8 | <1.8 | Absent | <10 | |
| TPS | Winter | <1.8 | <1.8 | Absent | 25 |
| Spring | <1.8 | <1.8 | Absent | <10 | |
| Summer | <1.8 | <1.8 | Absent | 12 | |
| Autumn | 240 | 2 | Absent | 21 | |
| RV 3 | — | Absence | Absence | Absence | ≤500 4 |
| Sample 1 | Season | IMPa Gene | KPC Gene | NDM Gene | OXA-48-Like Gene | VIM Gene |
|---|---|---|---|---|---|---|
| RLN | Winter | – | – | – | 2508 | – |
| Spring | – | – | – | 5026 | 42,832 | |
| Summer | – | – | – | – | – | |
| Autumn | – | 186,232 | 3,304,759 | 8363 | – | |
| RLS | Winter | – | – | – | 2529 | – |
| Spring | – | – | – | 5937 | 22,365 | |
| Summer | – | – | – | – | – | |
| TPN | Winter | – | – | – | 640 | – |
| Spring | – | – | – | 363 | 4528 | |
| Summer | – | – | – | – | – | |
| Autumn | – | – | – | 1031 | – | |
| TPS | Winter | – | – | – | 1423 | – |
| Spring | – | – | – | 711 | 7445 | |
| Summer | – | – | – | – | – | |
| Autumn | – | – | – | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Haleva, L.; Moura, T.M.d.; Teixeira, L.C.; Mitteregger Júnior, H.; Gabev, E.E.; Silveira, A.A.d.; Campos, F.S. Seasonal Surveillance of Urban Water Quality in Southern Brazil Reveals Persistent Carbapenem Resistance Genes Despite Compliance with Bacteriological Standards. Microbiol. Res. 2026, 17, 21. https://doi.org/10.3390/microbiolres17010021
Haleva L, Moura TMd, Teixeira LC, Mitteregger Júnior H, Gabev EE, Silveira AAd, Campos FS. Seasonal Surveillance of Urban Water Quality in Southern Brazil Reveals Persistent Carbapenem Resistance Genes Despite Compliance with Bacteriological Standards. Microbiology Research. 2026; 17(1):21. https://doi.org/10.3390/microbiolres17010021
Chicago/Turabian StyleHaleva, Laura, Tiane Martin de Moura, Luciana Costa Teixeira, Horst Mitteregger Júnior, Evgeni Evgeniev Gabev, Adriana Ambrosini da Silveira, and Fabrício Souza Campos. 2026. "Seasonal Surveillance of Urban Water Quality in Southern Brazil Reveals Persistent Carbapenem Resistance Genes Despite Compliance with Bacteriological Standards" Microbiology Research 17, no. 1: 21. https://doi.org/10.3390/microbiolres17010021
APA StyleHaleva, L., Moura, T. M. d., Teixeira, L. C., Mitteregger Júnior, H., Gabev, E. E., Silveira, A. A. d., & Campos, F. S. (2026). Seasonal Surveillance of Urban Water Quality in Southern Brazil Reveals Persistent Carbapenem Resistance Genes Despite Compliance with Bacteriological Standards. Microbiology Research, 17(1), 21. https://doi.org/10.3390/microbiolres17010021

