Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (959)

Search Parameters:
Keywords = priming immunization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1687 KB  
Article
Food Waste Compost as a Tool of Microbiome-Assisted Agri-Culture for Sustainable Protection of Vegetable Crops Against Soil-Borne Parasites
by Paola Leonetti, Paolo Roberto Di Palma, Giulio Gazzola and Sergio Molinari
Int. J. Mol. Sci. 2025, 26(21), 10606; https://doi.org/10.3390/ijms262110606 - 31 Oct 2025
Abstract
A low-scale Food Waste Compost (FWC1), characterized by optimal physic-chemical parameters and high organic matter percentages, was used as a fertilizer and a bio-stimulant for vegetable plants. Groups of treated plants were inoculated with active juveniles of root-knot nematodes to detect the effect [...] Read more.
A low-scale Food Waste Compost (FWC1), characterized by optimal physic-chemical parameters and high organic matter percentages, was used as a fertilizer and a bio-stimulant for vegetable plants. Groups of treated plants were inoculated with active juveniles of root-knot nematodes to detect the effect on plant defense. Optimal amounts of compost mixed with soil increased plant biomass 30% compared to untreated plants. Moreover, when plants were inoculated, treated roots contained about 50% less sedentary forms (SFs) of nematodes and a lower reproduction rate of the parasites than untreated plants. Although the performance of FWC1 as defense activator was similar to other microbiome-generating commercial formulations, the compost was found to be the best fertilizer in both un- and inoculated plants. Diffuse root colonization by arbuscular mycorrhizal fungi (AMF) was observed after treatments with FWC1. FWC1 water extracts did not show any toxic effect on living nematode juveniles. Expression of the marker gene of immune response PR4b was found to be 3–5-fold higher in the roots of inoculated plants treated with FWC1 with respect to untreated plants, thus indicating that FWC1 primes plants against RKNs (root-knot nematodes, Meloidogyne incognita (Kofoid White) Chitw). Data are reported to associate immunization of plants with mycorrhization occurring in FWC1-treated plants. The proposed compost is indicated as having optimal performance both as a bio-fertilizer and a bio-stimulant. Full article
(This article belongs to the Special Issue Relationship Between Plant Microbiome and Immunity)
Show Figures

Graphical abstract

12 pages, 7801 KB  
Article
In Vitro Maturation of Bone Marrow-Derived Dendritic Cells via STING Activation for T Cell Priming
by Busra Buyuk and Kaiming Ye
Cancers 2025, 17(21), 3497; https://doi.org/10.3390/cancers17213497 - 30 Oct 2025
Abstract
Objective: Dendritic cells (DCs) are the most potent antigen-presenting cells, serving as a bridge between innate and adaptive immunity. Activation of the stimulator of interferon genes (STING) pathway by pathogen-derived DNA induces type I interferon responses and promotes CD8+ cytotoxic T cell [...] Read more.
Objective: Dendritic cells (DCs) are the most potent antigen-presenting cells, serving as a bridge between innate and adaptive immunity. Activation of the stimulator of interferon genes (STING) pathway by pathogen-derived DNA induces type I interferon responses and promotes CD8+ cytotoxic T cell activity. This study aimed to establish a protocol for generating immature DCs from murine bone marrow, optimize their maturation in vitro with a STING agonist, and evaluate their ability to prime naïve T cells for potential use in cancer immunotherapy. Methods: Bone marrow cells from C57BL/6 mice were differentiated into immature DCs under growth factor–supplemented conditions. Maturation was induced using a STING agonist and B16 tumor-derived DNA. Naïve CD4+ and CD8+ T cells were isolated via magnetic-activated cell sorting (MACS) and co-cultured with the stimulated DCs. Culture conditions were optimized to enhance DC maturation efficiency, and T cell proliferation was assessed following co-culture. Results: Optimization of the culture system markedly increased the yield of mature DCs. Importantly, co-culture of STING agonist-stimulated DCs with naïve T cells resulted in strong CD8+ T cell proliferation, indicating effective priming. Conclusions: These findings demonstrate the feasibility of generating functional DCs in vitro and highlight their capacity to prime T cells through STING pathway activation. This proof-of-concept supports the development of DC-based platforms as a promising strategy for novel cancer immunotherapies. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

