Probiotic–Vaccine Synergy in Fish Aquaculture: Exploring Microbiome-Immune Interactions for Enhanced Vaccine Efficacy
Simple Summary
Abstract
1. Introduction
2. Fish Immune System: Foundations for Vaccine Design
3. Probiotics in Aquaculture: Mechanisms and Impact
Mechanism | Probiotic Example(s) | Immunological Effects | Impact on Vaccine Efficacy | Sustainability Benefit(s) | Key References |
---|---|---|---|---|---|
Antigen protection and delivery | Bacillus subtilis spores (expressing FlgE) | Enhances mucosal IgT production in grouper; shields antigens from degradation. | ↑ Antigen persistence in gut → prolonged immune activation. | Reduces vaccine doses; minimizes ecological disruption. | [63] |
Immune priming | Lactobacillus plantarum Ep-M17 | ↑ Phenoloxidase, lysozyme activity; upregulates proPO and pen4 in white shrimp. | Strengthens innate-to-adaptive immunity transition. | Reduces antibiotic reliance via enhanced pathogen resistance. | [65] |
Microbiome modulation | Bacillus velezensis FIO1408 | Suppresses Vibrio spp.; enriches beneficial gut microbiota in Asian seabass. | ↓ Pathogen competition → improves vaccine-targeted responses. | Promotes closed-loop systems; reduces waste. | [66] |
Cross-mucosal immunity | Lactobacillus pentosus BD6 | Induces IgT+ B cells in skin/gills of white shrimp; enhances intestinal microbiota diversity. | Broad-spectrum protection across mucosal and systemic sites. | Reduces need for species-specific vaccines. | [67] |
Quorum quenching | Bacillus spp. (e.g., B. subtilis RODK2810C3) | Degrades AHLs; inhibits Edwardsiella tarda virulence in zebrafish and rohu. | Enhances vaccine efficacy by weakening pathogen virulence. | Lowers antibiotic use; eco-friendly disease control. | [68] |
Eco-friendly formulations | Phaeobacter piscinae S26 (TDA-producing) | Antagonizes Vibrio coralliilyticus in fish larvae without antibiotic resistance risks. | Comparable efficacy to antibiotics in pathogen suppression. | Minimizes chemical inputs; safe for marine ecosystems. | [69] |
Competitive exclusion | Streptomyces sp. SH5 | Reduces Aeromonas hydrophila colonization in zebrafish via biofilm inhibition. | ↓ Pathogen adhesion → enhances vaccine-specific responses. | Reduces disease outbreaks in closed systems. | [70] |
Synbiotic synergy | Bacillus sp. PM8313 + red sea bream | Improves digestive enzymes and immune genes microbiota (e.g., SOD, CAT) in red sea bream. | Enhances nutrient absorption → supports vaccine-induced immunity. | Reduces feed waste; improves growth efficiency. | [71] |
Pathogen inhibition | Weissella confusa N17 | Inhibits Aeromonas veronii in loach via adhesion competition and biofilm disruption. | Protects mucosal surfaces → strengthens vaccine efficacy. | Reduces chemical treatments; promotes host-specific probiotics. | [72] |
4. Probiotic–Vaccine Synergy: Evidence and Mechanisms
5. Mucosal Immunity and Oral Vaccination: Probiotics as Game-Changers
6. Innovations in Probiotic-Based Adjuvants
Probiotic Strain | Antigen/Adjuvant | Delivery Method | Target Pathogen | Host Species | Survival Rate/Protection | Key Immune Outcomes | Reference |
---|---|---|---|---|---|---|---|
Lactobacillus casei | MCP2α (LMBV) + FlaC (adjuvant) | PLA microspheres (oral) | Largemouth bass ranavirus (LMBV) | Largemouth bass (Micropterus salmoides) | ↑ Survival: 24% → 68% | ↑ Serum enzymes (T-SOD, LZM, C3); ↑ immune genes (IL-1β, TNF-α, IFN-γ); reduced viral load | [92] |
Lactobacillus casei | Aha1 (Aeromonas veronii) + CTB adjuvant | Oral (surface-displayed) | Aeromonas veronii | Common carp (Cyprinus carpio) | ↑ Survival: 53.57% → 64.29% | ↑ IgM, ACP, AKP, SOD; ↑ cytokines (IL-1β, TNF-α); intestinal colonization | [79] |
Lactobacillus casei | Aha1 (Aeromonas hydrophila) | Oral (recombinant vectors) | Aeromonas hydrophila | Common carp | ↑ Survival: 50% → 60% | ↑ IgM, AKP, SOD; ↑ cytokines (IL-1β, TNF-α); reduced bacterial load | [79] |
Lactobacillus casei | Aha1 + LTB adjuvant | Oral (surface-displayed) | Aeromonas veronii | Carp | ↑ Survival: 53.57% → 60.71% | ↑ IgM, LZM, C3; ↑ cytokines (IL-1β, TNF-α); reduced tissue damage | [97] |
Lactobacillus casei | MshB (Aeromonas veronii) + CTB adjuvant | Oral | Aeromonas veronii | Crucian carp (Carassius auratus) | ↑ Survival: 48% → 60% | ↑ IgM, SOD, C3; ↑ cytokines (IL-1β, TNF-α); reduced bacterial load | [98] |
Lactobacillus rhamnosus | Fermented Acanthopanax senticosus | Oral | Aeromonas hydrophila | Crucian carp | ↑ Survival: 40% → 60% | ↑ Antioxidants (CAT, SOD); ↑ cytokines (IL-1β, TNF-α); reduced tissue pathology | [78] |
7. Challenges and Research Gaps
8. Future Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Houston, R.D.; Kriaridou, C.; Robledo, D. Animal Board Invited Review: Widespread Adoption of Genetic Technologies Is Key to Sustainable Expansion of Global Aquaculture. Animal 2022, 16, 100642. [Google Scholar] [CrossRef] [PubMed]
- Idenyi, J.N.; Eya, J.C.; Nwankwegu, A.S.; Nwoba, E.G. Aquaculture Sustainability through Alternative Dietary Ingredients: Microalgal Value-Added Products. Eng. Microbiol. 2022, 2, 100049. [Google Scholar] [CrossRef] [PubMed]
