water-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5111 KB  
Article
Water Governance for Climate-Resilient Agriculture in Mediterranean Countries
by Georgia Sismani, Vassilios Pisinaras and Georgios Arampatzis
Water 2024, 16(8), 1103; https://doi.org/10.3390/w16081103 - 12 Apr 2024
Cited by 6 | Viewed by 2110
Abstract
Effective water governance is the key to achieving water security and sustainable water management. This study promotes water efficiency and supports the shift towards climate-resilient agriculture in Mediterranean countries through the development and implementation of water management adaptation strategies in three Farmers’ Organizations [...] Read more.
Effective water governance is the key to achieving water security and sustainable water management. This study promotes water efficiency and supports the shift towards climate-resilient agriculture in Mediterranean countries through the development and implementation of water management adaptation strategies in three Farmers’ Organizations (F.ORs) located in Mediterranean areas. An integrated water governance scheme is presented, which can be applied at the F.OR level for a more effective implementation of the water management adaptation strategy. The proposed water governance scheme has been adopted by three F.ORs (two in Crete, Greece, and one in Basilicata, Italy). The water management system that is developed as a tool for the implementation is presented, and the lessons learnt during the implementation are discussed. Experience from the pilot implementation of the proposed strategy in the three participating F.ORs indicated that systematic monitoring and evaluation of the strategy can increase the implementation efficiency and save resources. Moreover, the significance of internal dissemination and transparency was highlighted. The result of this study is the proposed integrated water governance scheme, which constitutes a valuable tool for F.ORs’ adaptation to climate change in terms of water efficiency. Full article
Show Figures

Figure 1

13 pages, 4914 KB  
Article
The Removal of Phosphorus from Wastewater Using a Sewage Sludge Biochar: A Column Study
by Tomas Januševičius, Aušra Mažeikienė, Kateryna Stepova, Vaidotas Danila and Dainius Paliulis
Water 2024, 16(8), 1104; https://doi.org/10.3390/w16081104 - 12 Apr 2024
Cited by 7 | Viewed by 2887
Abstract
This scientific study investigated the adsorption capabilities of biochar samples derived from municipal sewage sludge pellets. Sewage sludge was pyrolyzed at various temperatures (400, 500, and 600 °C), and the biochar’s properties, including specific surface area, pore volume, and pore size distribution, were [...] Read more.
This scientific study investigated the adsorption capabilities of biochar samples derived from municipal sewage sludge pellets. Sewage sludge was pyrolyzed at various temperatures (400, 500, and 600 °C), and the biochar’s properties, including specific surface area, pore volume, and pore size distribution, were assessed. The results indicate that the sewage sludge biochar samples are mesoporous materials with significant potential for good adsorption performance. Despite showing a decrease in specific surface area compared to that achieved with pyrolysis at 400 °C, samples pyrolyzed at 600 °C demonstrated an increase in mesopore surface area, enhancing their adsorption potential. Two filtration experiments, conducted at a flow rate of 8 mL/min, revealed that the column containing sewage sludge pyrolyzed at 600 °C retained phosphorus the most effectively during the first and second experiments (with retention efficiencies of 87% and 78%, respectively). The study concludes that municipal sewage sludge biochar could be a promising material for the removal of phosphorus from wastewater and represents a viable solution for sustainable environmental development. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

18 pages, 6522 KB  
Article
Suspended Sediment Source and Transport Mechanisms in a Himalayan River
by Sanyam Ghimire, Umesh Singh, Krishna Kanta Panthi and Pawan Kumar Bhattarai
Water 2024, 16(7), 1063; https://doi.org/10.3390/w16071063 - 7 Apr 2024
Cited by 8 | Viewed by 4344
Abstract
The process of estimating sediment load has been a daunting issue in hydraulics and the water resource field. Several methods exist for predicting the sediment load in a catchment or river, but the majority of these methods are empirical and depend on the [...] Read more.
The process of estimating sediment load has been a daunting issue in hydraulics and the water resource field. Several methods exist for predicting the sediment load in a catchment or river, but the majority of these methods are empirical and depend on the specific location where they are used. Understanding the underlying mechanism of sediment generation and its transport in connection with precipitation, topography, and subsurface conditions to characterize its process is helpful for determining the sediment load in a river. For this purpose, we analyzed the daily suspended sediment data measured for 8 years at the headworks of the Kabeli A hydropower project in the Kabeli River, which originates from the Himalayan region. The analyses show that the suspended sediment concentration (SSC) varies in an orderly manner over time and asynchronously between seasons with respect to the river discharge. Clockwise hysteresis is observed in the yearly plots between the SSC and river discharge. The hysteresis becomes narrower when compared with the direct runoff obtained from a digital filtering algorithm and, even more so with the direct runoff from the hydrological model SWAT. The analysis shows that the sediment concentration is controlled not only by the total discharge in the river but also by the contribution of ground water to the river discharge, indicating that the total discharge alone cannot reflect the seasonal variation in SSC. It is inferred that the river is supply-limited and the hillslope is transport-limited with respect to sediment sources. The SWAT model suggests that the base flow contribution to the total river discharge is 78%. Here, we present a method for constructing the suspended sediment rating curve by comparing the direct runoff with the sediment concentration. The deduced sediment rating curve captures 84.51% of the total sediment load over the study period in the Kabeli River. This method may potentially be used in similar catchments with supply-limited rivers and transport-limited hillslopes. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

25 pages, 2862 KB  
Article
Monitoring of Microplastics in Water and Sediment Samples of Lakes and Rivers of the Akmola Region (Kazakhstan)
by Natalya S. Salikova, Javier Rodrigo-Ilarri, Lyudmila A. Makeyeva, María-Elena Rodrigo-Clavero, Zhulduz O. Tleuova and Anar D. Makhmutova
Water 2024, 16(7), 1051; https://doi.org/10.3390/w16071051 - 5 Apr 2024
Cited by 13 | Viewed by 4630
Abstract
This paper provides a detailed description of the findings and methodology related to the monitoring of microplastics in three lakes and one river of the Akmola Region in Kazakhstan. The concentration of microplastic particles and the analysis of water and sediment quality of [...] Read more.
This paper provides a detailed description of the findings and methodology related to the monitoring of microplastics in three lakes and one river of the Akmola Region in Kazakhstan. The concentration of microplastic particles and the analysis of water and sediment quality of the Yesil River and Kopa, Zerendinskoye, and Borovoe lakes have been analyzed. A total of 64 water samples were collected across the spring, summer, and autumn seasons, with subsequent analysis revealing a seasonal increase in microplastic concentrations. The average microplastic content ranged from 1.2 × 10−1 particles/dm3 in spring to 4.5 × 10−1 particles/dm3 in autumn. Lakes exhibited higher concentrations compared to the Yesil River. Correlation analysis highlighted a connection between microplastic content and turbidity, particularly notable during the spring season. Analysis of sediments revealed a decrease in microplastic concentrations from the coastal zone toward open waters sediments. Microplastic fibers were predominant in sediments (69.6%), followed by fragments (19.1%), films (7.4%), and granules (3.9%). Larger particles (>500 µm) were found in beach sediments, constituting an average of 40.5% of the total plastics found. This study contributes valuable insights into the spatial and temporal distribution of microplastics, emphasizing the need for ongoing monitoring and management strategies to address this environmental concern. Full article
(This article belongs to the Topic Microplastics Pollution)
Show Figures

Figure 1

20 pages, 3475 KB  
Article
Alterations in Hydrological Responses under Changing Climate and Land Use/Land Cover across Contrasting Agroecological Environments: A Case Study on the Chemoga Watershed in the Upper Blue Nile Basin, Ethiopia
by Taye Minichil Meshesha, Atsushi Tsunekawa, Nigussie Haregeweyn, Mitsuru Tsubo, Ayele Almaw Fenta, Mulatu Liyew Berihun, Arega Mulu, Ashebir Sewale Belay, Dagnenet Sultan, Kindiye Ebabu, Tadesual Asamin Setargie, Samuel Berihun Kassa, Yoseph Buta Hailu and Takeshi Abe
Water 2024, 16(7), 1037; https://doi.org/10.3390/w16071037 - 4 Apr 2024
Cited by 5 | Viewed by 2683
Abstract
We analyzed hydrological responses to changing climate and land use/land cover (LULC) for the past (1985–2020) and future (2021–2080) in the Chemoga watershed of the Upper Blue Nile Basin. The watershed comprises four agroecological environments: Moist Kolla, Moist Weyna Dega, Moist Dega, and [...] Read more.
We analyzed hydrological responses to changing climate and land use/land cover (LULC) for the past (1985–2020) and future (2021–2080) in the Chemoga watershed of the Upper Blue Nile Basin. The watershed comprises four agroecological environments: Moist Kolla, Moist Weyna Dega, Moist Dega, and Wet Wurch. Past and projected LULC changes under business-as-usual (BAU) and land conservation (LC) scenarios were utilized. Climate projections from 2021 to 2080, under two Shared Socioeconomic Pathways (SSP2-4.5 and SSP5-8.5), were downscaled from Global Climate Models. Utilizing the Soil and Water Analysis Tool, we assessed impacts on mean annual surface runoff (SR) and evapotranspiration (ET). Maximum and minimum temperatures increased significantly in the past and future climate scenarios, with a significant rainfall increase observed under SSP5-8.5. Historical trends revealed a 16.6% increase in SR and 7% in ET from 1983–2002 to 2003–2020. Under BAU LULC with the SSP2-4.5 (SSP5-8.5) climate scenario, SR increased by 24% (26.1%) and ET by 3.1% (4.4%) from 2003–2020 to 2021–2050, followed by a subsequent SR rise of 13.7% (14.0%) and ET increase of 6.0% (5.7%) from 2021–2050 to 2051–2080. Conversely, the LC LULC with SSP2-4.5 (SSP5-8.5) resulted in a 5.3% (4.2%) SR decrease and ET increase of 9.7% (11.3%) from 2003–2020 to 2021–2050 and a further SR decrease of 1% (0.7%) and 6.1% (6.9%) ET increase from 2021–2050 to 2051–2080. The Moist Kolla agroecology experienced the highest SR increase due to vegetation clearances for commercial farming. Meanwhile, the LC scenario indicated substantial decreases in SR and marginal increases in ET in the Moist Weyna Dega agroecology due to forest restoration on steep slopes. Overall, SR showed greater sensitivity to LULC changes, while ET was more responsive to climate changes. The results emphasize considering diverse agroecological contexts for effective water resource management under changing climate and LULC scenarios. Full article
Show Figures

Figure 1

15 pages, 1745 KB  
Review
The Impact of Climate Change on the Failure of Water Supply Infrastructure: A Bibliometric Analysis of the Current State of Knowledge
by Jakub Żywiec, Dawid Szpak, Katarzyna Wartalska and Martyna Grzegorzek
Water 2024, 16(7), 1043; https://doi.org/10.3390/w16071043 - 4 Apr 2024
Cited by 8 | Viewed by 3905
Abstract
With ongoing climate change, new threats appear to the operation of water supply systems (WSSs), which are related to the amount of available drinking water resources, its quality, the operation of existing water supply infrastructure and changes in consumer behavior. The paper presents [...] Read more.
With ongoing climate change, new threats appear to the operation of water supply systems (WSSs), which are related to the amount of available drinking water resources, its quality, the operation of existing water supply infrastructure and changes in consumer behavior. The paper presents a bibliometric analysis of the state of knowledge on the impact of climate change on the failure of water supply infrastructure. The bibliometric analysis was performed based on the VOSviewer program. The results of the analysis indicate current research trends in this area around the world and allow the identification of strengths and weaknesses. Most research concerns the identification of factors related to the impact of climate on the failure rate of water distribution systems. A popular research topic was also the prediction of water supply network failures, taking into account the impact of climatic factors. The main research gap is determining the impact of climate change on water quality. The acquired knowledge can be used by water companies, policy-makers and other researchers to plan adaptation strategies to climate change, which pose new challenges for the operation of water supply systems. The conducted bibliometric analysis also allowed for identifying research gaps. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