21 pages, 4084 KB  
Article
A Multi-Epitope Recombinant Vaccine Candidate Against Bovine Alphaherpesvirus 1 and 5 Elicits Robust Immune Responses in Mice and Rabbits
by Aline Aparecida Silva Barbosa, Samille Henriques Pereira, Mateus Laguardia-Nascimento, Amanda Borges Ferrari, Laura Jorge Cox, Raissa Prado Rocha, Victor Augusto Teixeira Leocádio, Ágata Lopes Ribeiro, Karine Lima Lourenço, Flávio Guimarães Da Fonseca and Edel F. Barbosa-Stancioli
Vaccines 2025, 13(11), 1115; https://doi.org/10.3390/vaccines13111115 - 30 Oct 2025
Abstract
Background/Objectives: Varicellovirus bovinealpha1 and Varicellovirus bovinealpha5 (BoAHV-1 and BoAHV-5), respectively, are widely distributed pathogens that cause distinct clinical conditions in cattle including infectious bovine rhinotracheitis, infectious pustular vulvovaginitis/balanoposthitis, and meningoencephalitis. Due to the establishment of viral latency, controlling these infections is challenging, and [...] Read more.
Background/Objectives: Varicellovirus bovinealpha1 and Varicellovirus bovinealpha5 (BoAHV-1 and BoAHV-5), respectively, are widely distributed pathogens that cause distinct clinical conditions in cattle including infectious bovine rhinotracheitis, infectious pustular vulvovaginitis/balanoposthitis, and meningoencephalitis. Due to the establishment of viral latency, controlling these infections is challenging, and vaccination remains the most effective strategy. In this study, vaccine candidates targeting both BoAHV-1 and BoAHV-5 were developed. Methods: A synthetic gene encoding immunodominant epitopes from the gB and gD proteins and tegument phosphoprotein of BoAHV-1 and BoAHV-5 was designed to produce a multi-epitope recombinant antigen, expressed both in a prokaryotic system (RecBoAHV) and by a modified vaccinia Ankara (MVA-BoAHV) viral vector. The binding affinity of MHC-I to bovine leukocyte antigens (BoLA) was predicted using the NetMHCpan tool (version 4.1). The immunogenicity of the vaccine candidates was evaluated in rabbit and mouse models, using prime-boost immunization protocols. Sera from bovines naturally infected with BoAHV-1 and/or BoAHV-5 were used to evaluate the chimeric protein antigenicity. Immune responses were assessed by indirect ELISA and Western blot. Results: The recombinant multi-epitope protein was effectively recognized by IgG and IgM antibodies in sera from cattle naturally infected with BoAHV-1 or BoAHV-5, confirming the antigenic specificity. Both RecBoAHV and MVA-RecBoAHV induced strong and specific humoral immune responses in rabbits following a homologous prime-boost regimen. In mice, both homologous and heterologous prime-boost protocols revealed robust immunogenicity, particularly after the second booster dose. Conclusions: These findings highlight the immunogenic potential of the RecBoAHV multi-epitope vaccine candidates for controlling BoAHV-1 and BoAHV-5 infections. Further characterization of these vaccine formulations is currently underway in bovine, the target specie. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Graphical abstract

28 pages, 671 KB  
Review
In Situ Vaccination by Tumor Ablation: Principles and Prospects for Systemic Antitumor Immunity
by Tinatin Chikovani and Eli Magen
Vaccines 2025, 13(11), 1114; https://doi.org/10.3390/vaccines13111114 - 30 Oct 2025
Viewed by 1
Abstract
Cancer immunotherapy has redefined oncology’s goals, aiming for durable systemic immunity rather than mere cytoreduction. However, many solid tumors remain refractory due to immunosuppressive microenvironments and antigenic heterogeneity. Local tumor ablation techniques—including radiofrequency ablation (RFA), microwave ablation (MWA), cryoablation, irreversible electroporation (IRE), and [...] Read more.
Cancer immunotherapy has redefined oncology’s goals, aiming for durable systemic immunity rather than mere cytoreduction. However, many solid tumors remain refractory due to immunosuppressive microenvironments and antigenic heterogeneity. Local tumor ablation techniques—including radiofrequency ablation (RFA), microwave ablation (MWA), cryoablation, irreversible electroporation (IRE), and high-intensity focused ultrasound (HIFU)—are being re-evaluated beyond their historic cytoreductive role. This comprehensive review synthesizes the paradigm of tumor ablation as an in situ vaccination strategy, a concept that leverages the tumor itself as a source of antigens and the ablation process to generate endogenous adjuvants. We detail the mechanistic underpinnings, highlighting how ablation induces immunogenic cell death (ICD), releasing damage-associated molecular patterns (DAMPs) such as calreticulin, ATP, HMGB1, and cytosolic DNA. These signals activate innate immunity via pathways like cGAS-STING, promote dendritic cell maturation, and facilitate epitope spreading. We critically examine the determinants of efficacy, including the critical impact of ablation modality on the “DAMP signature,” the necessity of complete ablation, and the pivotal role of the host’s immune contexture. Furthermore, we explore the induction of tertiary lymphoid structures (TLS) as a key anatomical site for sustained immune priming. Translational strategies are extensively discussed, focusing on optimizing procedural techniques, rationally combining ablation with immune checkpoint inhibitors (ICIs) and innate immune agonists, and developing a robust biomarker framework. By adopting the core principles of vaccinology—meticulous attention to antigen, adjuvant, route, and schedule—ablation can be engineered into a reproducible platform for systemic immunotherapy. This review concludes by addressing current limitations and outlining a roadmap for clinical translation, positioning interventional oncology as a central discipline in the future of immuno-oncology. Full article
(This article belongs to the Section Vaccination Against Cancer and Chronic Diseases)
Show Figures