- Nasr-Eldahan, S.; Nabil-Adam, A.; Shreadah, M.A.; Maher, A.M.; El-Sayed Ali, T. A Review Article on Nanotechnology in Aquaculture Sustainability as a Novel Tool in Fish Disease Control. Aquac. Int. 2021, 29, 1459–1480. [Google Scholar] [CrossRef]
- Thompson, C.C.; Wasielesky, W., Jr.; Landuci, F.; Lima, M.S.; Bacha, L.; Perazzolo, L.M.; Lourenço-Marques, C.; Soares, F.; Pousão-Ferreira, P.; Hanson, L. Understanding the Role of Microbes in Health and Disease of Farmed Aquatic Organisms. Mar. Life Sci. Technol. 2024, 6, 579–609. [Google Scholar] [CrossRef] [PubMed]
- Valero, Y.; Souto, S.; Olveira, J.G.; López-Vázquez, C.; Dopazo, C.P.; Bandín, I. Water-in-oil Adjuvant Challenges in Fish Vaccination: An Experimental Inactivated Adjuvanted Vaccine against Betanodavirus Infection in Senegalese Sole. J. Fish. Dis. 2024, 47, e13945. [Google Scholar] [CrossRef]
- Miryala, K.R.; Swain, B. Advances and Challenges in Aeromonas Hydrophila Vaccine Development: Immunological Insights and Future Perspectives. Vaccines 2025, 13, 202. [Google Scholar] [CrossRef]
- Naidu, B.C.; Xavier, K.A.M.; Sahana, M.D.; Landge, A.T.; Jaiswar, A.K.; Shukla, S.P.; Ranjeet, K.; Nayak, B.B. Temporal Variability of Microplastics in Shrimp (Litopenaeus Vannamei), Feed, Water and Sediments of Coastal and Inland Culture Ponds. Sci. Total Environ. 2025, 959, 178173. [Google Scholar] [CrossRef]
- Wang, Z.; Fan, L.; Wang, J.; Xie, S.; Zhang, C.; Zhou, J.; Zhang, L.; Xu, G.; Zou, J. Insight into the Immune and Microbial Response of the White-Leg Shrimp Litopenaeus Vannamei to Microplastics. Mar. Environ. Res. 2021, 169, 105377. [Google Scholar] [CrossRef]
- Bedekar, M.K.; Kole, S. Fundamentals of Fish Vaccination. Vaccine Des. Methods Protoc. Vaccines Vet. Dis. 2022, 2, 147–173. [Google Scholar]
- Santibañez, A.; Paine, D.; Parra, M.; Muñoz, C.; Valdes, N.; Zapata, C.; Vargas, R.; Gonzalez, A.; Tello, M. Oral Administration of Lactococcus Lactis Producing Interferon Type II, Enhances the Immune Response against Bacterial Pathogens in Rainbow Trout. Front. Immunol. 2021, 12, 696803. [Google Scholar] [CrossRef]
- Docando, F.; Nuñez-Ortiz, N.; Gonçalves, G.; Serra, C.R.; Gomez-Casado, E.; Martín, D.; Abós, B.; Oliva-Teles, A.; Tafalla, C.; Díaz-Rosales, P. Bacillus Subtilis Expressing the Infectious Pancreatic Necrosis Virus VP2 Protein Retains Its Immunostimulatory Properties and Induces a Specific Antibody Response. Front. Immunol. 2022, 13, 888311. [Google Scholar] [CrossRef] [PubMed]
- Giri, S.S.; Kim, H.J.; Kim, S.G.; Kim, S.W.; Kwon, J.; Lee, S.B.; Woo, K.J.; Jung, W.J.; Kim, M.J.; Sukumaran, V. Effects of Dietary Lactiplantibacillus Plantarum Subsp. Plantarum L7, Alone or in Combination with Limosilactobacillus Reuteri P16, on Growth, Mucosal Immune Responses, and Disease Resistance of Cyprinus Carpio. Probiotics Antimicrob. Proteins 2021, 13, 1747–1758. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cen, J.; Zhou, Q.; Zheng, X.; Wu, Z.; Li, Z.; Wang, Y.; Jang, L.; Sun, C.; Liu, B. Dietary Probiotic Intervention Strategies of Lactobacillus Acidophilus and Bacillus Subtilis Co-Cultured in Litopenaeus Vannamei with Low Fishmeal Diet. Fish Shellfish Immunol. 2025, 164, 110414. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-C.; Lo, C.-T.; Ho, T.H.; Chen, L.-L.; Nan, F.-H.; Lai, H.-C.; Wangkahart, E.; Lee, P.-T. Assessment of Bacillus Subtilis Fermented Caulerpa Microphysa Byproduct as Feed Additive on the Growth Performance, Immune Regulation and Disease Resistance of White Shrimp (Litopenaeus Vannamei). Fish Shellfish Immunol. 2023, 142, 109134. [Google Scholar] [CrossRef]
- Yao, Y.-Y.; Zhou, W.-H.; Hu, J.; Yang, Y.-L.; Li, M.; Xia, R.; Ran, C.; Zhang, Z.; Zhou, Z.-G. Strain-Specific Effects of Fish Originated Bacillus Velezensis on Growth, Gut Health, and Disease Resistance of Zebrafish. Fish Shellfish Immunol. 2025, 163, 110400. [Google Scholar] [CrossRef]
- Abdelkader, G.S.; El-Naenaeey, E.-S.Y.; Abdallah, H.M.; Abu-Zeid, E.H.; Rehan, I.F.; Zigo, F.; Elmowalid, G.A. Immune Enhancement and Disease Resistance against Aeromonas Hydrophila Infection by Dietary Lactobacillus Plantarum-Fermented Moringa Oleifera Leaves in Oreochromis Niloticus. Front. Vet. Sci. 2025, 12, 1557671. [Google Scholar] [CrossRef]
- Zeng, L.; Sun, Y.; Zhang, H.; Yi, X.; Du, R.; Chen, Z.; Wang, Q. Scorpion Venom Peptides Enhance Immunity and Survival in Litopenaeus Vannamei through Antibacterial Action against Vibrio Parahaemolyticus. Front. Immunol. 2025, 16, 1551816. [Google Scholar] [CrossRef]
- Wang, M.; Ao, L.; Zeng, S.; Yang, J.; Wang, C.; Wang, X.; Shen, C.; Sun, Y. Improvement of Antioxidant Capacity and Gut Microbiota Balance in Adult Zebrafish (Danio Rerio) by Addition of Fermented Distillers’ Dried Grains with Solubles (DDGS). Fish. Physiol. Biochem. 2025, 51, 93. [Google Scholar] [CrossRef]
- Ding, X.-Y.; Wei, C.-Y.; Liu, Z.-Y.; Yang, H.-L.; Han, F.; Sun, Y.-Z. Autochthonous Bacillus Subtilis and Enterococcus Faecalis Improved Liver Health, Immune Response, Mucosal Microbiota and Red-Head Disease Resistance of Yellow Drum (Nibea Albiflora). Fish Shellfish Immunol. 2023, 134, 108575. [Google Scholar] [CrossRef]