23 pages, 5028 KB  
Article
Modification of Polylactide-poly (butylene adipate-co-terephthalate) (PLA/PBAT) Mixed-Matrix Membranes (MMMs) with Green Banana Peel Additives for Oil Wastewater Treatment
by Maryam Y. Ghadhban, Khalid T. Rashid, Adnan A. Abdulrazak, Israa Taha Ibrahim, Qusay F. Alsalhy, Zaidoon M. Shakor and Ihsan Hamawand
Water 2024, 16(7), 1040; https://doi.org/10.3390/w16071040 - 4 Apr 2024
Cited by 11 | Viewed by 2726
Abstract
Ultrafiltration membranes are often considered a highly efficient technique for purifying oily wastewater. The primary objective of this research was to improve the performance and antifouling properties of PLA/PBAT membranes used in oily wastewater treatment by incorporating banana peel (BP) nanoparticles. Various characterization [...] Read more.
Ultrafiltration membranes are often considered a highly efficient technique for purifying oily wastewater. The primary objective of this research was to improve the performance and antifouling properties of PLA/PBAT membranes used in oily wastewater treatment by incorporating banana peel (BP) nanoparticles. Various characterization techniques, including field emission scanning electron microscopy (FESEM), wettability analysis, pure water flux measurement, porosity assessment, tensile analysis, and FTIR analysis, were employed to describe the prepared membranes. The results of the FT-IR test revealed that BP nanoparticles were effectively integrated into the PLA/PBAT membrane matrix. The contact angle decreased from 73.7° for the pristine PLA/PBAT membrane to 38.99° for the membrane incorporating 0.05 wt.% BP-NPs, indicating that the nanoparticles enhanced the hydrophilic characteristics of the membranes. A similar trend was observed for the pure water flux of PLA/PBAT/BP membranes, suggesting that membranes with a BP-NP concentration of 0.05 weight percent exhibited the highest pure water flux. This improvement can be attributed to the synergistic effects of the nanoparticles. Additionally, the presence of BP-NPs enhanced the mechanical properties of the membranes. Finally, an ultrafiltration system using oily wastewater as feed was employed to evaluate the performance of the prepared membranes. The finding demonstrated that PLA/PBAT/BP membranes exhibited a higher flux and a greater oil removal efficiency of 105.3 L/m2h and 95.2% compared to neat PLA/PBAT membranes (62 L/m2h and 88%), respectively. Full article
(This article belongs to the Special Issue Water Quality Assessment and Modelling)
Show Figures

Figure 1

17 pages, 2170 KB  
Article
Investigation of Used Water Sediments from Ceramic Tile Fabrication
by Simona Elena Avram, Bianca Violeta Birle, Lucian Barbu Tudoran, Gheorghe Borodi and Ioan Petean
Water 2024, 16(7), 1027; https://doi.org/10.3390/w16071027 - 2 Apr 2024
Cited by 20 | Viewed by 2403
Abstract
Used water treatment is one of the most important aspects of environmental protection regarding industrial processes. Particulate matter dispersions affect water parameters; for example, increased pH values such as 10.21 are found for used floor tile water, and values of 10.84 are found [...] Read more.
Used water treatment is one of the most important aspects of environmental protection regarding industrial processes. Particulate matter dispersions affect water parameters; for example, increased pH values such as 10.21 are found for used floor tile water, and values of 10.84 are found for used wall tile water. However, pH decreases to about 9.42 after the sediment filtration process. This influences water turbidity, which is higher for used wall tile water due to its finer suspensions, and it is considerably decreased after the filtration process. Thus, the main aim of the present research is to investigate particulate matter dispersion into the water flows that are involved in ceramic tile technological processes before and after treatment at used water treatment facilities. X-ray diffraction (XRD) coupled with mineralogical optical microscopy (MOM) reveals that waters from wall tiles and floor tiles have similar mineral dispersions, containing mineral particles of quartz (5–50 μm), kaolinite (1–30 μm), and mullite (5–125 μm). Glass particles (having a dark appearance at MOM investigation) were also found in both samples in a size range of 20–55 μm. High-resolution SEM imaging coupled with the EDS elemental analysis confirms the XRD and MOM observations. Water samples collected after treatment at the treatment facility reveal a significant reduction in the particulate matter MOM, evidencing only small traces of quartz, kaolinite, and mullite in a size range of 1–15 μm, with most of the particles being attached to the filters, as confirmed by XRD. Atomic force microscopy (AFM) effectuated on this sample reveals the presence of kaolinite nanoparticles with a tabular–lamellar aspect and sizes ranging from 40 to 90 nm. The obtained results prove the efficacy of the filtering system regarding targeted particulate matters, ensuring water recirculation into the technological processes. The sludge resulting from the filtration process presents with a dense grainy structure of sediment particles containing quartz, mullite, and kaolinite, along with traces of iron hydroxide crystallized as goethite. Therefore, it cannot be reused in the technological flux, as the iron causes glaze staining; but the observed microstructure, along with the mineralogical composition, indicates that it could be used for other applications, such as ecological bricks or plasters, which will be further investigated. Full article
Show Figures

Figure 1

15 pages, 12161 KB  
Article
A Feature Selection Method Based on Relief Feature Ranking with Recursive Feature Elimination for the Inversion of Urban River Water Quality Parameters Using Multispectral Imagery from an Unmanned Aerial Vehicle
by Zijia Zheng, Yizhu Jiang, Qiutong Zhang, Yanling Zhong and Lizheng Wang
Water 2024, 16(7), 1029; https://doi.org/10.3390/w16071029 - 2 Apr 2024
Cited by 13 | Viewed by 2487
Abstract
The timely monitoring of urban water bodies using unmanned aerial vehicle (UAV)-mounted remote sensing technology is crucial for urban water resource protection and management. Addressing the limitations of the use of satellite data in inferring the water quality parameters of small-scale water bodies [...] Read more.
The timely monitoring of urban water bodies using unmanned aerial vehicle (UAV)-mounted remote sensing technology is crucial for urban water resource protection and management. Addressing the limitations of the use of satellite data in inferring the water quality parameters of small-scale water bodies due to their spatial resolution constraints and limited input features, this study focuses on the Zao River in Xi’an City. Leveraging UAV multispectral imagery, a feature selection method based on Relief Feature Ranking with Recursive Feature Elimination (Relief F-RFE) is proposed to determine the quality parameters of the typical urban pollution in water (dissolved oxygen (DO), total nitrogen (TN), turbidity, and chemical oxygen demand (COD). By constructing a potential feature set and utilizing optimal feature combinations, inversion models are developed for the four water quality parameters using three machine learning (ML) algorithms (Random Forest (RF), Support Vector Regression (SVR), Light Gradient Boosting Machine (LightGBM). The inversion accuracies of the different models are compared, and the spatial distribution of the four water quality parameters is analyzed. The results show that the models constructed based on UAV-based multispectral remote sensing imagery perform well in inferring the water quality parameters of the Zao River. The SVR algorithm, based on Relief F-RFE feature selection, achieves a higher accuracy, with RMSE values of 7.19 mg/L, 1.14 mg/L, 3.15 NTU, and 4.28 mg/L, respectively. The methods and conclusions of this study serve as a reference for research on the inversion of water quality parameters in urban rivers. Full article
Show Figures

Figure 1

13 pages, 3336 KB  
Article
Spatial Variations in Microplastics in the Largest Shallow Lake of Central Europe and Its Protecting Wetland Area
by Bence Prikler, Réka Svigruha, Judit Háhn, Péter Harkai, István Fodor, Edit Kaszab, Balázs Kriszt, Gergő Tóth, István Szabó, Zsolt Csenki, Gábor Bordós, Adrienn Micsinai, Brigitta Nyírő-Fekete, Zoltán Palotai, Zsófia Lovász, Zsolt Pirger and Sándor Szoboszlay
Water 2024, 16(7), 1014; https://doi.org/10.3390/w16071014 - 31 Mar 2024
Cited by 7 | Viewed by 2383
Abstract
The concentration of microplastics (MPs) in two important Hungarian freshwater habitats was determined in the size range of 50 μm–1 mm. Lake Balaton (LB) is the largest shallow lake in Central Europe, with a significant role in recreation and tourism. Its main inflow, [...] Read more.
The concentration of microplastics (MPs) in two important Hungarian freshwater habitats was determined in the size range of 50 μm–1 mm. Lake Balaton (LB) is the largest shallow lake in Central Europe, with a significant role in recreation and tourism. Its main inflow, the Zala River, enters the lake through an artificially constructed wetland, the Kis-Balaton Water Protection System and its catchment area (KB), which helps preserve the water quality of the lake. From these two areas, 15 samples were taken with an in situ filtration sampling method. After preparation, the samples were analyzed automatically by FT-IR microscopy. All samples, from both areas, contained MPs; the dominant microplastic (MP) shape was the fragment, while the most frequently polymer types were polyethylene, polypropylene and alkyd. Small MPs were dominant in both areas; around 90% of the MPs were smaller than 500 μm. On average, LB contained more MPs (21.0 ± 12.5 MPs/m3) compared to the KB, which presented an average concentration of MPs of 7.8 ± 5.9 MPs/m3. In the examined areas, two potential MP sources were determined, i.e., treated wastewater and road traffic. The importance of tourism should also be further investigated. Full article
(This article belongs to the Special Issue Contaminants in the Water Environment)
Show Figures

Graphical abstract

15 pages, 2318 KB  
Review
The Importance of Nonconventional Water Resources under Water Scarcity
by Andreas N. Angelakis, George Tchobanoglous, Andrea G. Capodaglio and Vasileios A. Tzanakakis
Water 2024, 16(7), 1015; https://doi.org/10.3390/w16071015 - 31 Mar 2024
Cited by 24 | Viewed by 6258
Abstract
According to FAO, water scarcity is now affecting all five continents and is expected to intensify in the coming years as the water demands of the growing population increase and the impacts of climate variability become more pronounced. The existing unevenness of water [...] Read more.
According to FAO, water scarcity is now affecting all five continents and is expected to intensify in the coming years as the water demands of the growing population increase and the impacts of climate variability become more pronounced. The existing unevenness of water resource availability and insufficient investment in relevant infrastructure have forced the water sector to recognize the importance of nonconventional water resources (NWR) in planning for a sustainable water future. The purpose of this review is to highlight the available and potentially available NWR and to discuss the future application of these water sources. Full article
Show Figures

Figure 1

13 pages, 3655 KB  
Article
Pollution Assessment and Spatial Distribution of Heavy Metals in Surface Waters and Bottom Sediments of the Krzna River (Poland)
by Mariusz Kluska and Joanna Jabłońska
Water 2024, 16(7), 1008; https://doi.org/10.3390/w16071008 - 30 Mar 2024
Cited by 9 | Viewed by 1955
Abstract
Due to their toxicity, lack of bioaccumulation and biodegradability, and ease of binding to sediments, heavy metals are considered the main pollutants of rivers. It is, therefore, necessary to control and monitor these pollutants. The present study analyzed the Krzna River, which flows [...] Read more.
Due to their toxicity, lack of bioaccumulation and biodegradability, and ease of binding to sediments, heavy metals are considered the main pollutants of rivers. It is, therefore, necessary to control and monitor these pollutants. The present study analyzed the Krzna River, which flows in southeastern Poland and has an outlet to the Bug River. Over much of its length, the Bug River forms Poland’s border with Belarus, while its origin is in Ukraine. The main purpose of the conducted research was a qualitative and quantitative analysis of selected heavy metals, i.e., Ni, Pb, Zn, Cd, and Cu, in bottom sediments and surface waters of the Krzna River. The secondary objectives were to evaluate the level of contamination of the studied matrices and identify the sources of pollution. Eighty samples of water and bottom sediments from the Krzna River were collected for the analysis. Due to the varying distribution of metals under the influence of changes in temperature, precipitation, and humidity, the samples were collected in May and August 2023. The average cadmium content in the sediments studied was the same in both May and August, at 0.6 mg/kg. In contrast, the nickel content of the sediments ranged from 4.6 to 6.1 mg/kg in May and from 4.8 to 6.8 in August. Only nickel and cadmium of the five heavy metals tested were present in amounts exceeding the geochemical background value. Analysis of the results indicates that only a minimal amount of heavy metals remain dissolved in the surface waters, and the remainder contaminates the sediments. The average concentrations of metals in the studied bottom sediments and surface waters were as follows: zinc > lead > nickel > copper > cadmium. The content of metals in the studied sediments was not high, but at the same time, their presence above the geochemical background indicates anthropogenic human activity. Any changes in hydrodynamic conditions and various environmental factors may result in the re-release of heavy metals contained in sediments into surface waters. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