Figure 1

14 pages, 778 KB  
Review
Fast-Track to Protection? A Review of Encepur’s Express Dosing Schedule for Tick-Borne Encephalitis
by Kyra Zens, Ralph Torgler, Michael Horn and Carsten Schade Larsen
Viruses 2025, 17(11), 1439; https://doi.org/10.3390/v17111439 - 29 Oct 2025
Viewed by 215
Abstract
Cases of confirmed tick-borne encephalitis (TBE) have increased dramatically over the last 30 years, highlighting growing endemicity across Eurasia. Two preventative vaccines, Encepur® (Bavarian Nordic A/S, Hellerup, Denmark) and FSME-Immun® (Pfizer Ireland Pharmaceuticals, Cork, Ireland), are licensed in Europe. For both [...] Read more.
Cases of confirmed tick-borne encephalitis (TBE) have increased dramatically over the last 30 years, highlighting growing endemicity across Eurasia. Two preventative vaccines, Encepur® (Bavarian Nordic A/S, Hellerup, Denmark) and FSME-Immun® (Pfizer Ireland Pharmaceuticals, Cork, Ireland), are licensed in Europe. For both vaccines, primary immunisation consists of a three-dose regimen, administered over approximately one year using “Conventional” dosing schedules. Both vaccines can also be administered using “Rapid” schedules, which shorten the interval between the first two doses but still take around a year to complete. Currently, only Encepur offers an approved “Express” schedule, whereby all three priming doses are given within 21 days. The effectiveness of TBE vaccination is markedly higher in individuals who receive ≥3 doses, compared with those who receive only one or two doses, indicating the importance of series completion. Moreover, seropositivity takes several weeks to develop after vaccination. As such, individuals are advised to initiate vaccination before peak tick season to allow sufficient time to develop protective immunity during periods of highest risk. Despite these considerations, vaccine uptake and series completion remain suboptimal in TBE-endemic regions. Furthermore, many vaccinees—including travellers with limited time before departure and residents of endemic areas—do not initiate vaccination until peak tick season, when risk is greatest. Broader use of Encepur’s Express schedule may help to address these challenges. The Express schedule’s 21-day timeframe may help to increase series completion by reducing drop-offs associated with prolonged dosing intervals. Additionally, it can support timely protection by enabling series completion, with sufficient time post-vaccination to develop protective immunity, all within a single-risk season, even among late initiators. In this narrative review, we evaluate the safety and immunogenicity of Encepur’s Express schedule and discuss its potential utility across a broader range of vaccinees. These insights may help inform TBE vaccine recommendations and support efforts towards improving vaccination strategies amid increasing TBE risk. Full article
(This article belongs to the Section Invertebrate Viruses)
Show Figures