- Kuo, H.-W.; Chang, C.-C.; Cheng, W. Synbiotic Combination of Prebiotic, Cacao Pod Husk Pectin and Probiotic, Lactobacillus Plantarum, Improve the Immunocompetence and Growth of Litopenaeus Vannamei. Fish Shellfish Immunol. 2021, 118, 333–342. [Google Scholar] [CrossRef]
- Krasnov, A.; Afanasyev, S.; Nylund, S.; Rebl, A. Multigene Expression Assay for Assessment of the Immune Status of Atlantic Salmon. Genes 2020, 11, 1236. [Google Scholar] [CrossRef] [PubMed]
- Najafpour, B.; Cardoso, J.C.R.; Canário, A.V.M.; Power, D.M. Specific Evolution and Gene Family Expansion of Complement 3 and Regulatory Factor H in Fish. Front. Immunol. 2020, 11, 568631. [Google Scholar] [CrossRef]
- Liu, Z.; Ji, J.; Jiang, X.; Shao, T.; Fan, D.; Jiang, X.; Lin, A.; Xiang, L.; Shao, J. Characterization of CGAS Homologs in Innate and Adaptive Mucosal Immunities in Zebrafish Gives Evolutionary Insights into CGAS-STING Pathway. FASEB J. 2020, 34, 7786–7809. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, S.; Sun, X.; Xu, X. Comparative Transcriptome Analysis Reveals the Immune Response of Turbot (Scophthalmus Maximus) Induced by Inactivated Bivalent Vaccine. Fish Shellfish Immunol. 2023, 132, 108461. [Google Scholar] [CrossRef]
- Martínez, D.; De Lázaro, O.; Cortés, P.; Oyarzún-Salazar, R.; Paschke, K.; Vargas-Chacoff, L. Hypoxia Modulates the Transcriptional Immunological Response in Oncorhynchus Kisutch. Fish Shellfish Immunol. 2020, 106, 1042–1051. [Google Scholar] [CrossRef] [PubMed]
- Sukeda, M.; Shiota, K.; Kondo, M.; Nagasawa, T.; Nakao, M.; Somamoto, T. Innate Cell-Mediated Cytotoxicity of CD8+ T Cells against the Protozoan Parasite Ichthyophthirius Multifiliis in the Ginbuna Crucian Carp, Carassius Auratus Langsdorfii. Dev. Comp. Immunol. 2021, 115, 103886. [Google Scholar] [CrossRef]
- Buchmann, K.; Karami, A.M.; Duan, Y. The Early Ontogenetic Development of Immune Cells and Organs in Teleosts. Fish Shellfish Immunol. 2024, 146, 109371. [Google Scholar] [CrossRef]
- Eslamloo, K.; Caballero-Solares, A.; Inkpen, S.M.; Emam, M.; Kumar, S.; Bouniot, C.; Avendaño-Herrera, R.; Jakob, E.; Rise, M.L. Transcriptomic Profiling of the Adaptive and Innate Immune Responses of Atlantic Salmon to Renibacterium Salmoninarum Infection. Front. Immunol. 2020, 11, 567838. [Google Scholar] [CrossRef]
- Hill, T.M.; Dooley, H. The Unexpected Role of Nurse Shark Pancreas as a Secondary Lymphoid Organ. J. Immunol. 2025, 214, vkaf091. [Google Scholar] [CrossRef]
- Chérif, N.; Ghedira, K.; Agrebi, H.; Najahi, S.; Mejri, H.; Azouz, S.; Kielbasa, M.; Armengaud, J.; Kangethe, R.T.; Wijewardana, V.; et al. Proteomic Profiling of the Serological Response to a Chemically-Inactivated Nodavirus Vaccine in European Sea Bass Dicentrarchus Labrax. Vet. Res. Commun. 2025, 49, 125. [Google Scholar] [CrossRef]
- Chan, J.T.H.; Picard-Sánchez, A.; Dedić, N.; Majstorović, J.; Rebl, A.; Holzer, A.S.; Korytář, T. Immunological Memory in a Teleost Fish: Common Carp IgM+ B Cells Differentiate into Memory and Plasma Cells. Front. Immunol. 2024, 15, 1493840. [Google Scholar] [CrossRef]
- Wu, X.; Xing, J.; Tang, X.; Sheng, X.; Chi, H.; Zhan, W. Interaction between Interleukin-12 (IL-12) and Its Receptor (IL-12Rβ2) Mediates CD4+ T Cell Subsets Activation in Flounder (Paralichthys Olivaceus). Int. J. Biol. Macromol. 2025, 293, 139302. [Google Scholar] [CrossRef] [PubMed]
- Satkar, S.G.; Sudhagar, A.; Dharmaratnam, A.; Swaminathan, T.R.; Sood, N.; Abhilash, C.P.; Charan, R.; Sarkar, U.K. Unravelling the Ontogeny and Tissue-Specific Expression Profiles of Immune-Related Genes in the near-Threatened Endemic Catfish, Clarias Dussumieri. Fish Shellfish Immunol. 2025, 157, 110075. [Google Scholar] [CrossRef] [PubMed]
- Phudinsai, P.; Wangkahart, E. Effect of the MONTANIDETM IMS 1312 Adjuvant on the Innate and Adaptive Immune Responses of Nile Tilapia (Oreochromis Niloticus) against Streptococcus Agalactiae through Immersion Vaccination. Fish Shellfish Immunol. 2024, 155, 110012. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, A.; Khataeipour, S.J.; Solbakken, M.H.; Huebert, D.N.G.; Khoddami, M.; Eslamloo, K.; Collins, C.; Hori, T.; Jentoft, S.; Rise, M.L. Ancestral Reconstruction Reveals Catalytic Inactivation of Activation-Induced Cytidine Deaminase Concomitant with Cold Water Adaption in the Gadiformes Bony Fish. BMC Biol. 2022, 20, 293. [Google Scholar] [CrossRef]
- Takahashi, Y.; Okamura, Y.; Morimoto, N.; Mihara, K.; Maekawa, S.; Wang, H.-C.; Aoki, T.; Kono, T.; Sakai, M.; Hikima, J. Interleukin-17A/F1 from Japanese Pufferfish (Takifugu Rubripes) Stimulates the Immune Response in Head Kidney and Intestinal Cells. Fish Shellfish Immunol. 2020, 103, 143–149. [Google Scholar] [CrossRef]
- Attaya, A.; Veenstra, K.; Welsh, M.D.; Ahmed, M.; Torabi-Pour, N.; Saffie-Siebert, S.; Yoon, S.; Secombes, C.J. In Vitro Evaluation of Novel (Nanoparticle) Oral Delivery Systems Allow Selection of Gut Immunomodulatory Formulations. Fish Shellfish Immunol. 2021, 113, 125–138. [Google Scholar] [CrossRef]