17 pages, 4630 KB  
Article
Temporal and Spatial Characteristics of Agricultural Drought Based on the TVDI in Henan Province, China
by Yanbin Li, Xin Wang, Fei Wang, Kai Feng, Hongxing Li, Yuhang Han and Shaodan Chen
Water 2024, 16(7), 1010; https://doi.org/10.3390/w16071010 - 30 Mar 2024
Cited by 8 | Viewed by 1981
Abstract
As a major grain-producing province in China’s Central Plains, Henan Province is severely impacted by drought, making the study of agricultural drought characteristics in the region crucial. Theil–Sen (Sen) trend analysis, the Mann–Kendall (M-K) test and the Hurst index method were used to [...] Read more.
As a major grain-producing province in China’s Central Plains, Henan Province is severely impacted by drought, making the study of agricultural drought characteristics in the region crucial. Theil–Sen (Sen) trend analysis, the Mann–Kendall (M-K) test and the Hurst index method were used to systematically analyze the spatial variation characteristics of agricultural drought based on the Temperature Vegetation Dryness Index (TVDI). The results show that: (1) The drought occurs in central, northwestern and southern Henan on an annual scale. The drought situation will continue to increase in northern, eastern northeastern and central Henan. (2) The drought in spring, summer and winter showed an increasing trend, but the opposite trend was observed in autumn. The increasing trend of drought in each season is mainly distributed in northern, central and eastern Henan. (3) The drought in January, February, April, July, September and December showed an increasing trend, while the drought in the other 6 months showed a decreasing trend. The increase in drought during July and August was not pronounced, while the drought situation in September remained largely unchanged. The distribution of drought across the other months exhibited varying patterns across different regions. Overall, the drought trend in Henan Province is on the rise, displaying distinct seasonal and regional patterns in its temporal and spatial distribution. The results can provide a reference for Henan Province to formulate effective measures of drought resistance and disaster reduction to ensure grain production. Full article
(This article belongs to the Special Issue Drought Monitoring and Risk Assessment)
Show Figures

Figure 1

23 pages, 980 KB  
Review
Process Waters from Hydrothermal Carbonization of Waste Biomasses like Sewage Sludge: Challenges, Legal Aspects, and Opportunities in EU and Germany
by Tommy Ender, Vicky Shettigondahalli Ekanthalu, Haniyeh Jalalipour, Jan Sprafke and Michael Nelles
Water 2024, 16(7), 1003; https://doi.org/10.3390/w16071003 - 29 Mar 2024
Cited by 7 | Viewed by 3843
Abstract
Hydrothermal carbonization (HTC) has developed considerably over the last 15 years and offers a viable alternative for the utilization of municipal and industrial organic waste such as sewage sludge. However, the technology has yet to establish itself as a valorization process for waste [...] Read more.
Hydrothermal carbonization (HTC) has developed considerably over the last 15 years and offers a viable alternative for the utilization of municipal and industrial organic waste such as sewage sludge. However, the technology has yet to establish itself as a valorization process for waste biomasses (2024) and is not yet a recognized state of the art. Nevertheless, the HTC technology could gain greater relevance in the future, especially as an alternative valorization pathway for sewage sludge. During HTC, significant amounts of HTC process water (PW) are produced as a byproduct. The process water is inorganically and organically polluted and has to be treated, as it would be a burden on water bodies and thus on the environment if left untreated. In the EU and specifically Germany, industrial wastewater producers like HTC-plant operators are obliged to treat their industrial wastewater before discharging it into the environment. In addition to a large amount of PW and its treatment to the required limits, the organic load and possible persistent and toxic substances pose major challenges for plant operators. Many proven processes from industrial wastewater treatment were transferred for the treatment of PW. Treatment of the PW in a manner that is industrially viable, economically viable, and efficient is crucial for the effective commercialization of HTC technology. In this, the challenges and opportunities of PW composition, management, and treatment, including legal aspects, are mainly discussed. Therefore, the legal framework in the European Union and specifically for Germany will be elaborated. Furthermore, different treatment pathways are also highlighted. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

26 pages, 9512 KB  
Article
Post-Analysis of Daniel Extreme Flood Event in Thessaly, Central Greece: Practical Lessons and the Value of State-of-the-Art Water-Monitoring Networks
by Elias Dimitriou, Andreas Efstratiadis, Ioanna Zotou, Anastasios Papadopoulos, Theano Iliopoulou, Georgia-Konstantina Sakki, Katerina Mazi, Evangelos Rozos, Antonios Koukouvinos, Antonis D. Koussis, Nikos Mamassis and Demetris Koutsoyiannis
Water 2024, 16(7), 980; https://doi.org/10.3390/w16070980 - 28 Mar 2024
Cited by 34 | Viewed by 7020
Abstract
Storm Daniel initiated on 3 September 2023, over the Northeastern Aegean Sea, causing extreme rainfall levels for the following four days, reaching an average of about 360 mm over the Peneus basin, in Thessaly, Central Greece. This event led to extensive floods, with [...] Read more.
Storm Daniel initiated on 3 September 2023, over the Northeastern Aegean Sea, causing extreme rainfall levels for the following four days, reaching an average of about 360 mm over the Peneus basin, in Thessaly, Central Greece. This event led to extensive floods, with 17 human lives lost and devastating environmental and economic impacts. The automatic water-monitoring network of the HIMIOFoTS National Research Infrastructure captured the evolution of the phenomenon and the relevant hydrometeorological (rainfall, water stage, and discharge) measurements were used to analyse the event’s characteristics. The results indicate that the average rainfall’s return period was up to 150 years, the peak flow close to the river mouth reached approximately 1950 m3/s, and the outflow volume of water to the sea was 1670 hm3. The analysis of the observed hydrographs across Peneus also provided useful lessons from the flood-engineering perspective regarding key modelling assumptions and the role of upstream retentions. Therefore, extending and supporting the operation of the HIMIOFoTS infrastructure is crucial to assist responsible authorities and local communities in reducing potential damages and increasing the socioeconomic resilience to natural disasters, as well as to improve the existing knowledge with respect to extreme flood-simulation approaches. Full article
Show Figures

Figure 1

23 pages, 5738 KB  
Article
Socio-Economic Indicators for Water Management in the South-West Europe Territory: Sectorial Water Productivity and Intensity in Employment
by Beatriz Larraz, Noelia García-Rubio, Matías Gámez, Sabine Sauvage, Roxelane Cakir, Mélanie Raimonet and José Miguel Sánchez Pérez
Water 2024, 16(7), 959; https://doi.org/10.3390/w16070959 - 26 Mar 2024
Cited by 6 | Viewed by 2118
Abstract
Given the need for water use to be a crucial consideration in sustainable development, an adequate water allocation system across economic sectors is essential, especially in the face of increasing seasonal and perennial water scarcity. In an attempt to facilitate a socially and [...] Read more.
Given the need for water use to be a crucial consideration in sustainable development, an adequate water allocation system across economic sectors is essential, especially in the face of increasing seasonal and perennial water scarcity. In an attempt to facilitate a socially and economically efficient adaptation to the climate emergency, we propose a set of eleven socio-economic indicators to analyze the current water management. This set of indicators could help to quantify the interrelationship between water use and its economic perspective, as well as its social perspective through its impact on employment. Any demand for water not only includes the direct use of water but also its indirect use, referred to as virtual water. This is the water indirectly used through the other inputs in the production process (input–output methodology). These indicators are evaluated in the South-West Europe territory where, in light of increasing water scarcity, there is a need to orientate water allocation toward employment with less intensive water use, to more water productivity and to less environmental impacts. The results at river basin scales show that water use is more productive in the tertiary than in the secondary and primary sectors. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Graphical abstract

24 pages, 2086 KB  
Review
Biological Treatment of Nitroaromatics in Wastewater
by Swati Gupta and Zeev Ronen
Water 2024, 16(6), 901; https://doi.org/10.3390/w16060901 - 20 Mar 2024
Cited by 13 | Viewed by 4189
Abstract
Nitroaromatic compounds (NACs), which are widely used in pesticides, explosives, dyes, and pharmaceuticals, include nitrobenzene, nitrotoluenes, nitrophenols, and nitrobenzoates. They are also significant industrial pollutants in the environment. These substances, as well as their derivatives, frequently have toxic or mutagenic properties. Wastewater containing [...] Read more.
Nitroaromatic compounds (NACs), which are widely used in pesticides, explosives, dyes, and pharmaceuticals, include nitrobenzene, nitrotoluenes, nitrophenols, and nitrobenzoates. They are also significant industrial pollutants in the environment. These substances, as well as their derivatives, frequently have toxic or mutagenic properties. Wastewater containing nitroaromatic compounds can be effectively managed by using biological treatment methods that are accessible, cost-effective, and environmentally friendly. This review highlights the latest developments in biological treatment systems for removing NACs from wastewater. The large-scale implementation of biological treatment systems will be facilitated by future studies that focus on identifying the best operational methods and that determine how co-pollutants impact the removal of NACs from wastewater. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

13 pages, 7368 KB  
Article
Immobilization of Horseradish Peroxidase and Myoglobin Using Sodium Alginate for Treating Organic Pollutants
by Xinyu Wang, Hossein Ghanizadeh, Shoaib Khan, Xiaodan Wu, Haowei Li, Samreen Sadiq, Jiayin Liu, Huimin Liu and Qunfeng Yue
Water 2024, 16(6), 848; https://doi.org/10.3390/w16060848 - 15 Mar 2024
Cited by 12 | Viewed by 3290
Abstract
Removing organic pollutants from wastewater is crucial to prevent environmental contamination and protect human health. Immobilized enzymes are increasingly being explored for wastewater treatment due to their specific catalytic activities, reusability, and stability under various environmental conditions. Peroxidases, such as horseradish peroxidase (HRP) [...] Read more.
Removing organic pollutants from wastewater is crucial to prevent environmental contamination and protect human health. Immobilized enzymes are increasingly being explored for wastewater treatment due to their specific catalytic activities, reusability, and stability under various environmental conditions. Peroxidases, such as horseradish peroxidase (HRP) and myoglobin (Mb), are promising candidates for immobilized enzymes utilized in wastewater treatment due to their ability to facilitate the oxidation process of a wide range of organic molecules. However, the properties of the carrier and support materials greatly influence the stability and activity of immobilized HRP and Mb. In this research, we developed immobilized HRP and Mb using support material composed of sodium alginate and CaCl2 as carriers and glutaraldehyde as a crosslinking agent. Following this, the efficacy of immobilized HRP and Mb in removing aniline, phenol, and p-nitrophenol was assessed. Both immobilized enzymes removed all three organic pollutants from an aqueous solution, but Mb was more effective than HRP. After being immobilized, both enzymes became more resilient to changes in temperature and pH. Both immobilized enzymes retained their ability to eliminate organic pollutants through eight treatment cycles. Our study uncovered novel immobilized enzyme microspheres and demonstrated their successful application in wastewater treatment, paving the way for future research. Full article
(This article belongs to the Special Issue Advanced Biotechnologies for Water and Wastewater Treatment)
Show Figures