Figure 1

20 pages, 1726 KB  
Article
Heterologous SARS-CoV-2 Buccal Immunization with Oral Dissolving Films Generated a Strong Systemic and Mucosal Immunity in a Murine Model
by Tanisha Manoj Arte, Smital Patil, Emmanuel Adediran, Mahek Gulani, Amarae Ferguson, Sarthak Shah, Priyal Bagwe, Susu M. Zughaier and Martin J. D’Souza
Vaccines 2025, 13(11), 1105; https://doi.org/10.3390/vaccines13111105 - 29 Oct 2025
Viewed by 186
Abstract
Background: In response to the emergence of immune-evasive variants of SARS-CoV-2, this study explores a novel heterologous vaccination strategy using a microparticulate formulation approach that is delivered via oral dissolving film (ODF) formulations into the buccal cavity. Heterologous administration has the potential to [...] Read more.
Background: In response to the emergence of immune-evasive variants of SARS-CoV-2, this study explores a novel heterologous vaccination strategy using a microparticulate formulation approach that is delivered via oral dissolving film (ODF) formulations into the buccal cavity. Heterologous administration has the potential to generate cross-reactive antibodies, which can be especially beneficial against viruses with ever-mutating variants. Moreover, the microparticulate oral dissolving film-based vaccine approach is a non-invasive vaccine delivery platform. Methods: The vaccine design incorporated whole inactivated Delta and Omicron variants of the virus, administered at prime and booster doses, respectively, effectively encapsulated in a Poly(lactic-co-glycolic) acid (PLGA) polymer matrix, and adjuvanted with Alum to enhance immune activation. Following vaccination, serum, mucosal, and tissue samples were analyzed to evaluate humoral and cellular immune responses against the model antigen, as well as other variants such as Alpha and Beta variants, to understand the cross-reactive response. Result: In vitro evaluations confirmed the vaccine’s safety and its ability to stimulate immune responses. On administering microparticulate oral dissolving films to mice, whole inactivated delta and omicron variant-specific antibodies were observed in serum samples along with neutralizing titers in terminal week. The formulated vaccine showed significant secretory IgA antibody levels in mucosal samples. Moreover, CD4+ and CD8a cellular responses were observed in tissue samples of spleen and lymph nodes, along with antibodies (IgG, IgA, and IgM) detected in lung supernatant samples. Humoral and cellular cross-reactive antibodies were observed in the samples. Conclusions: This approach offers a promising platform for developing next-generation vaccines capable of inducing broad immunity. Full article
Show Figures

Figure 1

17 pages, 1676 KB  
Article
A Novel Chaperone-Based Cancer Vaccination Enhances Immunotherapeutic Responsiveness Through T Cell Amplification and Tumor Immune Remodeling
by Xueqian Cheng, Zheng Liu, Jinyang Cai, Xiaofei Yu, Chunqing Guo, Wenjie Liu, Masoud H. Manjili, Syed A. Shah, Elizabeth A. Repasky, John R. Subjeck and Xiangyang Wang
Vaccines 2025, 13(11), 1096; https://doi.org/10.3390/vaccines13111096 - 25 Oct 2025
Viewed by 720
Abstract
Background/Objectives: Preclinical and clinical evidence supports a chaperone-based vaccination platform for cancer immunotherapy. The objective of this study is to interrogate the next generation of chaperone-based immune modulator, termed Flagrp170, which was constructed by fusing a defined NF-κB-activating microbial sequence with a large [...] Read more.
Background/Objectives: Preclinical and clinical evidence supports a chaperone-based vaccination platform for cancer immunotherapy. The objective of this study is to interrogate the next generation of chaperone-based immune modulator, termed Flagrp170, which was constructed by fusing a defined NF-κB-activating microbial sequence with a large stress protein with a superior antigen-holding/presenting property in the setting of antigen-targeted cancer vaccination. Methods: Bone marrow-derived dendritic cells were treated with Flagrp170 protein or an unmodified parental chaperone molecule (i.e., Grp170), followed by an analysis of DC activation and DC-mediated T cell priming using both in vitro and in vivo models. Antitumor vaccine responses in mice receiving tumor antigens (e.g., gp100, Her2/neu) complexed with Flagrp170 or Grp170 were examined through multiple immune assays. The potential use of a Flagrp170-based chaperone vaccine to sensitize tumors to anti-PD-1 therapy was also evaluated. Results: Flagrp170 not only retains the intrinsic ability of the parent chaperone to facilitate antigen cross-presentation, but also acquires a unique capacity to stimulate DCs efficiently through the engagement of TLR5-NF-κB signaling. This chimeric chaperone shows superior activity compared to the unmodified parental molecule, resulting in enhanced DC activation and T cell priming. Vaccination with Flagrp170 complexed to tumor antigens induces a robust T cell response against primary tumors and metastases, a process critically dependent on CD8+ DCs. Additionally, the Flagrp170 chaperone vaccine can efficiently generate and expand tumor-reactive T cells. The consequent remodeling of the tumor microenvironment towards a Th1/Tc1 dominant immune phenotype significantly potentiates cancer responsiveness to anti-PD1 therapy. Conclusions: Given the safety and T cell stimulation profiles of the chaperone–antigen complex vaccine already established in our recent clinical trial, this new generation of chaperone cargo, capable of delivering both antigenic targets and pathogen-associated immunoactivating signals simultaneously, represents a promising strategy to potentially improve the low response rates in patients receiving immune checkpoint inhibitors. Full article
Show Figures