- Pholchamat, S.; Vialle, R.; Luang-In, V.; Phadee, P.; Wang, B.; Wang, T.; Secombes, C.J.; Wangkahart, E. Evaluation of the Efficacy of MONTANIDETM GR01, a New Adjuvant for Feed-Based Vaccines, on the Immune Response and Protection against Streptococcus Agalactiae in Oral Vaccinated Nile Tilapia (Oreochromis Niloticus) under Laboratory and on-Farm Conditions. Fish Shellfish Immunol. 2024, 149, 109567. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, S.Y.; Kim, K.H. Effect of Water Temperature on the Protective Efficacy of Single-Cycle RVHSV-GΔTM Vaccine in Olive Flounder (Paralichthys Olivaceus). Fish Shellfish Immunol. 2020, 105, 270–273. [Google Scholar] [CrossRef]
- Farias, T.H.V.; Arijo, S.; Medina, A.; Pala, G.; da Rosa Prado, E.J.; Montassier, H.J.; Pilarski, F.; de Andrade Belo, M.A. Immune Responses Induced by Inactivated Vaccine against Aeromonas Hydrophila in Pacu, Piaractus Mesopotamicus. Fish Shellfish Immunol. 2020, 101, 186–191. [Google Scholar] [CrossRef]
- Gomaa, B.; Abdelhamed, H.; Banes, M.; Zinnurine, S.; Pinchuk, L.; Lawrence, M.L. Innate and Adaptive Immunity Gene Expression Profiles Induced by Virulent Aeromonas Hydrophila Infection in the Immune-Related Organs of Channel Catfish. Dev. Comp. Immunol. 2025, 162, 105276. [Google Scholar] [CrossRef] [PubMed]
- Kordon, A.O.; Kalindamar, S.; Majors, K.; Abdelhamed, H.; Tan, W.; Karsi, A.; Pinchuk, L.M. Live Attenuated Edwardsiella Ictaluri Vaccines Enhance the Protective Innate Immune Responses of Channel Catfish B Cells. Dev. Comp. Immunol. 2020, 109, 103711. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Beck, B.R.; Hwang, S.-H.; Song, S.K. Feeding Olive Flounder (Paralichthys Olivaceus) with Lactococcus Lactis BFE920 Expressing the Fusion Antigen of Vibrio OmpK and FlaB Provides Protection against Multiple Vibrio Pathogens: A Universal Vaccine Effect. Fish Shellfish Immunol. 2021, 114, 253–262. [Google Scholar] [CrossRef]
- Aly, S.M.; Eissa, A.E.; ElBanna, N.I.; Albutti, A. Efficiency of Monovalent and Polyvalent Vibrio Alginolyticus and Vibrio Parahaemolyticus Vaccines on the Immune Response and Protection in Gilthead Sea Bream, Sparus Aurata (L.) against Vibriosis. Fish Shellfish Immunol. 2021, 111, 145–151. [Google Scholar] [CrossRef]
- Yin, J.; Wu, H.; Li, W.; Wang, Y.; Li, Y.; Mo, X.; Li, S.; Ren, Y.; Pan, H.; Jiang, P. Escherichia Coli Heat-Labile Enterotoxin B Subunit as an Adjuvant of Mucosal Immune Combined with GCRV-II VP6 Triggers Innate Immunity and Enhances Adaptive Immune Responses Following Oral Vaccination of Grass Carp (Ctenopharyngodon Idella). Fish Shellfish Immunol. 2024, 154, 109969. [Google Scholar] [CrossRef]
- Leeuwis, R.H.J.; Hall, J.R.; Zanuzzo, F.S.; Smith, N.; Clow, K.A.; Kumar, S.; Vasquez, I.; Goetz, F.W.; Johnson, S.C.; Rise, M.L. Climate Change Can Impair Bacterial Pathogen Defences in Sablefish via Hypoxia-Mediated Effects on Adaptive Immunity. Dev. Comp. Immunol. 2024, 156, 105161. [Google Scholar] [CrossRef] [PubMed]
- Soto-Dávila, M.; Rodríguez-Cornejo, T.; Benito, V.W.; Rodríguez-Ramos, T.; Mahoney, G.; Supinski, R.; Heath, G.; Dang, X.; Valle, F.M.; Hurtado, C. Innate and Adaptive Immune Response of Rainbow Trout (Oncorhynchus Mykiss) Naturally Infected with Yersinia Ruckeri. Fish Shellfish Immunol. 2024, 151, 109742. [Google Scholar] [CrossRef]
- Andresen, A.M.S.; Boudinot, P.; Gjøen, T. Kinetics of Transcriptional Response against Poly (I: C) and Infectious Salmon Anemia Virus (ISAV) in Atlantic Salmon Kidney (ASK) Cell Line. Dev. Comp. Immunol. 2020, 110, 103716. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Faheem, M.; Liaqat, I.; Van Doan, H.; Ghosh, K.; Ringø, E. Promising Probiotic Candidates for Sustainable Aquaculture: An Updated Review. Animals 2024, 14, 3644. [Google Scholar] [CrossRef]
- Ji, Z.; Zhu, C.; Zhu, X.; Ban, S.; Yu, L.; Tian, J.; Dong, L.; Wen, H.; Lu, X.; Jiang, M. Dietary Host-Associated Bacillus Subtilis Supplementation Improves Intestinal Microbiota, Health and Disease Resistance in Chinese Perch (Siniperca Chuatsi). Anim. Nutr. 2023, 13, 197–205. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Z.; Gui, Z.; Yang, B.; You, F.; Yang, G.; Zhang, X.; Chang, X.; Meng, X. Supplementation with Akkermansia Muciniphila Improved Intestinal Barrier and Immunity in Zebrafish (Danio Rerio). Fish Shellfish Immunol. 2024, 154, 109935. [Google Scholar] [CrossRef] [PubMed]
- Jang, W.J.; Lee, S.-J.; Jeon, M.-H.; Kim, T.-Y.; Lee, J.M.; Hasan, M.T.; Lee, H.-T.; Park, J.-H.; Lee, B.-J.; Hur, S.W. Characterization of a Bacillus Sp. KRF-7 Isolated from the Intestine of Rockfish and Effects of Dietary Supplementation with Mannan Oligosaccharide in Rockfish Aquaculture. Fish Shellfish Immunol. 2021, 119, 182–192. [Google Scholar] [CrossRef]