Figure 1

20 pages, 2317 KB  
Article
How Environmental Regulation Affects Rural Residents’ Willingness to Pay for Sustainable Domestic Sewage Treatment: Mediating and Interaction Effects
by Jian Jiao, Zihong Yang, Boyang Shi, Thomas Dogot, Hossein Azadi, Ke Xu and Changbin Yin
Water 2024, 16(5), 761; https://doi.org/10.3390/w16050761 - 2 Mar 2024
Cited by 7 | Viewed by 2259
Abstract
Exploring the construction of effective payment mechanisms for rural residents could break the dilemma of the value of a single investment by the government in environmental governance and promote the process of sustainable rural domestic sewage treatment (RDST). The effects of environmental regulations [...] Read more.
Exploring the construction of effective payment mechanisms for rural residents could break the dilemma of the value of a single investment by the government in environmental governance and promote the process of sustainable rural domestic sewage treatment (RDST). The effects of environmental regulations have been roughly approved; however, their influence mechanisms on rural residents’ willingness to pay (WTP) and payment level for sustainable RDST have not been fully revealed. Based on a database of 744 respondents, an integrated model was developed to verify the heterogeneous effects of three environmental regulations on rural residents’ WTP and further explore their interaction effects and impact mechanisms. In addition, there is an urgent necessity to explore the effectiveness of implementing different combinations of environmental regulations. Our results indicated that, firstly, the guiding regulation and incentive regulation promoted rural residents’ WTP and payment level, whereas the binding regulation had a limited impact on individuals. Secondly, rural residents’ cognition mediated the effect of the environmental regulations on their WTP and payment level. Lastly, the guiding and incentive regulations showed a substitution relationship, while both guiding and binding regulations as well as incentive and binding regulations revealed a complementary relationship. The implications of these results indicate the importance of strengthening the public attention on the environmental and health hazards of rural domestic sewage and effectively raising rural residents’ environmental cognition and environmental protection awareness, thereby increasing their WTP and payment level for sustainable RDST. This study provides credible references and recommendations for environmental regulations’ formulation and policy optimization for RDST, as well as for the construction of payment systems for rural residents, and inspiration for rural environment management in other developing countries. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

19 pages, 543 KB  
Article
Decolonizing Indigenous Drinking Water Challenges and Implications: Focusing on Indigenous Water Governance and Sovereignty
by Margot Hurlbert, John Bosco Acharibasam, Ranjan Datta, Sharon Strongarm and Ethel Starblanket
Water 2024, 16(5), 748; https://doi.org/10.3390/w16050748 - 1 Mar 2024
Cited by 10 | Viewed by 12581
Abstract
Indigenous Peoples in Canada have shown great strength and resilience in maintaining their cultures and ways of life to date in the face of settler colonialism. Centering the Water crises within Indigenous sovereignty and self-determination, we explore the impacts these crises have on [...] Read more.
Indigenous Peoples in Canada have shown great strength and resilience in maintaining their cultures and ways of life to date in the face of settler colonialism. Centering the Water crises within Indigenous sovereignty and self-determination, we explore the impacts these crises have on community members. Particularly, the continuous failure of the Canadian government to end the Water crises in remote Indigenous communities, Star Blanket Cree Nation, is investigated in this paper. What implications have these Water governance gaps had on Indigenous Peoples’ sovereignty and self-determination? We adopted an Indigenist theoretical framework to guide the study. Additionally, a community-based participatory research approach was adopted. To achieve our research goals of investigating the implications of the current Water crises for Indigenous sovereignty and self-determination, specific methods of sharing circles were used to gather knowledge from community members, Elders, and knowledge keepers. The research findings strongly highlight the strength and resilience shown by remote Indigenous communities in the face of the current Water crises and continuous government failure. Solving the current Water crises will involve remote Indigenous communities taking charge of their own Water governance through Indigenous-led Water governance systems. Additionally, taking steps to rebuild trust through genuine reconciliation will be key. Therefore, listening to remote Indigenous communities and taking collaborative action are fundamental. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

24 pages, 6231 KB  
Article
Removal of Chromium (VI) from Water Using Orange peel as the Biosorbent: Experimental, Modeling, and Kinetic Studies on Adsorption Isotherms and Chemical Structure
by Amel Khalfaoui, Abderrezzaq Benalia, Zineb Selama, Amira Hammoud, Kerroum Derbal, Antonio Panico and Antonio Pizzi
Water 2024, 16(5), 742; https://doi.org/10.3390/w16050742 - 29 Feb 2024
Cited by 19 | Viewed by 4161
Abstract
The present work aims to assess the effectiveness and efficiency of orange peels as a low-cost biosorbent for removing Cr(VI) from an aqueous solution by the biosorbent process. The orange peels as adsorbent was characterized using different methods, such as FTIR, pHpzc [...] Read more.
The present work aims to assess the effectiveness and efficiency of orange peels as a low-cost biosorbent for removing Cr(VI) from an aqueous solution by the biosorbent process. The orange peels as adsorbent was characterized using different methods, such as FTIR, pHpzc, equilibrium pH, TGA, XRD, SEM, and (BET). The tests were conducted in the batch mode, and the effects of different parameters, such as the pH, dosage of the bioadsorbent, influent Cr(VI), and time, on the biosorption of Cr(VI) were investigated. The adsorption kinetics proved that a contact time of 90 min resulted in the highest (approximately 97.8%) Cr(VI) removal, with an adsorption capacity of 4.96 mg/g. Moreover, the increase in the biosorbent dosage (from 1 to 10 g/L) resulted in the enhancement in the Cr(VI) removal effectiveness. Moreover, the pH of the solution also affected significantly the effectiveness of the removal. The tests were conducted under acidic pH solution conditions, and the prediction of the pH value at a zero charge (pH pzc) was confirmed experimentally. Furthermore, the results from the batch-mode assays were successfully tested by an experimental design (full factorial design). The biosorption of Cr(VI) on orange peels occurred mostly according to the pseudo-second-order kinetic model and the uptake of Cr(VI) was satisfactorily described by the Langmuir model. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

17 pages, 5357 KB  
Article
Using the Heavy Metal Indices and Benthic Indices to Assess the Ecological Quality in the Tidal Flats of Garolim Bay, South Korea
by Jian Liang, Hai-Rui Huang, Chae-Woo Ma, Dae-Sun Son and Seon-Kyu Kim
Water 2024, 16(5), 736; https://doi.org/10.3390/w16050736 - 29 Feb 2024
Cited by 12 | Viewed by 2496
Abstract
During economic growth, anthropogenic activities have exerted detrimental impacts on the tidal flat ecosystems in South Korea. Although scholars have conducted extensive research on the ecological quality of tidal flats in South Korea, most have primarily focused on benthic indices. Hence, we utilised [...] Read more.
During economic growth, anthropogenic activities have exerted detrimental impacts on the tidal flat ecosystems in South Korea. Although scholars have conducted extensive research on the ecological quality of tidal flats in South Korea, most have primarily focused on benthic indices. Hence, we utilised two heavy metal indices and five benthic indices to assess the ecological quality in the tidal flats comprehensively. In our study, although heavy metals and total organic carbon concentrations were low in Garolim Bay, the final ecological quality at most stations was unacceptable (63%). The Benthic Opportunistic Polychaetes Amphipods Index (BOPA) demonstrated commendable outcomes in correlation and kappa analyses. However, the BOPA still had some limits. We believe that using multiple indices to assess the ecological quality in the tidal flats of Garolim Bay is more robust than using a single index. Full article
Show Figures

Figure 1

20 pages, 4109 KB  
Article
Dissolved Oxygen Forecasting for Lake Erie’s Central Basin Using Hybrid Long Short-Term Memory and Gated Recurrent Unit Networks
by Daiwei Pan, Yue Zhang, Ying Deng, Jesse Van Griensven Thé, Simon X. Yang and Bahram Gharabaghi
Water 2024, 16(5), 707; https://doi.org/10.3390/w16050707 - 28 Feb 2024
Cited by 11 | Viewed by 2413
Abstract
Dissolved oxygen (DO) concentration is a pivotal determinant of water quality in freshwater lake ecosystems. However, rapid population growth and discharge of polluted wastewater, urban stormwater runoff, and agricultural non-point source pollution runoff have triggered a significant decline in DO levels in Lake [...] Read more.
Dissolved oxygen (DO) concentration is a pivotal determinant of water quality in freshwater lake ecosystems. However, rapid population growth and discharge of polluted wastewater, urban stormwater runoff, and agricultural non-point source pollution runoff have triggered a significant decline in DO levels in Lake Erie and other freshwater lakes located in populated temperate regions of the globe. Over eleven million people rely on Lake Erie, which has been adversely impacted by anthropogenic stressors resulting in deficient DO concentrations near the bottom of Lake Erie’s Central Basin for extended periods. In the past, hybrid long short-term memory (LSTM) models have been successfully used for the time-series forecasting of water quality in rivers and ponds. However, the prediction errors tend to grow significantly with the forecasting period. Therefore, this research aimed to improve the accuracy of DO forecasting models by taking advantage of Lake Erie’s real-time water quality (water temperature and DO concentration) monitoring network to establish temporal and spatial links between adjacent monitoring stations. We developed hybrid LSTM models that combine LSTM, convolutional neuron network LSTM (CNN-LSTM), hybrid CNN with gated recurrent unit (CNN-GRU) models, and convolutional LSTM (ConvLSTM) to forecast near-bottom DO concentrations in Lake Erie’s Central Basin. These hybrid LSTM models improve their capacity to handle complicated datasets with spatial and temporal variability. These models can serve as accurate and reliable tools for forecasting DO concentrations in freshwater lakes to help environmental protection agencies better access and manage the health of these vital ecosystems. Following analysis of a 21-site Lake Erie dataset for 2020 and 2021, the ConvLSTM model emerged as the most accurate and reliable, boasting an MSE of 0.51 mg/L, MAE of 0.42 mg/L, and an R-squared of 0.95 over the 12 h prediction range. The model foresees future hypoxia in Lake Erie. Notably, the temperature near site 713 holds significance for Central Basin DO forecasting in Lake Erie, as indicated by outcomes derived from the Shapley additive explanations (SHAP). Full article
(This article belongs to the Special Issue Water Quality, Ecological Health and Ecosystem Restoration)
Show Figures

Figure 1

15 pages, 2888 KB  
Article
Effects of Freeze–Thaw Cycles on Soil Nitrogen Transformation in Improved Saline Soils from an Irrigated Area in Northeast China
by Siyu Nie, Xian Jia, Yuanchun Zou and Jianmin Bian
Water 2024, 16(5), 653; https://doi.org/10.3390/w16050653 - 23 Feb 2024
Cited by 7 | Viewed by 2459
Abstract
Freeze–thaw cycles (FTCs) occur during the nongrowing season, and residual nitrogen (N) increases the risk of N loss with melting water. To study the effect of FTCs on soil N, rice fields in improved irrigated saline soil in northeast China were selected as [...] Read more.
Freeze–thaw cycles (FTCs) occur during the nongrowing season, and residual nitrogen (N) increases the risk of N loss with melting water. To study the effect of FTCs on soil N, rice fields in improved irrigated saline soil in northeast China were selected as the research subjects. Water content (10%, 20%, and 30%), different N fertilizer levels (180 and 220 kg/ha), and multiple FTCs of soil samples were used to clarify the effects of N fertilizer application and water content on N efficiency. The results indicate that, after the third FTC, the soil ammonium nitrogen (NH4+-N) level increased significantly. NH4+-N increased with an increase in the initial soil moisture content and decreased with fertilizer levels. Nitrate nitrogen (NO3-N) decreases with increasing initial soil moisture. The inorganic N increased significantly compared with that in the unfrozen stage, indicating that FTCs promote soil N mineralization. However, high fertilization rates inhibit mineralization. Analysis of variance showed that NO3-N is sensitive to the N application rate, water content, and salinity (p < 0.05). FTCs and artificial fertilization are the factors that affect N mineralization (p < 0.05). The research results are significant for preventing nitrate leaching and soil acidification during spring plowing and providing a scientific basis for fertilization systems and water environment pollution in improved saline soils. Full article
(This article belongs to the Special Issue Study of the Soil Water Movement in Irrigated Agriculture III)
Show Figures