Figure 1

18 pages, 3331 KB  
Article
Optical Vibration Sensing Bionic Vector Hydrophone Based on Mechanically Coupled Structure
by Jinying Zhang, Jianyu Peng, Xianmei Wu, Yifan Shi, Wenpeng Xu, Yiyao Wang, Rong Zhang, Ziqi Li and Bingwen An
Micromachines 2025, 16(11), 1196; https://doi.org/10.3390/mi16111196 - 22 Oct 2025
Viewed by 224
Abstract
Vector hydrophones play an extremely important role in marine exploration. How to reduce the size of vector hydrophones while improving their directional detection capability is a critical issue that needs to be addressed. The auditory organ of the fly Ormia ochracea represents a [...] Read more.
Vector hydrophones play an extremely important role in marine exploration. How to reduce the size of vector hydrophones while improving their directional detection capability is a critical issue that needs to be addressed. The auditory organ of the fly Ormia ochracea represents a prime example of achieving high-resolution directional detection within a compact size range. This paper proposes a vector hydrophone that integrates an Ormia ochracea fly-inspired mechanically coupled structure with an optical fiber vibration sensing structure, offering advantages of small size and strong electromagnetic interference immunity. The hydrophone demonstrates a good response to acoustic pulse trains and can accurately demodulate acoustic waves from 1 kHz to 10 kHz. Directional response experiments show that this hydrophone can significantly amplify the time delay differences of incoming acoustic waves. At an acoustic frequency of 9.25 kHz, the time delay amplification factor reaches approximately 50 times within the range of −90° to +90°, exhibiting good cosine directionality. Full article
Show Figures

Figure 1

34 pages, 7924 KB  
Systematic Review
Efficacy, Safety and Predictive Biomarkers of Oncolytic Virus Therapy in Solid Tumors: A Systematic Review and Meta-Analysis
by Mohamed El-Tanani, Syed Arman Rabbani, Mohamed Anas Patni, Rasha Babiker, Shakta Mani Satyam, Imran Rashid Rangraze, Adil Farooq Wali, Yahia El-Tanani and Thantrira Porntaveetus
Vaccines 2025, 13(10), 1070; https://doi.org/10.3390/vaccines13101070 - 20 Oct 2025
Viewed by 409
Abstract
Background: Oncolytic virus (OV) therapy couples direct tumor lysis with systemic immune priming, yet clinical benefit remains heterogeneous and the predictive biomarker landscape is poorly defined. We undertook a systematic review and meta-analysis to quantify the efficacy and safety of OV therapy in [...] Read more.
Background: Oncolytic virus (OV) therapy couples direct tumor lysis with systemic immune priming, yet clinical benefit remains heterogeneous and the predictive biomarker landscape is poorly defined. We undertook a systematic review and meta-analysis to quantify the efficacy and safety of OV therapy in solid tumors and to synthesize current evidence on response-modulating biomarkers. Methods: Following PRISMA 2020 guidelines, MEDLINE, Embase, Cochrane CENTRAL, ProQuest and Scopus were searched from inception to May 2025. Phase II–III randomized trials of genetically engineered or naturally occurring OV reporting objective response rate (ORR), progression-free survival (PFS), overall survival (OS) or biomarker data were eligible. Hazard ratios (HRs) or odds ratios (OR) were pooled with random-effects models; heterogeneity was assessed with I2 statistics. Qualitative synthesis integrated genomic, immunologic and microbiome biomarkers. Results: Thirty-six trials encompassing around 4190 patients across different tumor types met inclusion criteria. Compared with standard therapy, OV-based regimens significantly improved ORR nearly three-fold (pooled OR = 2.77, 95% CI 1.85–4.16), prolonged PFS by 11% (HR = 0.89, 95% CI 0.80–0.99) and reduced mortality by 16% (OS HR = 0.84, 95% CI 0.72–0.97; I2 = 59%). Benefits were most pronounced in melanoma (ORR 26–49%; OS HR 0.57–0.79) and in high-dose vaccinia virus for hepatocellular carcinoma (HR = 0.39). Grade ≥ 3 adverse events were not increased versus control (risk ratio 1.05, 95% CI 0.89–1.24); common toxicities were transient flu-like symptoms and injection-site reactions. Biomarker synthesis revealed that high tumor mutational burden, interferon-pathway loss-of-function mutations, baseline CD8+ T-cell infiltration, post-OV upregulation of IFN-γ/PD-L1, and favorable gut microbial signatures correlated with response, whereas intact antiviral signaling, immune-excluded microenvironments and myeloid dominance predicted resistance. Conclusions: OV therapy confers clinically meaningful improvements in tumor response, PFS and OS with a favorable safety profile. Integrating composite genomic–immune–microbiome biomarkers into trial design is critical to refine patient selection and realize precision viro-immunotherapy. Future research should prioritize biomarker-enriched, rational combination strategies to overcome resistance and extend benefit beyond melanoma. Full article
Show Figures