- Chan, C.-H.; Chen, L.-H.; Chen, K.-Y.; Chen, I.-H.; Lee, K.-T.; Lai, L.-C.; Tsai, M.-H.; Chuang, E.Y.; Lin, M.-T.; Yan, T.-R. Single-Strain Probiotics Enhance Growth, Anti-Pathogen Immunity, and Resistance to Nocardia Seriolae in Grey Mullet (Mugil Cephalus) via Gut Microbiota Modulation. Anim. Microbiome 2024, 6, 67. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, G.M.; Alvarez-Villagomez, C.S.; Martínez-Porchas, M.; Garibay-Valdez, E.; Sepúlveda-Quiroz, C.A.; Méndez-Marín, O.; Martínez-García, R.; Jesús-Contreras, R.; Alvarez-González, C.A.; De la Rosa-García, S.d.C. The Indigenous Probiotic Lactococcus Lactis PH3-05 Enhances the Growth, Digestive Physiology, and Gut Microbiota of the Tropical Gar (Atractosteus Tropicus) Larvae. Animals 2024, 14, 2663. [Google Scholar] [CrossRef] [PubMed]
- Shija, V.M.; Zhimin, J.; Chen, H.; Amoah, K.; Li, Y.; Ng’onga, L.; Ndandala, C.B.; Zhong, Y.; Masanja, F.; Huang, J. Effects of Dietary Inclusion of Bacillus Amyloliquefaciens AV5 on Growth Performance, Antioxidant Activity, Innate Immune, and Hematological Responses in Nile Tilapia (Oreochromis Niloticus) Reared at Low and High Stocking Densities. Fish Shellfish Immunol. 2025, 156, 110042. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liang, H.; Zhang, J.; Chen, J.; Xu, S.; Zhou, W.; Ding, Q.; Yang, Y.; Zhang, Z.; Yao, Y. Bacillus Subtilis HGCC-1 Improves Growth Performance and Liver Health via Regulating Gut Microbiota in Golden Pompano. Anim. Microbiome 2025, 7, 7. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, M.; Chen, H.; Wei, Y.; Ning, D. Germination-Arrest Bacillus Subtilis Spores as an Oral Delivery Vehicle of Grass Carp Reovirus (GCRV) Vp7 Antigen Augment Protective Immunity in Grass Carp (Ctenopharyngodon Idella). Genes 2020, 11, 1351. [Google Scholar] [CrossRef]
- Wu, Z.; Qi, X.; Qu, S.; Ling, F.; Wang, G. Dietary Supplementation of Bacillus Velezensis B8 Enhances Immune Response and Resistance against Aeromonas Veronii in Grass Carp. Fish Shellfish Immunol. 2021, 115, 14–21. [Google Scholar] [CrossRef]
- Wu, P.S.; Liu, C.H.; Hu, S.Y. Probiotic Bacillus Safensis Npust1 Administration Improves Growth Performance, Gut Microbiota, and Innate Immunity against Streptococcus Iniae in Nile Tilapia (Oreochromis Niloticus). Microorganisms 2021, 9, 2494. [Google Scholar] [CrossRef]
- Tran, N.T.; Liang, H.; Li, J.; Deng, T.; Zhang, M.; Li, S. Health Benefits of Butyrate and Its Producing Bacterium, Clostridium Butyricum, on Aquatic Animals. Fish Shellfish Immunol. Reports 2023, 4, 100088. [Google Scholar]
- Foysal, M.J.; Fotedar, R.; Siddik, M.A.B.; Chaklader, M.R.; Tay, A. Lactobacillus Plantarum in Black Soldier Fly (Hermetica Illucens) Meal Modulates Gut Health and Immunity of Freshwater Crayfish (Cherax Cainii). Fish Shellfish Immunol. 2021, 108, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lam, J.C.W.; Tang, L.; Hu, C.; Liu, M.; Lam, P.K.S.; Zhou, B. Probiotic Modulation of Lipid Metabolism Disorders Caused by Perfluorobutanesulfonate Pollution in Zebrafish. Environ. Sci. Technol. 2020, 54, 7494–7503. [Google Scholar] [CrossRef]
- Hou, X.; Li, W.; Yang, S.; Huang, Y.; Jian, J.; Cai, S. Effects of Oral Immunization with Bacillus Subtilis Displaying Vibrio Harveyi FlgE Protein on the Intestinal Structure and Gut Microbiota of Grouper. Fish Shellfish Immunol. 2025, 160, 110234. [Google Scholar] [CrossRef] [PubMed]
- Yun, L.; Kang, M.; Shen, Y.; Feng, J.; Yang, G.; Zhang, J.; Meng, X.; Chang, X. Dietary Bacillus Velezensis R-71003 and Sodium Gluconate Improve Antioxidant Capacity, Immune Response and Resistance against Aeromonas Hydrophila in Common Carp. Fish Shellfish Immunol. 2023, 139, 108921. [Google Scholar] [CrossRef] [PubMed]
- Prabawati, E.; Hu, S.-Y.; Chiu, S.-T.; Balantyne, R.; Risjani, Y.; Liu, C.-H. A Synbiotic Containing Prebiotic Prepared from a By-Product of King Oyster Mushroom, Pleurotus Eryngii and Probiotic, Lactobacillus Plantarum Incorporated in Diet to Improve the Growth Performance and Health Status of White Shrimp, Litopenaeus Vannamei. Fish Shellfish Immunol. 2022, 120, 155–165. [Google Scholar] [CrossRef]
- Huang, W.; Qu, L.; Gao, P.; Du, G. Bioassay and Whole-Genome Analysis of Bacillus Velezensis FIO1408, a Biocontrol Agent against Pathogenic Bacteria in Aquaculture. Curr. Microbiol. 2023, 80, 354. [Google Scholar] [CrossRef]
- Chiu, S.-T.; Chu, T.-W.; Simangunsong, T.; Ballantyne, R.; Chiu, C.-S.; Liu, C.-H. Probiotic, Lactobacillus Pentosus BD6 Boost the Growth and Health Status of White Shrimp, Litopenaeus Vannamei via Oral Administration. Fish Shellfish Immunol. 2021, 117, 124–135. [Google Scholar] [CrossRef]
- Santos, R.A.; Monteiro, M.; Rangel, F.; Jerusik, R.; Saavedra, M.J.; Carvalho, A.P.; Oliva-Teles, A.; Serra, C.R. Bacillus Spp. Inhibit Edwardsiella Tarda Quorum-Sensing and Fish Infection. Mar. Drugs 2021, 19, 602. [Google Scholar] [CrossRef]
- Roager, L.; Athena-Vasileiadi, D.; Gram, L.; Sonnenschein, E.C. Antagonistic Activity of Phaeobacter Piscinae against the Emerging Fish Pathogen Vibrio Crassostreae in Aquaculture Feed Algae. Appl. Environ. Microbiol. 2024, 90, e01439-23. [Google Scholar] [CrossRef]
- Liang, Q.; Liu, G.; Guo, Z.; Wang, Y.; Xu, Z.; Ren, Y.; Zhang, Q.; Cui, M.; Zhao, X.; Xu, D. Application of Potential Probiotic Strain Streptomyces Sp. SH5 on Anti-Aeromonas Infection in Zebrafish Larvae. Fish Shellfish Immunol. 2022, 127, 375–385. [Google Scholar] [CrossRef]