Figure 1

18 pages, 2134 KB  
Review
Trees in Sponge Cities—A Systematic Review of Trees as a Component of Blue-Green Infrastructure, Vegetation Engineering Principles, and Stormwater Management
by Michael Richter, Kirya Heinemann, Nadine Meiser and Wolfgang Dickhaut
Water 2024, 16(5), 655; https://doi.org/10.3390/w16050655 - 23 Feb 2024
Cited by 13 | Viewed by 5165
Abstract
Combining street trees with stormwater management measures can, in some circumstances, both increase tree vitality and reduce the risk of flooding by directing stormwater into tree pits. Using systematic review methods, this study aimed to provide an overview of the vegetation engineering systems [...] Read more.
Combining street trees with stormwater management measures can, in some circumstances, both increase tree vitality and reduce the risk of flooding by directing stormwater into tree pits. Using systematic review methods, this study aimed to provide an overview of the vegetation engineering systems being researched and applied that combine tree planting with urban stormwater management. We also sought to identify the positive as well as possible negative impacts on urban hydrology and tree health. It has been shown that diverting rainwater from impervious surfaces into tree pits has considerable potential for stormwater management and for improving tree health by reducing drought stress in urban trees. Worldwide approaches to optimizing tree pits for rainwater infiltration and water supply are promising. Different systems and substrate types have been tested, and street trees generally show good vitality, although systematic long-term monitoring of tree vitality has rarely been undertaken. There is still a need for research into temporary water storage for dry periods. Full article
(This article belongs to the Special Issue Review Papers of Urban Water Management 2023)
Show Figures

Figure 1

23 pages, 16173 KB  
Article
Surrogate-Based Uncertainty Analysis for Groundwater Contaminant Transport in a Chromium Residue Site Located in Southern China
by Yanhong Zou, Muhammad Shahzad Yousaf, Fuqiang Yang, Hao Deng and Yong He
Water 2024, 16(5), 638; https://doi.org/10.3390/w16050638 - 21 Feb 2024
Cited by 6 | Viewed by 3023
Abstract
Numerical modeling is widely acknowledged as a highly precise method for understanding the dynamics of contaminant transport in groundwater. However, due to the intricate characteristics of environmental systems and the lack of accurate information, the results are susceptible to a significant degree of [...] Read more.
Numerical modeling is widely acknowledged as a highly precise method for understanding the dynamics of contaminant transport in groundwater. However, due to the intricate characteristics of environmental systems and the lack of accurate information, the results are susceptible to a significant degree of uncertainty. Numerical models must explicitly consider related uncertainties in parameters to facilitate robust decision-making. In a Chromium Residue Site located in southern China (the study area), this study employed Monte Carlo simulation to assess the impact of variability in key parameters uncertainty on the simulation outcomes. Variogram analysis of response surface (VARS), global sensitivity analysis, and an XGBoost (version 2.0.0)-based surrogate model was employed to overcome the substantial computational cost of Monte Carlo simulation. The results of numerical simulation indicate that the contaminant is spreading downstream towards the northern boundary of contaminated site near Lianshui River, threatening water quality. Furthermore, migration patterns are complex due to both downstream convection and upstream diffusion. Sensitivity analysis identified hydraulic conductivity, recharge rate, and porosity as the most influential model parameters, selected as key parameters. Moreover, uncertainty analysis indicated that the variability in key parameters has a minimal impact on the simulation outcomes at monitoring wells near the contaminant source. In contrast, at wells positioned a considerable distance from the contaminant source, the variability in key parameters significantly influences the simulation outcomes. The surrogate model markedly mitigated computational workload and calculation time, while demonstrating superior precision and effectively capture the non-linear correlations between input and output of the simulation model. Full article
(This article belongs to the Special Issue Contaminant Transport Modeling in Aquatic Environments)
Show Figures

Figure 1

19 pages, 7514 KB  
Article
Assessing Changes in Exceptional Rainfall in Portugal Using ERA5-Land Reanalysis Data (1981/1982–2022/2023)
by Luis Angel Espinosa, Maria Manuela Portela and Salem Gharbia
Water 2024, 16(5), 628; https://doi.org/10.3390/w16050628 - 20 Feb 2024
Cited by 8 | Viewed by 3823
Abstract
This research examines the intricate changes in the number of occurrences and cumulative rainfall of exceptional events in Portugal spanning 42 hydrological years (from 1981/1982 to 2022/2023). The study has two primary objectives: assessing the hydrological spatial dynamics of a region susceptible to [...] Read more.
This research examines the intricate changes in the number of occurrences and cumulative rainfall of exceptional events in Portugal spanning 42 hydrological years (from 1981/1982 to 2022/2023). The study has two primary objectives: assessing the hydrological spatial dynamics of a region susceptible to climate-induced variations in exceptional rainfall and evaluating the proficiency of a ERA5-Land reanalysis rainfall dataset in capturing exceptional rainfall. Confronting methodological and data-related challenges (e.g., incomplete record series), the investigation uses continuous daily ERA5-Land rainfall series. Validation against the Sistema Nacional de Informação de Recursos Hídricos (SNIRH) and the Portuguese Institute for Sea and Atmosphere (IPMA) ensures the reliability of ERA5-Land data. Empirical non-exceedance probability curves reveal a broad consensus between reanalysis data and observational records, establishing the dataset’s suitability for subsequent analysis. Spatial representations of occurrences, cumulative rainfall, and rainfall intensity of events above thresholds throughout the overall 42-year period and two subperiods (late: 1981/1982–2001/2002; and recent: 2002/2003–2022/2023) are presented, illustrating spatial and temporal variations. A noteworthy shift in the spatial distribution of intense events from south to north is observed, emphasising the dynamism of such hydrological processes. The study introduces a novel dimension with a severity heat map, combining some key findings from the occurrences and cumulative rainfall through subperiods. This study significantly contributes to the understanding of hydrological dynamics in Portugal, providing valuable insights for risk management and the development of sustainable strategies tailored to the evolving patterns of exceptional rainfall. Full article
Show Figures

Figure 1

30 pages, 410 KB  
Review
Challenges to Water Resource Management: The Role of Economic and Modeling Approaches
by Ariel Dinar
Water 2024, 16(4), 610; https://doi.org/10.3390/w16040610 - 18 Feb 2024
Cited by 35 | Viewed by 17571
Abstract
The field of water management is continually changing. Water has been subject to external shocks in the form of climate change and globalization. Water management analysis is subject to disciplinary developments and inter-disciplinary interactions. Are these developments well-documented in the literature? Initial observations [...] Read more.
The field of water management is continually changing. Water has been subject to external shocks in the form of climate change and globalization. Water management analysis is subject to disciplinary developments and inter-disciplinary interactions. Are these developments well-documented in the literature? Initial observations in the interdisciplinary literature suggest that results are fragmented, implying that a state-of-the-art review is needed. This paper aims to close such a gap by reviewing recent developments in water economics that address increasing perceptions of water scarcity by looking first at changes in the supply and quality of water and then at the impacts of climate change on water supply extremes. Among responses to such challenges, this paper identifies changes to water use patterns by including and co-managing water from different sources, including surface and groundwater, reclaimed wastewater, and desalinated water. Technological advancements are also among the resources that address water challenges. Water challenges are also reflected in the management of internationally shared water. A recent surge in scientific work identified international treaties as a significant contributor to international water management. This paper reviews recently employed economic approaches, such as experimental economics, game theory, institutional economics, and valuation methods. And, finally, it explores modeling approaches, including hydro-economic and computable general equilibrium models, that are being used to deal with water challenges. Full article
17 pages, 53660 KB  
Article
Assessment of Hydrological Responses to Land Use and Land Cover Changes in Forest-Dominated Watershed Using SWAT Model
by Hiyaw Hatiya Ware, Sun Woo Chang, Jeong Eun Lee and Il-Moon Chung
Water 2024, 16(4), 528; https://doi.org/10.3390/w16040528 - 7 Feb 2024
Cited by 12 | Viewed by 4570
Abstract
Recognizing how human activities affect hydrological systems is vital for the sustainable preservation and effective management of water resources in the watershed. Hence, this paper focuses on the hydrological response to land use and land cover (LULC) change scenarios in the Anyang watershed, [...] Read more.
Recognizing how human activities affect hydrological systems is vital for the sustainable preservation and effective management of water resources in the watershed. Hence, this paper focuses on the hydrological response to land use and land cover (LULC) change scenarios in the Anyang watershed, South Korea. We obtained LULC data maps for the years 2000, 2013, and 2022 from the local government, revealing significant changes over the years. Agricultural lands experienced a 6.2% increase from 2000 to 2022, and pastureland expanded by 8.67% over two decades. The SWAT model was utilized to assess the impact of LULC on the hydrological components of the study watershed. Model calibration and validation for each LULC change were carried out using the SWAT-CUP program, considering the recorded streamflow information of the region. An excellent agreement was reached between the simulated and measured streamflow in both the calibration and validation stages under various LULC conditions. The Nash–Sutcliffe model efficiency (NSE), the objective function, demonstrated values of 0.9, 0.89, and 0.89 during the calibration for 2000, 2013, and 2022, respectively, in the LULC scenario, while for the validation, we obtained values of 0.82, 0.78, and 0.80 for 2000, 2013, and 2022, respectively. Our findings indicate that the surface runoff rise contributed much to the water yield increase over the two decades compared to the other components in terms of the water yield, while the contribution of evapotranspiration (ET) to the watershed hydrological cycle declined by 1.66% from 2000 to 2022. The southeastern sub-basin part showed a high groundwater recharge distribution due to agricultural land, rice area, and forest area changes. Full article
Show Figures

Figure 1

20 pages, 5765 KB  
Article
Understanding the Propagation of Meteorological Drought to Groundwater Drought: A Case Study of the North China Plain
by Yuyin Chen, Yongqiang Zhang, Jing Tian, Zixuan Tang, Longhao Wang and Xuening Yang
Water 2024, 16(3), 501; https://doi.org/10.3390/w16030501 - 4 Feb 2024
Cited by 9 | Viewed by 3266
Abstract
As extreme climate events become more common with global warming, groundwater is increasingly vital for combating long-term drought and ensuring socio-economic and ecological stability. Currently, the mechanism of meteorological drought propagation to groundwater drought is still not fully understood. This study focuses on [...] Read more.
As extreme climate events become more common with global warming, groundwater is increasingly vital for combating long-term drought and ensuring socio-economic and ecological stability. Currently, the mechanism of meteorological drought propagation to groundwater drought is still not fully understood. This study focuses on the North China Plain (NCP), utilizing statistical theories, spatiotemporal kriging interpolation, and the Mann–Kendall trend test to examine the spatial and temporal distribution characteristics of groundwater from 2005 to 2021. Based on drought theory, the characteristics and propagation process of drought are further quantified. Key findings reveal the following: (1) Shallow groundwater depths in the NCP follow a zonal pattern from the western mountains to the eastern plains and coastal areas. Over two-thirds of this region showed an increase in groundwater depth at a rate of 0–0.05 m/a; (2) Groundwater drought frequency typically ranges from 3 to 6 times, with an average duration of 10 to 30 months and average severity between 10 and 35; (3) Delayed effects last between 0 to 60 months, with attenuation effects varying from 0 to 3 and prolonged effects extending from 0 to 16. Additionally, delayed effects intensify with increasing time scales, while prolonged effects weaken. Notably, both delayed and prolonged effects in the north of the NCP are more pronounced than in the south of the region. This study quantifies the process by which meteorological drought propagates to groundwater drought, offering a new perspective for understanding the interaction between groundwater and meteorological drought. It holds significant scientific importance for monitoring drought and managing water resources in the context of global climate change. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