Figure 1

13 pages, 2810 KB  
Article
Assessment of Biological Properties of Recombinant Lumpy Skin Disease Viruses with Deletions of Immunomodulatory Genes
by Aisha Issabek, Arailym Bopi, Nurlan Kozhabergenov, Bermet Khudaibergenova, Kulyaisan Sultankulova and Olga Chervyakova
Viruses 2025, 17(10), 1390; https://doi.org/10.3390/v17101390 - 19 Oct 2025
Viewed by 326
Abstract
Rational design of capripoxvirus-based vaccine vectors can be achieved by knockout of immunomodulatory genes. In this study, the effect of knockout of the immunomodulatory genes LSDV005, LSDV008 and LSDV066 on the replication of Lumpy skin disease virus in cell cultures and the immune [...] Read more.
Rational design of capripoxvirus-based vaccine vectors can be achieved by knockout of immunomodulatory genes. In this study, the effect of knockout of the immunomodulatory genes LSDV005, LSDV008 and LSDV066 on the replication of Lumpy skin disease virus in cell cultures and the immune response to an integrated foreign antigen were assessed. The knockout of genes was performed by homologous recombination under conditions of temporary dominant selection. It was found that single knockout of the LSDV005 gene and the LSDV008 gene did not affect the replicative activity of recombinant viruses in vitro (Atyrau-5 and Atyrau-B). Both single knockout of the LSDV066 gene and in combination with knockout of LSDV005 or LSDV008 led to a decrease in the replicative activity of recombinant LSDVs. The recombinant Atyrau-5J(IL18) with LSDV005 gene knockout induced production of antibodies to the integrated antigen in mice. Prime-boost vaccination with all studied recombinants increased the level of interferon-γ. In addition, during immunization with the recombinant Atyrau-5J(IL18) secretion of interleukin-2 was significantly increased. The study of the functions of immunomodulatory genes and their effect on the expression of inserted sequences of foreign antigens is promising for the creation of highly effective polyvalent vector vaccines for animals. Full article
Show Figures

Graphical abstract

23 pages, 1270 KB  
Review
Pleiotropic Mucosal Innate Immune Memory in the Gastrointestinal Tract
by Rachel H. Cohen, Sean P. Colgan and Ian M. Cartwright
Int. J. Mol. Sci. 2025, 26(20), 10093; https://doi.org/10.3390/ijms262010093 - 16 Oct 2025
Viewed by 411
Abstract
Research in the past fifteen years has established that innate immune cells can develop immune memory, termed trained immunity. Trained innate immune cells exhibit distinct lasting epigenetic and metabolic changes that prime these cells upon repeated exposure. The gastrointestinal tract provides an important [...] Read more.
Research in the past fifteen years has established that innate immune cells can develop immune memory, termed trained immunity. Trained innate immune cells exhibit distinct lasting epigenetic and metabolic changes that prime these cells upon repeated exposure. The gastrointestinal tract provides an important immunological barrier and is home to many innate immune cells, where trained immunity serves an essential role. This review summarizes what is currently known about the basic mechanisms behind innate immune memory, the roles of innate immune cells within the intestine, intestinal-specific trained immunity, and therapeutic potential for targeting trained immunity in the context of gastrointestinal disorders. Full article
Show Figures