- Jang, W.J.; Lee, K.-B.; Jeon, M.-H.; Lee, S.-J.; Hur, S.W.; Lee, S.; Lee, B.-J.; Lee, J.M.; Kim, K.-W.; Lee, E.-W. Characteristics and Biological Control Functions of Bacillus Sp. PM8313 as a Host-Associated Probiotic in Red Sea Bream (Pagrus Major) Aquaculture. Anim. Nutr. 2023, 12, 20–31. [Google Scholar] [CrossRef]
- Yang, B.; Song, H.; Hu, R.; Tao, L.; Liang, Z.; Cong, W.; Kang, Y. Weissella Confusa N17 Derived from Loach (Misgurnus Anguillicaudatus) Exhibits Promising for Further Applications in Loach Aquaculture. Probiotics Antimicrob. Proteins 2023, 17, 212–226. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yong, T.; Wei, Z.; Zhang, X.; Li, X.; Qin, J.; Li, J.; Hu, J.; Yang, X.; Gan, L. Engineered Probiotic-Based Personalized Cancer Vaccine Potentiates Antitumor Immunity through Initiating Trained Immunity. Adv. Sci. 2024, 11, 2305081. [Google Scholar] [CrossRef] [PubMed]
- Sheng, S.; Zhang, H.; Li, X.; Chen, J.; Wang, P.; Liang, Y.; Li, C.; Li, H.; Pan, N.; Bao, X. Probiotic-Derived Amphiphilic Exopolysaccharide Self-Assembling Adjuvant Delivery Platform for Enhancing Immune Responses. J. Nanobiotechnology 2024, 22, 267. [Google Scholar] [CrossRef]
- Goncalves, G.; Santos, R.A.; Coutinho, F.; Pedrosa, N.; Curado, M.; Machado, M.; Costas, B.; Bonneville, L.; Serrano, M.; Carvalho, A.P. Oral Vaccination of Fish against Vibriosis Using Spore-Display Technology. Front. Immunol. 2022, 13, 1012301. [Google Scholar] [CrossRef]
- Le Linh, H.; Thu, N.P.A.; Dung, T.T.X.; Van Hau, N.; Nghia, N.H.; Thao, D.T.P. Yeast Cell Surface Displaying VP28 Antigen and Its Potential Application for Shrimp Farming. Appl. Microbiol. Biotechnol. 2021, 105, 6345–6354. [Google Scholar] [CrossRef] [PubMed]
- Netea, M.G.; Joosten, L.A.B.; Latz, E.; Mills, K.H.G.; Natoli, G.; Stunnenberg, H.G.; O’Neill, L.A.J.; Xavier, R.J. Trained Immunity: A Program of Innate Immune Memory in Health and Disease. Science 2016, 352, 427. [Google Scholar] [CrossRef]
- Ma, Y.-H.; Sheng, Y.-D.; Zhang, D.; Liu, J.-T.; Tian, Y.; Li, H.; Li, X.-F.; Li, N.; Sun, P.; Siddiqui, S.A. Acanthopanax Senticosus Cultures Fermented by Lactobacillus Rhamnosus Enhanced Immune Response through Improvement of Antioxidant Activity and Inflammation in Crucian Carp (Carassius Auratus). Microb. Pathog. 2024, 190, 106614. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, H.; Zhang, D.; Guan, Y.; Siddiqui, S.A.; Feng-Shan, X.; Cong, B. Oral Vaccination with Recombinant Lactobacillus Casei Expressing Aeromonas Hydrophila Aha1 against A. Hydrophila Infections in Common Carps. Virulence 2022, 13, 794–807. [Google Scholar] [CrossRef]
- Wang, J.; Gao, M.; Wang, J.; Zeng, Y.; Wang, C.; Cao, X. LGG Promotes Activation of Intestinal ILC3 through TLR2 Receptor and Inhibits Salmonella Typhimurium Infection in Mice. Virulence 2024, 15, 2384553. [Google Scholar] [CrossRef]
- Jin, P.; Sun, F.; Liu, Q.; Wang, Q.; Zhang, Y.; Liu, X. An Oral Vaccine Based on Chitosan/Aluminum Adjuvant Induces Both Local and Systemic Immune Responses in Turbot (Scophthalmus Maximus). Vaccine 2021, 39, 7477–7484. [Google Scholar] [CrossRef] [PubMed]
- Ponce, M.; Zuasti, E.; Reales, E.; Anguís, V.; Fernández-Díaz, C. Evaluation of an Oral DNA Nanovaccine against Photobacteriosis in Solea Senegalensis. Fish Shellfish Immunol. 2021, 117, 157–168. [Google Scholar] [CrossRef]
- Gao, Y.; Huo, X.; Wang, Z.; Yuan, G.; Liu, X.; Ai, T.; Su, J. Oral Administration of Bacillus Subtilis Subunit Vaccine Significantly Enhances the Immune Protection of Grass Carp against GCRV-II Infection. Viruses 2021, 14, 30. [Google Scholar] [CrossRef]
- Yang, Y.-H.; Gao, H.-M.; Yang, Y.-X.; Shan, X.-F.; Sun, W.-W.; Li, M.-H.; Li, R.-M. Enhanced Mucosal Immunity and Protection against Aeromonas Veronii Infection in Crucian Carp via Synergistic Immunization with Bacillus Coagulans and Recombinant Lactobacillus Casei Expressing MshB Gene. Microb. Pathog. 2025, 201, 107385. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Ma, Y.; Wang, Y.; Niu, C.; Liu, Z.; Yao, X.; Jiang, X.; Pan, R.; Jia, S.; Li, D. Oral Probiotic Vaccine Expressing Koi Herpesvirus (KHV) ORF81 Protein Delivered by Chitosan-Alginate Capsules Is a Promising Strategy for Mass Oral Vaccination of Carps against KHV Infection. J. Virol. 2021, 95, 10–1128. [Google Scholar] [CrossRef]
- Sohn, M.-Y.; Jeong, J.-M.; Kang, G.; Woo, W.-S.; Kim, K.-H.; Son, H.-J.; Joo, M.-S.; Park, C.-I. Oral Administration Enhances Directly Mucosal Immune System in Intestine of Olive Flounder (Paralichthys Olivaceus). Dev. Comp. Immunol. 2025, 162, 105262. [Google Scholar] [CrossRef] [PubMed]
- Hoare, R.; Leigh, W.; Limakom, T.; Wongwaradechkul, R.; Metselaar, M.; Shinn, A.P.; Ngo, T.P.H.; Thompson, K.D.; Adams, A. Oral Vaccination of Nile Tilapia (Oreochromis Niloticus) against Francisellosis Elevates Specific Antibody Titres in Serum and Mucus. Fish Shellfish Immunol. 2021, 113, 86–88. [Google Scholar] [CrossRef]
- Song, H.; Zhang, S.; Yang, B.; Liu, Y.; Kang, Y.; Li, Y.; Qian, A.; Yuan, Z.; Cong, B.; Shan, X. Effects of Four Different Adjuvants Separately Combined with Aeromonas Veronii Inactivated Vaccine on Haematoimmunological State, Enzymatic Activity, Inflammatory Response and Disease Resistance in Crucian Carp. Fish Shellfish Immunol. 2022, 120, 658–673. [Google Scholar] [CrossRef]