17 pages, 992 KB  
Article
Reuse of Treated Wastewater for Crop Irrigation: Water Suitability, Fertilization Potential, and Impact on Selected Soil Physicochemical Properties
by Solomon Ofori, David Kwesi Abebrese, Iveta Růžičková and Jiří Wanner
Water 2024, 16(3), 484; https://doi.org/10.3390/w16030484 - 1 Feb 2024
Cited by 19 | Viewed by 6590
Abstract
This study evaluates the suitability of treated wastewater (TWW: secondary effluent and membrane effluent) for crop irrigation and the resultant impact on crop growth and soil physicochemical characteristics. Carrot seeds (Daucus carota subsp. sativus) were grown on loam soil and irrigated [...] Read more.
This study evaluates the suitability of treated wastewater (TWW: secondary effluent and membrane effluent) for crop irrigation and the resultant impact on crop growth and soil physicochemical characteristics. Carrot seeds (Daucus carota subsp. sativus) were grown on loam soil and irrigated with tap water (Tap), secondary effluent (SE), and membrane effluent (ME) until maturity. Bacteriological analyses showed four log counts of E. coli and thermotolerant coliforms for secondary effluent, making it unsafe for the irrigation of carrots. Tap water and membrane effluent fulfilled the microbial limit for water reuse and were suitable for irrigation. The sodium absorption ratio, Kelly index, and magnesium hazard assessments indicated that all three irrigation water streams were suitable for irrigation. The average mass of carrot fruits for Tap, SE, and ME was 2.14 g, 3.96 g, and 3.03 g, respectively. A similar trend was observed for the dry matter composition: Tap had 15.9%, SE had 18.3%, and ME had 16.6%. The soil pH increased from 7.08 to 7.26, 7.39, and 7.33 for tap water-, secondary effluent-, and membrane effluent-irrigated soils, respectively. Nitrate-nitrogen and potassium levels increased in the TWW-irrigated soil, while that of the tap water-irrigated soil decreased. Sodium levels in the TWW-irrigated soil increased significantly but did not induce soil sodicity. The application of the TWW enhanced the growth of the carrot plants and increased the soil nutrient levels. Hence, using TWW in agricultural irrigation could promote food production and also limit the overdependency on freshwater resources. However, TWW should be disinfected by using UV disinfection and ozonation to reduce the risk of microbial contamination. Such disinfection methods may not lead to the formation of toxic byproducts, and therefore secondary pollution to crops is not anticipated. Full article
Show Figures

Figure 1

26 pages, 1130 KB  
Review
Research on Water Resource Modeling Based on Machine Learning Technologies
by Ze Liu, Jingzhao Zhou, Xiaoyang Yang, Zechuan Zhao and Yang Lv
Water 2024, 16(3), 472; https://doi.org/10.3390/w16030472 - 31 Jan 2024
Cited by 22 | Viewed by 10535
Abstract
Water resource modeling is an important means of studying the distribution, change, utilization, and management of water resources. By establishing various models, water resources can be quantitatively described and predicted, providing a scientific basis for water resource management, protection, and planning. Traditional hydrological [...] Read more.
Water resource modeling is an important means of studying the distribution, change, utilization, and management of water resources. By establishing various models, water resources can be quantitatively described and predicted, providing a scientific basis for water resource management, protection, and planning. Traditional hydrological observation methods, often reliant on experience and statistical methods, are time-consuming and labor-intensive, frequently resulting in predictions of limited accuracy. However, machine learning technologies enhance the efficiency and sustainability of water resource modeling by analyzing extensive hydrogeological data, thereby improving predictions and optimizing water resource utilization and allocation. This review investigates the application of machine learning for predicting various aspects, including precipitation, flood, runoff, soil moisture, evapotranspiration, groundwater level, and water quality. It provides a detailed summary of various algorithms, examines their technical strengths and weaknesses, and discusses their potential applications in water resource modeling. Finally, this paper anticipates future development trends in the application of machine learning to water resource modeling. Full article
(This article belongs to the Special Issue Application of Machine Learning to Water Resource Modeling)
Show Figures

Figure 1

17 pages, 3146 KB  
Article
Estimation of Energy Consumption and CO2 Emissions of the Water Supply Sector: A Seoul Metropolitan City (SMC) Case Study
by Li Li, Gyumin Lee and Doosun Kang
Water 2024, 16(3), 479; https://doi.org/10.3390/w16030479 - 31 Jan 2024
Cited by 6 | Viewed by 2966
Abstract
A model that computes the per-unit process energy consumption, energy intensity, CO2 emission, and CO2 intensity of water treatment plants is developed. This model is used to estimate the total energy consumption of six water treatment plants in Seoul Metropolitan City [...] Read more.
A model that computes the per-unit process energy consumption, energy intensity, CO2 emission, and CO2 intensity of water treatment plants is developed. This model is used to estimate the total energy consumption of six water treatment plants in Seoul Metropolitan City (SMC), which is comprised 80–85% for finished water pumping, 6–10% for ozone disinfection, 2–4% for rapid mixing, and 1–3% for non-process loads. The model results are validated against actual data for 2020 and 2021. The net energy consumption considering renewable energy production and use is then calculated, and the corresponding level of CO2 emissions is predicted. Four scenarios based on the projected water requirements for the year 2045 were evaluated as follows: increased energy efficiency in finished water pumping (Scenario 1), increased renewable energy production in water treatment plants (Scenario 2), increased energy efficiency in raw water pumping (Scenario 3), and reduced water supply per capita (Scenario 4). Compared to a baseline do-nothing scenario (Scenario 0), the net energy consumption is reduced by 3.57%, 2.61%, 3.42%, and 4.67% for Scenarios 1–4, respectively. Scenario 4, which is a water-driven approach, is best for reducing CO2 emissions, while Scenario 1 and 3, which are energy-driven approaches, are more effective at reducing CO2 intensity. Full article
Show Figures

Figure 1

22 pages, 523 KB  
Review
Natural Organic Matter Character in Drinking Water Distribution Systems: A Review of Impacts on Water Quality and Characterization Techniques
by Ammar Riyadh and Nicolas M. Peleato
Water 2024, 16(3), 446; https://doi.org/10.3390/w16030446 - 30 Jan 2024
Cited by 21 | Viewed by 6635
Abstract
Natural Organic Matter (NOM) in water arises from decomposed plant and animal matter and is ubiquitous in drinking water sources. The variation in NOM concentrations and characteristics, influenced by events like floods and droughts, plays a crucial role in water treatment efficiency and [...] Read more.
Natural Organic Matter (NOM) in water arises from decomposed plant and animal matter and is ubiquitous in drinking water sources. The variation in NOM concentrations and characteristics, influenced by events like floods and droughts, plays a crucial role in water treatment efficiency and water quality received by the public. For example, increased NOM concentrations necessitate higher levels of coagulants and disinfectants, leads to the formation of disinfection by-products (DBPs), and plays a key role in biofilm development. When considering impacts of NOM, it is not only the presence or concentration but the makeup or proportion of varying sub-groups which can impact water quality. Formation of DBPs, corrosion and scaling, pollutant transport, aesthetic deterioration, and biofilm growth are dependent on the relative composition of NOM within the distribution system. Although the role of NOM concentration and characteristics is well studied during treatment, the impacts of residual NOM in water distribution systems have received less attention. In particular, it is clear, due to the varying roles of NOM sub-groups, that greater consideration of NOM characteristics in distribution systems is needed. This paper reviews the broad implications of NOM characteristics for water distribution systems and explores challenges and opportunities in NOM characterization within distribution systems. Furthermore, the influence of NOM characteristics in premise plumbing is examined. The review highlights the necessity for precise NOM characterization and real-time monitoring, aiming to strengthen water distribution system resilience. Full article
Show Figures

Figure 1

19 pages, 2981 KB  
Article
Debating the Rules: An Experimental Approach to Assess Cyprinid Passage Performance Thresholds in Vertical Slot Fishways
by Filipe Romão, Ana L. Quaresma, Joana Simão, Francisco J. Bravo-Córdoba, Teresa Viseu, José M. Santos, Francisco J. Sanz-Ronda and António N. Pinheiro
Water 2024, 16(3), 439; https://doi.org/10.3390/w16030439 - 29 Jan 2024
Cited by 8 | Viewed by 1900
Abstract
Throughout the world, emerging barriers in river systems block longitudinal connectivity for migrating fish, causing significant impacts by precluding them from carrying out vital life cycle activities. Fishways are still the main mitigation solution implemented, where barrier removal is not feasible. Within the [...] Read more.
Throughout the world, emerging barriers in river systems block longitudinal connectivity for migrating fish, causing significant impacts by precluding them from carrying out vital life cycle activities. Fishways are still the main mitigation solution implemented, where barrier removal is not feasible. Within the multiple technical fish passage devices, the vertical slot fishway (VSF) is considered the most reliable. Early design guidelines, established for cyprinids, indicate that the volumetric dissipation power (Pv) in the pools should be Pv < 150 Wm−3, while most frequent slope values range from 10 to 12%. In this study, an experimental approach was conducted to question and debate the validity of these recommendations. For this, the Iberian barbel (Luciobarbus bocagei, Steindachner, 1864) passage performance was assessed in a full-scale fishway that exceeded Pv design guidelines, under different configurations. These varied in discharge (Q) and mean pool water depth (hm): VSF1 (Q = 81 Ls−1; hm = 0.55 m); VSF2 (Q = 110 Ls−1; hm = 0.80 m); and the same design was equipped with a deep notch: DN1 (Q = 71 Ls−1; hm = 0.55 m); DN2 (Q = 99 Ls−1; hm = 0.80 m). The slope was set to 15.2% while the head drop per pool was Δh = 0.28 m, which generated a Pv that ranged from 222 in VSF1 to 187 Wm−3 in DN2. Passage behaviour was assessed using PIT telemetry and time-to-event analysis to evaluate the barbel upstream passage using standardized metrics: (i) motivation (ii) ascend success, and (iii) transit time. The hydrodynamic scenarios experienced by fish were characterized through a numerical model using computational fluid dynamics (CFD). The results, contrary to what was expected, showed a higher performance in VSF1 confirmed by the ascent analysis and transit time. Although no differences were found in fish motivation, the results indicate that larger fish displayed lower times to perform the first passage attempt. The CFD results show that, although maximum velocities and turbulence (turbulent kinetic energy (TKE) and Reynolds shear stress (RSS)) do not change significantly between configurations, their distribution in the pools is quite different. Regarding TKE, larger volumes with magnitudes higher than 0.05 m2s−2 were notorious in both DN1 and DN2 configurations compared to VSF1, influencing passage efficiency which is in line with the ascent and transit time metrics results. Overall, the present research undeniably debates the literature design guidelines and reinforces the need to jointly assess species-specific fish passage criteria and fishway hydrodynamics, whereas precaution should be taken when using very general recommendations. Full article
Show Figures

Figure 1

20 pages, 8866 KB  
Article
Laboratory Investigation on the Hydrodynamic Response of a Draft Varying Floating Breakwater (and Wave Energy Converter)
by Sara Russo, Pasquale Contestabile, Diego Vicinanza and Claudio Lugni
Water 2024, 16(3), 445; https://doi.org/10.3390/w16030445 - 29 Jan 2024
Cited by 5 | Viewed by 2344
Abstract
The main purpose of this paper is the investigation of the feasibility of a novel hybrid module specifically designed for the Mediterranean Sea. This module is intended to work as an offshore floating breakwater in severe sea states, and alternatively as a wave [...] Read more.
The main purpose of this paper is the investigation of the feasibility of a novel hybrid module specifically designed for the Mediterranean Sea. This module is intended to work as an offshore floating breakwater in severe sea states, and alternatively as a wave energy converter in the more frequent mild sea states, depending on its level of submergence. An experimental campaign on a 1:10 module has been carried out in the wave tank of the University of Campania. The dynamic response of the device, as well as its hydraulic performances, was investigated under various wave conditions. The experimental results highlight the possibility of realizing and installing hybrid structures combining energy conversion and wave attenuation. Full article
Show Figures