Figure 1

24 pages, 1444 KB  
Review
Epigenetic Regulation of Immune Responses in Endocrine-Related Cancers and Its Role in Immunotherapy
by Evren M. Akyuz, Meryem Gultekin, Judith M. Ramage, Ian Spendlove, Andrew M. Jackson, Jason Adhikaree and Anna A. Malecka
Cancers 2025, 17(20), 3342; https://doi.org/10.3390/cancers17203342 - 16 Oct 2025
Viewed by 553
Abstract
Endocrine-related cancers are commonly diagnosed worldwide and are a major cause of cancer-related deaths. While current therapies are effective at earlier stages, they often fail in more advanced or recurring tumors due to the development of primary and secondary resistance. Therefore, new therapeutic [...] Read more.
Endocrine-related cancers are commonly diagnosed worldwide and are a major cause of cancer-related deaths. While current therapies are effective at earlier stages, they often fail in more advanced or recurring tumors due to the development of primary and secondary resistance. Therefore, new therapeutic approaches are urgently needed. In recent years, new therapeutic avenues, namely immunotherapy and epigenetic modulation, have been successfully explored in multiple cancer types. However, this success has not been observed in endocrine-related cancers. These tumors are considered immunologically cold, characterized by a low immunogenicity, scarce infiltration by immune cells, and highly immunosuppressive environment rendering them resistant to immunotherapy. Recent studies demonstrated the ability of epigenetic agents to simultaneously alter the behavior of tumor and immune cells, giving premise to combination approaches using epigenetic modulation to prime cancer for immunotherapy. This review provides an overview of the immune landscape of endocrine-related cancers and its main epigenetic regulators. We discuss current clinical trials investigating the effect of combination endocrine-related immunotherapy and their challenges to successfully treat endocrine-related cancers. Full article
(This article belongs to the Special Issue Epigenetics in Endocrine-Related Cancer)
Show Figures

Graphical abstract

25 pages, 4592 KB  
Article
Combined Lactiplantibacillus plantarum CRL1506 and MPL16 Nasal Priming More Effectively Modulates Respiratory Antiviral Innate Immunity than Single Strains
by Luciano Arellano-Arriagada, Leonardo Albarracin, Kohtaro Fukuyama, Solange Cisterna-Vergara, Weichen Gong, Fu Namai, Keita Nishiyama, Yoshihito Suda, Haruki Kitazawa and Julio Villena
Int. J. Mol. Sci. 2025, 26(20), 10079; https://doi.org/10.3390/ijms262010079 - 16 Oct 2025
Viewed by 198
Abstract
This study evaluated whether the combined Lactiplantibacillus plantarum CRL1506 and MPL16 nasal priming more effectively modulated the Toll-like receptor (TLR)-3- and respiratory syncytial virus (RSV)-mediated respiratory immune responses in mice than single strains. The interaction of single and combined strains with porcine alveolar [...] Read more.
This study evaluated whether the combined Lactiplantibacillus plantarum CRL1506 and MPL16 nasal priming more effectively modulated the Toll-like receptor (TLR)-3- and respiratory syncytial virus (RSV)-mediated respiratory immune responses in mice than single strains. The interaction of single and combined strains with porcine alveolar macrophages (AMs) and porcine respiratory epithelial cells (PBE cells) in the context of TLR3 activation and porcine reproductive and respiratory syndrome virus (PRRSV) was also evaluated. The in vivo studies in mice revealed that the CRL1506 + MPL16 combination was more effective than the individual strains at reducing RSV replication, protecting the lung from TLR3-mediated inflammatory injury and modulating innate antiviral responses, particularly in AMs. In vitro, lactobacilli treatment also increased the resistance of porcine AMs to PRRSV infection. Notably, the CRL1506 + MPL16 combination was not more effective than the single strains in modulating AMs antiviral immunity. Complementary assays in PBE cells revealed that L. plantarum CRL1506 induced higher production of IFN-λ than the MPL16 strain in response to TLR3 activation. Thus, the superior in vivo protection against RSV seen with the L. plantarum CRL1506–MPL16 combination likely reflects complementary actions of lactobacilli: MPL16 would efficiently modulate AMs, whereas CRL1506 would be more effective to target respiratory epithelial cells driving greater IFN-λ production that further boosts AM antiviral activity. The results from the animal models of this work furnish the scientific basis for proposing future human trials to assess the efficacy of the CRL1506 + MPL16 combination in improving respiratory antiviral immunity. Full article
(This article belongs to the Special Issue Molecular Biology of Host and Pathogen Interactions: 3rd Edition)
Show Figures