- Li, Q.-Y.; Xu, M.-M.; Dong, H.; Zhao, J.-H.; Xing, J.-H.; Wang, G.; Yao, J.-Y.; Huang, H.-B.; Shi, C.-W.; Jiang, Y.-L. Lactobacillus Plantarum Surface-Displayed Influenza Antigens (NP-M2) with FliC Flagellin Stimulate Generally Protective Immune Responses against H9N2 Influenza Subtypes in Chickens. Vet. Microbiol. 2020, 249, 108834. [Google Scholar] [CrossRef]
- Yang, B.-T.; Zhao, T.; Li, H.-J.; Liang, Z.-L.; Cong, W.; Kang, Y.-H. Lc-PPG-612-OmpU-CTB: A Promising Oral Vaccine for Protecting Carassius Auratus against Vibrio Mimicus Infection. Fish Shellfish Immunol. 2023, 140, 108973. [Google Scholar] [CrossRef]
- Liang, X.; Liang, J.; Cao, J.; Liu, S.; Wang, Q.; Ning, Y.; Liang, Z.; Zheng, J.; Zhang, Z.; Luo, J. Oral Immunizations with Bacillus Subtilis Spores Displaying VP19 Protein Provide Protection against Singapore Grouper Iridovirus (SGIV) Infection in Grouper. Fish Shellfish Immunol. 2023, 138, 108860. [Google Scholar] [CrossRef]
- Liu, Q.; Huo, X.; Wang, P.; Zhao, F.; Yuan, G.; Yang, C.; Su, J. Lactobacillus Casei Displaying MCP2α and FlaC Delivered by PLA Microspheres Effectively Enhances the Immune Protection of Largemouth Bass (Micropterus Salmoides) against LMBV Infection. Fish Shellfish Immunol. 2024, 153, 109870. [Google Scholar] [CrossRef]
- Alker, A.T.; Farrell, M.V.; Aspiras, A.E.; Dunbar, T.L.; Fedoriouk, A.; Jones, J.E.; Mikhail, S.R.; Salcedo, G.Y.; Moore, B.S.; Shikuma, N.J. A Modular Plasmid Toolkit Applied in Marine Bacteria Reveals Functional Insights during Bacteria-Stimulated Metamorphosis. MBio 2023, 14, e01502-23. [Google Scholar] [CrossRef] [PubMed]
- Wiull, K.; Haugen, L.K.; Eijsink, V.G.H.; Mathiesen, G. CRISPR/Cas9-Mediated Genomic Insertion of Functional Genes into Lactiplantibacillus Plantarum WCFS1. Microbiol. Spectr. 2025, 13, e0202524. [Google Scholar] [CrossRef] [PubMed]
- Raudstein, M.; Peñaranda, M.M.D.; Kjærner-Semb, E.; Grove, S.; Morton, H.C.; Edvardsen, R.B. Generation of IgM+ B Cell-Deficient Atlantic Salmon (Salmo Salar) by CRISPR/Cas9-Mediated IgM Knockout. Sci. Rep. 2025, 15, 3599. [Google Scholar] [CrossRef]
- Elshobary, M.E.; Badawy, N.K.; Ashraf, Y.; Zatioun, A.A.; Masriya, H.H.; Ammar, M.M.; Mohamed, N.A.; Mourad, S.; Assy, A.M. Combating Antibiotic Resistance: Mechanisms, Multidrug-Resistant Pathogens, and Novel Therapeutic Approaches: An Updated Review. Pharmaceuticals 2025, 18, 402. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Zhang, D.-X.; Chen, C.; Kong, L.; Hu, X.-Y.; Shan, X.-F.; Qian, A.-D. Immunization Effect of Recombinant Lactobacillus Casei Displaying Aeromonas Veronii Aha1 with an LTB Adjuvant in Carp. Fish Shellfish Immunol. 2023, 135, 108660. [Google Scholar] [CrossRef]
- Song, H.-C.; Yang, Y.-X.; Lan, Q.-G.; Cong, W. Immunological Effects of Recombinant Lactobacillus Casei Expressing Pilin MshB Fused with Cholera Toxin B Subunit Adjuvant as an Oral Vaccine against Aeromonas Veronii Infection in Crucian Carp. Fish Shellfish Immunol. 2023, 139, 108934. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Mann, D. The Synergic Effect of Gut-Derived Probiotic Bacillus Cereus SL1 and Ocimum Sanctum on Growth, Intestinal Histopathology, Innate Immunity, and Expression of Enzymatic Antioxidant Genes in Fish, Cirrhinus Mrigala (Hamilton, 1822). Probiotics Antimicrob. Proteins 2023, 17, 271–291. [Google Scholar] [CrossRef]
- Mensah, D.D.; Morales-Lange, B.; Rocha, S.D.C.; Øverland, M.; Kathiresan, P.; Hooft, J.M.; Press, C.M.; Sørum, H.; Mydland, L.T. Paecilomyces Variotii Improves Growth Performance and Modulates Immunological Biomarkers and Gut Microbiota in Vaccinated Atlantic Salmon Pre-Smolts. Fish Shellfish Immunol. 2025, 160, 110223. [Google Scholar] [CrossRef]
- Cano-Lozano, J.A.; Diaz, L.M.V.; Bolivar, J.F.M.; Hume, M.E.; Pardo, R.Y.R. Probiotics in Tilapia (Oreochromis Niloticus) Culture: Potential Probiotic Lactococcus Lactis Culture Conditions. J. Biosci. Bioeng. 2022, 133, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Soriano, B.; Hafez, A.I.; Naya-Català, F.; Moroni, F.; Moldovan, R.A.; Toxqui-Rodríguez, S.; Piazzon, M.C.; Arnau, V.; Llorens, C.; Pérez-Sánchez, J. SAMBA: Structure-Learning of Aquaculture Microbiomes Using a Bayesian Approach. Genes 2023, 14, 1650. [Google Scholar] [CrossRef]
- Sha, H.-N.; Lu, Y.-M.; Zhan, P.-P.; Chen, J.; Qiu, Q.-F.; Xiong, J.-B. Beneficial Effects of Probiotics on Litopenaeus Vannamei Growth and Immune Function via the Recruitment of Gut Rhodobacteraceae Symbionts. Zool. Res. 2025, 46, 388–400. [Google Scholar] [CrossRef] [PubMed]
- Sutanti, S.; Sukenda, S.; Widanarni, W.; Alimuddin, A.; Aliah, R.S. Novel Indigenous Probiotic Isolated from the Healthy Pacific White Shrimp Litopenaeus Vannamei Intestine in Differing Stages Based on Metagenomic and Screening Approaches. Fish Shellfish Immunol. 2024, 151, 109678. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shu, Y.; Sun, Y.; Zeng, Q.; Zhang, W.; Bao, Z.; Ding, W. Acute Nitrite Exposure Causes Gut Microbiota Dysbiosis and Proliferation of Pathogenic Photobacterium in Shrimp. Ecotoxicol. Environ. Saf. 2024, 283, 116829. [Google Scholar] [CrossRef]