Figure 1

21 pages, 5595 KB  
Article
Assessment of Future Climate Change Impacts on Groundwater Recharge Using Hydrological Modeling in the Choushui River Alluvial Fan, Taiwan
by Thi-My-Linh Ngo, Shih-Jung Wang and Pei-Yuan Chen
Water 2024, 16(3), 419; https://doi.org/10.3390/w16030419 - 27 Jan 2024
Cited by 12 | Viewed by 5277
Abstract
This research delves into the crucial role of groundwater in underpinning ecosystems and human resilience amidst drastic and unpredictable climate change, particularly as water resources face increasing sustainability concerns due to population surges and climate change. Utilizing a combined approach of SWAT-MODFLOW models, [...] Read more.
This research delves into the crucial role of groundwater in underpinning ecosystems and human resilience amidst drastic and unpredictable climate change, particularly as water resources face increasing sustainability concerns due to population surges and climate change. Utilizing a combined approach of SWAT-MODFLOW models, we estimate the streamflow discharge and groundwater recharge in the Choushui River Alluvial Fan, Taiwan. These models allow evaluation of the distribution and proportion of recharge areas as well as the accuracy and the potential influence of future climate change scenarios on groundwater recharge. The findings show a strong correlation between the simulation and actual observations, evidenced by the Nash–Sutcliffe model efficiency coefficients (NSE) of 0.920 and 0.846 for calibration and validation in the Choushui River, and 0.549 and 0.548 for the Pei-Kang River, respectively. The model demonstrates a reliable representation of the watershed response, supported by robust statistical performance. The analysis reveals the variable impacts of climate change on groundwater recharge, dependent on the chosen scenario and period. Some scenarios indicate that the maximum observed increase in groundwater recharge is 66.36% under the RCP2.6 scenario in the long-term period (2061–2080), while the minimum observed increase is 29.67% under the RCP4.5 scenario in the initial time frame; however, all demonstrate a decrease ranging from 23.05% to 41.92% across different RCPs in the impact of climate change over time, suggesting a potential long-term decrease in the impact of climate change on groundwater recharge. This study provides indispensable insights into the spatial hotspots in the top fan and the potential range of impact rates of climate change on groundwater recharge, underscoring the importance of continuous research and the thorough evaluation of multiple scenarios. Moreover, we establish a primary framework for using a top-ranked MIROC5 projection of general circulation models (GCMs) to delineate an essential premise that facilitates the advanced exploration of alternative scenario augmentations, bolstering the comprehensive investigation of climate change impacts on groundwater recharge. It is proposed that these findings serve as a guidepost for sustainable water resource management and policy-making in the face of climate change and escalating water demand. Full article
Show Figures

Figure 1

17 pages, 3574 KB  
Article
Optimization of Collective Irrigation Network Layout through the Application of the Analytic Hierarchy Process (AHP) Multicriteria Analysis Method
by César González-Pavón, Carmen Virginia Palau, Juan Manzano Juárez, Vicente Estruch-Guitart, Santiago Guillem-Picó and Ibán Balbastre-Peralta
Water 2024, 16(3), 370; https://doi.org/10.3390/w16030370 - 23 Jan 2024
Cited by 6 | Viewed by 2268
Abstract
On numerous occasions, we often have very little information or must make a decision considering qualitative aspects that are difficult to evaluate. This study focuses on obtaining objective criteria to assist in decision-making in the design phase of pressurized water pipes in collective [...] Read more.
On numerous occasions, we often have very little information or must make a decision considering qualitative aspects that are difficult to evaluate. This study focuses on obtaining objective criteria to assist in decision-making in the design phase of pressurized water pipes in collective irrigation networks. In the layout of these networks, various types of paths and roads for laying pipes can be encountered, and it is not always a simple task to obtain the least costly layout or the one with the fewest issues during construction. In order to obtain objective results, different layout alternatives are evaluated using the Analytic Hierarchy Process (AHP) Multicriteria Analysis Methodology and the Dijkstra algorithm to obtain optimal solutions. This is applied to twelve case studies where the types of available layout paths are identified as alternatives, and four criteria are established for their evaluation. Recognized experts in irrigation modernization conduct the evaluation to derive weighting coefficients for selecting the optimal layout. The coefficients or resistances obtained weigh the lengths of the pipes, allowing the selection of the most suitable alternative based on the defined criteria. The results are compared with a network designed by an expert using classical methodologies, revealing cost improvements in the design phase and a reduction in conflict points, thus leading to faster execution of the works. Full article
(This article belongs to the Special Issue Advances in Hydraulic and Water Resources Research)
Show Figures

Figure 1

20 pages, 5441 KB  
Review
Groundwater Depletion and Degradation in the North China Plain: Challenges and Mitigation Options
by Jun Du, Yaseen Laghari, Yi-Chang Wei, Linyi Wu, Ai-Ling He, Gao-Yuan Liu, Huan-Huan Yang, Zhong-Yi Guo and Shah Jahan Leghari
Water 2024, 16(2), 354; https://doi.org/10.3390/w16020354 - 21 Jan 2024
Cited by 17 | Viewed by 9140
Abstract
Groundwater is an important natural resource in the North China Plain (NCP) with high economic benefits and social significance. It fulfills 60% of drinking and 70% of irrigation water requirements. In this review, the information is retrieved from high-quality articles published in MEDLINE [...] Read more.
Groundwater is an important natural resource in the North China Plain (NCP) with high economic benefits and social significance. It fulfills 60% of drinking and 70% of irrigation water requirements. In this review, the information is retrieved from high-quality articles published in MEDLINE and other sources. We saw that groundwater is declining faster (>1 m yr−1) and polluting with NO3 (>30 mg L−1) due to excessive water pumping and application of a nitrogen (N) fertilizer, respectively. The water pumping (>600 mm ha−1 yr−1) for agricultural purposes in the region is higher than the recharge amount (<200 mm yr−1). The low recharge is the result of low rainfall (<600 mm yr−1), and high evapotranspiration (>800 mm yr−1) under the impact of dominant vegetative characteristics of winter wheat–summer maize (WW-SM) rotations, covering >80% of the land. Furthermore, N application exceeds the crop assimilation capacity (>250 kg ha−1 yr−1) and leach deep down (>50 kg ha−1) as well as loss in the atmosphere. Presently, Beijing, Tianjin, and Hebei are ecologically the most affected areas. We suggest that excessive water and N fertilizer use for intensive cropping systems should be controlled by paying high attention to groundwater-friendly farming practices. In addition, artificial groundwater recharge options and their safe utilization would be explored across the region to replenish aquifers. This literature review contributes valuable insights to the knowledge bank and offers a foundation for further research and policy development. Full article
(This article belongs to the Special Issue Groundwater Management in a Changing World: Challenges and Endeavors)
Show Figures

Figure 1

19 pages, 1091 KB  
Article
Impact of Microplastic on Freshwater Sediment Biogeochemistry and Microbial Communities Is Polymer Specific
by Kristina M. Chomiak, Wendy A. Owens-Rios, Carmella M. Bangkong, Steven W. Day, Nathan C. Eddingsaas, Matthew J. Hoffman, André O. Hudson and Anna Christina Tyler
Water 2024, 16(2), 348; https://doi.org/10.3390/w16020348 - 20 Jan 2024
Cited by 7 | Viewed by 4798
Abstract
Plastic debris is a growing threat in freshwater ecosystems and transport models predict that many plastics will sink to the benthos. Among the most common plastics found in the Laurentian Great Lakes sediments are polyethylene terephthalate (especially fibers; PET), polyvinylchloride (particles; PVC), and [...] Read more.
Plastic debris is a growing threat in freshwater ecosystems and transport models predict that many plastics will sink to the benthos. Among the most common plastics found in the Laurentian Great Lakes sediments are polyethylene terephthalate (especially fibers; PET), polyvinylchloride (particles; PVC), and styrene-butadiene rubber resulting from tire wear (“crumb rubber”; SBR). These materials vary substantially in physical and chemical properties, and their impacts on benthic biogeochemistry and microbial community structure and function are largely unknown. We used a microcosm approach to evaluate the impact of these three plastics on benthic-pelagic coupling, sediment properties, and sediment microbial community structure and function using sediments from Irondequoit Bay, a major embayment of Lake Ontario in Rochester, New York, USA. Benthic metabolism and nitrogen and phosphorous cycling were all uniquely impacted by the different polymers. PET fibers and PVC particles demonstrated the most unique effects, with decreased ecosystem metabolism in sediments containing PET and greater nutrient uptake in sediments with PVC. Microbial diversity was reduced in all treatments containing plastic, but SBR had the most substantial impact on microbial community function, increasing the relative importance of metabolic pathways such as hydrocarbon degradation and sulfur metabolism. Our results suggest that individual polymers have unique impacts on the benthos, with divergent implications for ecosystem function. This provides deeper insight into the myriad ways plastic pollution may impact aquatic ecosystems and will help to inform risk assessment and policy interventions by highlighting which materials pose the greatest risk. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

22 pages, 8098 KB  
Article
Removing Plastic Waste from Rivers: A Prototype-Scale Experimental Study on a Novel River-Cleaning Concept
by Yannic Fuchs, Susanne Scherbaum, Richard Huber, Nils Rüther and Arnd Hartlieb
Water 2024, 16(2), 248; https://doi.org/10.3390/w16020248 - 11 Jan 2024
Cited by 7 | Viewed by 9109
Abstract
Mismanaged plastic waste threatens the sustainable development goals of the United Nations in social, economic, and ecological dimensions. In the pollution process, fluvial systems are critical transport paths for mismanaged plastic waste, connecting land areas with oceans and acting as plastic reservoirs and [...] Read more.
Mismanaged plastic waste threatens the sustainable development goals of the United Nations in social, economic, and ecological dimensions. In the pollution process, fluvial systems are critical transport paths for mismanaged plastic waste, connecting land areas with oceans and acting as plastic reservoirs and accumulation zones. The complex fluid–plastic particle interaction leads to a strong distribution of transported particles over the entire river width and flow depth. Therefore, a holistic plastic removal approach must consider lateral and vertical river dimensions. This study investigates the conceptual design of a comprehensive river-cleaning system that enables the removal of both floating and suspended litter particles from watercourses withstanding flow variations. The innovative technical cleaning infrastructure is based on a self-cleaning system using rotating screen drum units. In 42 prototype-scale experiments using ten representative plastic particle types (both 3D items and fragments) of five different polymer types, we prove the self-cleaning concept of the infrastructure and define its parameters for the best cleaning performance. Its cleaning efficiency is strongly dependent on the polymer type and shape. The overall cleaning efficiency for 3D items amounts to 82%, whereas plastic fragments are removed less efficiently depending on hydraulic conditions. Adaptions to the prototype can enhance its efficiency. Full article
Show Figures