Figure 1

23 pages, 8340 KB  
Article
Chemotherapy Liberates a Broadening Repertoire of Tumor Antigens for TLR7/8/9-Mediated Potent Antitumor Immunity
by Cheng Zu, Yiwei Zhong, Shuting Wu and Bin Wang
Cancers 2025, 17(19), 3277; https://doi.org/10.3390/cancers17193277 - 9 Oct 2025
Viewed by 419
Abstract
Background: Most immunologically “cold” tumors do not respond durably to checkpoint blockade because tumor antigen (TA) release and presentation are insufficient to prime effective T-cell immunity. While prior work demonstrated synergy between cisplatin and a TLR7/8/9 agonist (CR108) in 4T1 tumors, the underlying [...] Read more.
Background: Most immunologically “cold” tumors do not respond durably to checkpoint blockade because tumor antigen (TA) release and presentation are insufficient to prime effective T-cell immunity. While prior work demonstrated synergy between cisplatin and a TLR7/8/9 agonist (CR108) in 4T1 tumors, the underlying mechanism—particularly whether chemotherapy functions as a broad antigen-releasing agent enabling TLR-driven immune amplification—remained undefined. Methods: Using murine models of breast (4T1), melanoma (B16-F10), and colorectal cancer (CT26), we tested multiple chemotherapeutic classes combined with CR108. We quantified intratumoral and systemic soluble TAs, antigen presentation and cross-priming by antigen-presenting cells, tumor-infiltrating lymphocytes, and cytokine production by flow cytometry/ICS. T-cell receptor β (TCRβ) repertoire dynamics in tumor-draining lymph nodes were profiled to assess amplitude and breadth. Tumor microenvironment remodeling was analyzed, and public datasets (e.g., TCGA basal-like breast cancer) were interrogated for expression of genes linked to TA generation/processing and peptide loading. Results: Using cisplatin + CR108 in 4T1 as a benchmark, we demonstrate that diverse chemotherapies—especially platinum agents—broadly increase the repertoire of soluble tumor antigens available for immune recognition. Across regimens, chemotherapy combined with CR108 increased T-cell recognition of candidate TAs and enhanced IFN-γ+ CD8+ responses, with platinum agents producing the largest expansions in soluble TAs. TCRβ sequencing revealed increased clonal amplitude without loss of repertoire breadth, indicating focused yet diverse antitumor T-cell expansion. Notably, therapeutic efficacy was not predicted by canonical damage-associated molecular pattern (DAMP) signatures but instead correlated with antigen availability and processing capacity. In human basal-like breast cancer, higher expression of genes involved in TA generation and antigen processing/presentation correlated with improved survival. Conclusions: Our findings establish an antigen-centric mechanism underlying chemo–TLR agonist synergy: chemotherapy liberates a broadened repertoire of tumor antigens, which CR108 then leverages via innate immune activation to drive potent, T-cell-mediated antitumor immunity. This framework for rational selection of chemotherapy partners for TLR7/8/9 agonism and support clinical evaluation to convert “cold” tumors into immunologically responsive disease. Full article
Show Figures

Figure 1

18 pages, 1794 KB  
Review
Deciphering the Role of Macrophages in RSV Infection and Disease
by Sara Van Looy, Axelle Fransen, Lotte Jacobs, Sofie Schaerlaekens, Martina Ceconi, Francisco I. Serrano-Cano, Noor Ul Hudda, Laurence Van Moll, Marie De Smedt, Paul Cos and Peter L. Delputte
Viruses 2025, 17(10), 1351; https://doi.org/10.3390/v17101351 - 8 Oct 2025
Viewed by 760
Abstract
Respiratory syncytial virus (RSV) is a major cause of severe respiratory infections in infants, the elderly, and immunocompromised persons. Innate immune responses to RSV, which are crucial for containment of the infection yet may also be linked to severe disease, are well-studied in [...] Read more.
Respiratory syncytial virus (RSV) is a major cause of severe respiratory infections in infants, the elderly, and immunocompromised persons. Innate immune responses to RSV, which are crucial for containment of the infection yet may also be linked to severe disease, are well-studied in the main RSV target cells, respiratory epithelial cells, but the role of pulmonary macrophages (MΦs), key innate immune regulators, remains incompletely defined. This review addresses the interaction of RSV with MΦ, discussing the susceptibility of these cells to productive infection, and MΦ responses to RSV, including cytokine and chemokine release and inflammasome activation. Furthermore, factors contributing to variability in MΦ infectivity and responses, such as MΦ polarization, age, differences in RSV isolates, co-infections, and prior innate priming, are presented. Finally, the review highlights discrepancies observed across experimental models, MΦ origins, and RSV isolates used, complicating the interpretation of MΦ-RSV interactions, thereby underscoring the need for standardized methodologies. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Graphical abstract

Back to TopTop