- Omar, A.A.; Assar, D.H.; Shukry, M.; El-Ezz, A.A.; Farrag, F.A.; Abd El-Aziz, W.E.; Moustafa, E.M. Impact of Ecobiol Plus® Feed Additive on Growth Performance, Physiological Response, Oxidative Status and Immunological Status of Nile Tilapia (Oreochromis Niloticus) Fingerlings Challenged with Aeromonas Hydrophila. BMC Vet. Res. 2025, 21, 1–16. [Google Scholar] [CrossRef]
- Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; Bastos, M.D.L.; Bories, G.; Chesson, A.; Cocconcelli, P.S.; Flachowsky, G.; Gropp, J.; et al. Safety and Efficacy of Bacillus Subtilis DSM 28343 as a Feed Additive for Piglets. EFSA J. 2018, 16, e05221. [Google Scholar]
- Hammer, A.J.; Gaulke, C.A.; Garcia-Jaramillo, M.; Leong, C.; Morre, J.; Sieler, M.J., Jr.; Stevens, J.F.; Jiang, Y.; Maier, C.S.; Kent, M.L. Gut Microbiota Metabolically Mediate Intestinal Helminth Infection in Zebrafish. Msystems 2024, 9, e00545-24. [Google Scholar] [CrossRef]
- He, W.; Liu, Y.; Zhang, W.; Zhao, Z.; Bu, X.; Sui, C.; Pan, S.; Yao, C.; Tang, Y.; Mai, K. Effects of Dietary Supplementation with Heat-Killed Lactobacillus Acidophilus on Growth Performance, Digestive Enzyme Activity, Antioxidant Capacity, and Inflammatory Response of Juvenile Large Yellow Croaker (Larimichthys Crocea). Fish Shellfish Immunol. 2024, 151, 109651. [Google Scholar] [CrossRef]
- Qiu, H.; Huang, L.; Wang, H.; Tao, C.; Ran, Z.; Xu, J.; Sun, H.; Wang, P. Effects of Lactobacillus Acidophilus AC on the Growth, Intestinal Flora and Metabolism of Zebrafish (Danio Rerio). Fish Shellfish Immunol. 2024, 149, 109570. [Google Scholar] [CrossRef]
- See, S.A.; Bhassu, S.; Tang, S.S.; Yusoff, K. Newly Developed MRNA Vaccines Induce Immune Responses in Litopenaeus Vannamei Shrimps during Primary Vaccination. Dev. Comp. Immunol. 2025, 162, 105264. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.R.; Kamilya, D.; Choudhury, T.G.; Tripathy, P.S.; Rathore, G. Deciphering the Probiotic Potential of Bacillus Amyloliquefaciens COFCAU_P1 Isolated from the Intestine of Labeo Rohita through in Vitro and Genetic Assessment. Probiotics Antimicrob. Proteins 2021, 13, 1572–1584. [Google Scholar] [CrossRef]
- Wang, Q.; Fan, D.; Hu, Y.; Liu, H.; Tan, B.; Xie, S.; Chen, Q. Effects of Supplementation with Freeze-Dried Clostridium Butyricum Powder after Replacement of Fishmeal with Cottonseed Protein Concentrate on Growth Performance, Immune Response, and Intestinal Microbiota of Litopenaeus Vannamei. BMC Vet. Res. 2024, 20, 519. [Google Scholar] [CrossRef] [PubMed]
- Abun, A.; Rusmana, D.; Haetami, K.; Widjastuti, T. Evaluation of the Nutritional Value of Fermented Pangasius Fish Waste and Its Potential as a Poultry Feed Supplement. Vet. World 2025, 18, 355. [Google Scholar] [CrossRef]
- Gill, J.M.; Hussain, S.M.; Ali, S.; Ghafoor, A.; Adrees, M.; Nazish, N.; Naeem, A.; Naeem, E.; Alshehri, M.A.; Rashid, E. Fish Waste Biorefinery: A Novel Approach to Promote Industrial Sustainability. Bioresour. Technol. 2025, 419, 132050. [Google Scholar] [CrossRef]
- Vázquez, J.A.; Durán, A.I.; Menduíña, A.; Nogueira, M. Biotechnological Valorization of Food Marine Wastes: Microbial Productions on Peptones Obtained from Aquaculture by-Products. Biomolecules 2020, 10, 1184. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-T.; Hung, Y.-C.; Chen, L.-H.; Lee, K.-T.; Han, Y.-S. Effects of adding Bacillus subtilis natto NTU-18 in paste feed on growth, intestinal morphology, gastrointestinal microbiota diversity, immunity, and disease resistance of Anguilla japonica glass eels. Fish Shellfish. Immunol. 2024, 149, 109556. [Google Scholar] [CrossRef]
- Harshitha, M.; D’souza, R.; Akshay, S.D.; Nayak, A.; Disha, S.; Aditya, V.; Akshath, U.S.; Dubey, S.; Munang’andu, H.M.; Chakraborty, A.; et al. Oral Administration of Recombinant Outer Membrane Protein A-Based Nanovaccine Affords Protection against Aeromonas Hydrophila in Zebrafish. World J. Microbiol. Biotechnol. 2024, 40, 250. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tayyab, M.; Islam, W.; Waqas, W.; Zhang, Y. Probiotic–Vaccine Synergy in Fish Aquaculture: Exploring Microbiome-Immune Interactions for Enhanced Vaccine Efficacy. Biology 2025, 14, 629. https://doi.org/10.3390/biology14060629
Tayyab M, Islam W, Waqas W, Zhang Y. Probiotic–Vaccine Synergy in Fish Aquaculture: Exploring Microbiome-Immune Interactions for Enhanced Vaccine Efficacy. Biology. 2025; 14(6):629. https://doi.org/10.3390/biology14060629
Chicago/Turabian StyleTayyab, Muhammad, Waqar Islam, Waqas Waqas, and Yueling Zhang. 2025. "Probiotic–Vaccine Synergy in Fish Aquaculture: Exploring Microbiome-Immune Interactions for Enhanced Vaccine Efficacy" Biology 14, no. 6: 629. https://doi.org/10.3390/biology14060629
APA StyleTayyab, M., Islam, W., Waqas, W., & Zhang, Y. (2025). Probiotic–Vaccine Synergy in Fish Aquaculture: Exploring Microbiome-Immune Interactions for Enhanced Vaccine Efficacy. Biology, 14(6), 629. https://doi.org/10.3390/biology14060629