Figure 1

20 pages, 8827 KB  
Article
The Heatwave of Summer 2022 in the North-Western Mediterranean Sea: Some Species Were Winners
by Charles-François Boudouresque, Patrick Astruch, Serena André, Bruno Belloni, Aurélie Blanfuné, Éric Charbonnel, Adrien Cheminée, Jean-Michel Cottalorda, Renaud Dupuy de la Grandrive, Michel Marengo, Briac Monnier, Gérard Pergent, Christine Pergent-Martini, Michèle Perret-Boudouresque, Sandrine Ruitton, Isabelle Taupier-Letage and Thierry Thibaut
Water 2024, 16(2), 219; https://doi.org/10.3390/w16020219 - 8 Jan 2024
Cited by 12 | Viewed by 3272
Abstract
The warming trend of the Mediterranean Sea is a long-term process. It has resulted in a northwards and westwards range expansion and abundance increase of thermophilic species, both native and non-indigenous, and in a shrinking of the range of cold-affinity species. Marine heatwaves [...] Read more.
The warming trend of the Mediterranean Sea is a long-term process. It has resulted in a northwards and westwards range expansion and abundance increase of thermophilic species, both native and non-indigenous, and in a shrinking of the range of cold-affinity species. Marine heatwaves (MHWs) are relatively short-term extreme episodes that are responsible for spectacular mortality events in some species and have been extensively reported in the literature. In contrast, the species that benefit from MHWs (the ‘winners’) have been much less studied. A record-breaking MHW occurred in 2022 in the north-western Mediterranean Sea. We focus on three ‘winner’ species, the thermophilic green macroalgae Penicillus capitatus and Microdictyon umbilicatum and the endemic seagrass Posidonia oceanica. Penicillus capitatus, which is mainly present in the area as an inconspicuous turf of entangled filaments (espera stage), produced the erect paintbrush-like stage where sexual reproduction takes place. Microdictyon umbilicatum, usually uncommon, bloomed to the point of clogging fishing nets. Finally, a mass flowering of P. oceanica occurred in late August–September, followed the following year (April–May 2023) by the extensive production and dissemination of fruits and seeds. Both processes, the long-term warming trend and one-off heatwaves, both ‘losers’ and ‘winners’, shape the change in structure and functioning of Mediterranean ecosystems. Full article
Show Figures

Figure 1

16 pages, 3742 KB  
Article
Photocatalytic Degradation of Tetracycline by La-Fe Co-Doped SrTiO3/TiO2 Composites: Performance and Mechanism Study
by Mingzhu Hu, Weifang Chen and Jie Wang
Water 2024, 16(2), 210; https://doi.org/10.3390/w16020210 - 7 Jan 2024
Cited by 13 | Viewed by 3606
Abstract
Human health, as well as the ecosystem’s natural equilibrium, may be jeopardized by the discharge of tetracycline into the aquatic environment. In order to effectively photocatalyzed the degradation of tetracycline in aqueous solution under visible light, this study used a two-step hydrothermal approach [...] Read more.
Human health, as well as the ecosystem’s natural equilibrium, may be jeopardized by the discharge of tetracycline into the aquatic environment. In order to effectively photocatalyzed the degradation of tetracycline in aqueous solution under visible light, this study used a two-step hydrothermal approach to produce composites of SrTiO3/TiO2 doped with two metal elements, lanthanum (La) and iron (Fe). The crystal structure, morphology, electronic structure, particle size, specific surface area and photocatalytic properties of the catalysts were assessed using a variety of methods, such as fluorescence spectroscopy, UV-Vis diffuse reflectance, X-ray diffraction, scanning electron microscopy, BET and particle size analysis. After 120 min of exposure to visible light, the co-doped catalyst showed a degradation rate of 99.1%, which was nine times greater than that of SrTiO3/TiO2 at catalyst dosing of 1.6 g/L and tetracycline concentration of 20 mg/L. The synthesized photocatalyst exhibited good tolerance to changes in pH, with the degradation efficiency of tetracycline remaining stable within the pH range of 4–10. The La-Sr (Ti-Fe) O3/TiO2 catalyst also demonstrated excellent photostability after recycling. The mechanism of tetracycline degradation is primarily attributed to the active oxidation by photogenerated holes and •O2. Furthermore, tetracycline degradation pathways were analyzed via HPLC-MS to identify intermediates. Full article
(This article belongs to the Special Issue Aquaculture Water Safety)
Show Figures

Figure 1

27 pages, 1890 KB  
Article
Intelligent Edge-Cloud Framework for Water Quality Monitoring in Water Distribution System
by Essa Q. Shahra, Wenyan Wu, Shadi Basurra and Adel Aneiba
Water 2024, 16(2), 196; https://doi.org/10.3390/w16020196 - 5 Jan 2024
Cited by 12 | Viewed by 4248
Abstract
Ensuring consistent high water quality is paramount in water management planning. This paper addresses this objective by proposing an intelligent edge-cloud framework for water quality monitoring within the water distribution system (WDS). Various scenarios—cloud computing, edge computing, and hybrid edge-cloud computing—are applied to [...] Read more.
Ensuring consistent high water quality is paramount in water management planning. This paper addresses this objective by proposing an intelligent edge-cloud framework for water quality monitoring within the water distribution system (WDS). Various scenarios—cloud computing, edge computing, and hybrid edge-cloud computing—are applied to identify the most effective platform for the proposed framework. The first scenario brings the analysis closer to the data generation point (at the edge). The second and third scenarios combine both edge and cloud platforms for optimised performance. In the third scenario, sensor data are directly sent to the cloud for analysis. The proposed framework is rigorously tested across these scenarios. The results reveal that edge computing (scenario 1) outperforms cloud computing in terms of latency, throughput, and packet delivery ratio obtaining 20.33 ms, 148 Kb/s, and 97.47%, respectively. Notably, collaboration between the edge and cloud enhances the accuracy of classification models with an accuracy of up to 94.43%, this improvement was achieved while maintaining the energy consumption rate at the lowest value. In conclusion, our study demonstrates the effectiveness of the proposed intelligent edge-cloud framework in optimising water quality monitoring, and the superior performance of edge computing, coupled with collaborative edge-cloud strategies, underscores the practical viability of this approach. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

18 pages, 4243 KB  
Article
Investigating Nonpoint Source and Pollutant Reduction Effects under Future Climate Scenarios: A SWAT-Based Study in a Highland Agricultural Watershed in Korea
by Sayed Shah Jan Sadiqi, Won-Ho Nam, Kyoung-Jae Lim and Eunmi Hong
Water 2024, 16(1), 179; https://doi.org/10.3390/w16010179 - 3 Jan 2024
Cited by 6 | Viewed by 3764
Abstract
This study investigated the effects of nonpoint source (NPS) pollution reduction and pollutant dynamics in a highland agricultural watershed in Korea. We employed the SWAT model to simulate hydrological processes and pollution transport within the watershed. The model incorporates future climatic scenarios derived [...] Read more.
This study investigated the effects of nonpoint source (NPS) pollution reduction and pollutant dynamics in a highland agricultural watershed in Korea. We employed the SWAT model to simulate hydrological processes and pollution transport within the watershed. The model incorporates future climatic scenarios derived from downscaled climate projections to assess their impacts on NPS pollution and pollutant reduction methods. These changes lead to heightened surface runoff and erosion rates, resulting in elevated sediment and nutrient concentrations. The projection indicates an anticipated increase in the annual average temperature by 1.3 to 2.1 °C by the mid-century, under scenarios SSP126 and SSP585. Additionally, precipitation levels are projected to increase by 31 to 61 mm from the baseline to the end of the century. Variations in hydrological components such as evapotranspiration, streamflow, and soil moisture are expected to range from +3.2 to +17.2%, −9.1 to +8.1%, and 0.1 to 0.7%, respectively, during the years 2040 and 2080. Fluctuations in TN, SS, and TP loading are estimated to range from −4.5 to +2.3%, −5.8 to +29.0%, and +3.7 to +17.4%, respectively. This study emphasizes the importance of adaptive management options for stakeholders and the need for adaptive management options to reduce nonpoint source pollution and protect water quality to maintain sustainable water supplies and conserve the environment in this watershed. Full article
Show Figures

Figure 1

19 pages, 4240 KB  
Article
Towards Groundwater-Level Prediction Using Prophet Forecasting Method by Exploiting a High-Resolution Hydrogeological Monitoring System
by Davide Fronzi, Gagan Narang, Alessandro Galdelli, Alessandro Pepi, Adriano Mancini and Alberto Tazioli
Water 2024, 16(1), 152; https://doi.org/10.3390/w16010152 - 30 Dec 2023
Cited by 16 | Viewed by 4826
Abstract
Forecasting of water availability has become of increasing interest in recent decades, especially due to growing human pressure and climate change, affecting groundwater resources towards a perceivable depletion. Numerous research papers developed at various spatial scales successfully investigated daily or seasonal groundwater level [...] Read more.
Forecasting of water availability has become of increasing interest in recent decades, especially due to growing human pressure and climate change, affecting groundwater resources towards a perceivable depletion. Numerous research papers developed at various spatial scales successfully investigated daily or seasonal groundwater level prediction starting from measured meteorological data (i.e., precipitation and temperature) and observed groundwater levels, by exploiting data-driven approaches. Barely a few research combine the meteorological variables and groundwater level data with unsaturated zone monitored variables (i.e., soil water content, soil temperature, and bulk electric conductivity), and—in most of these—the vadose zone is monitored only at a single depth. Our approach exploits a high spatial-temporal resolution hydrogeological monitoring system developed in the Conero Mt. Regional Park (central Italy) to predict groundwater level trends of a shallow aquifer exploited for drinking purposes. The field equipment consists of a thermo-pluviometric station, three volumetric water content, electric conductivity, and soil temperature probes in the vadose zone at 0.6 m, 0.9 m, and 1.7 m, respectively, and a piezometer instrumented with a permanent water-level probe. The monitored period started in January 2022, and the variables were recorded every fifteen minutes for more than one hydrologic year, except the groundwater level which was recorded on a daily scale. The developed model consists of three “virtual boxes” (i.e., atmosphere, unsaturated zone, and saturated zone) for which the hydrological variables characterizing each box were integrated into a time series forecasting model based on Prophet developed in the Python environment. Each measured parameter was tested for its influence on groundwater level prediction. The model was fine-tuned to an acceptable prediction (roughly 20% ahead of the monitored period). The quantitative analysis reveals that optimal results are achieved by expoiting the hydrological variables collected in the vadose zone at a depth of 1.7 m below ground level, with a Mean Absolute Error (MAE) of 0.189, a Mean Absolute Percentage Error (MAPE) of 0.062, a Root Mean Square Error (RMSE) of 0.244, and a Correlation coefficient of 0.923. This study stresses the importance of calibrating groundwater level prediction methods by exploring the hydrologic variables of the vadose zone in conjunction with those of the saturated zone and meteorological data, thus emphasizing the role of hydrologic time series forecasting as a challenging but vital aspect of optimizing groundwater management. Full article
Show Figures

Figure 1

21 pages, 4842 KB  
Article
Reference Evapotranspiration Estimation Using Genetic Algorithm-Optimized Machine Learning Models and Standardized Penman–Monteith Equation in a Highly Advective Environment
by Shafik Kiraga, R. Troy Peters, Behnaz Molaei, Steven R. Evett and Gary Marek
Water 2024, 16(1), 12; https://doi.org/10.3390/w16010012 - 20 Dec 2023
Cited by 13 | Viewed by 3245
Abstract
Accurate estimation of reference evapotranspiration (ETr) is important for irrigation planning, water resource management, and preserving agricultural and forest habitats. The widely used Penman–Monteith equation (ASCE-PM) estimates ETr across various timescales using ground weather station data. However, discrepancies persist between [...] Read more.
Accurate estimation of reference evapotranspiration (ETr) is important for irrigation planning, water resource management, and preserving agricultural and forest habitats. The widely used Penman–Monteith equation (ASCE-PM) estimates ETr across various timescales using ground weather station data. However, discrepancies persist between estimated ETr and measured ETr obtained from weighing lysimeters (ETr-lys), particularly in advective environments. This study assessed different machine learning (ML) models in comparison to ASCE-PM for ETr estimation in highly advective conditions. Various variable combinations, representing both radiation and aerodynamic components, were organized for evaluation. Eleven datasets (DT) were created for the daily timescale, while seven were established for hourly and quarter-hourly timescales. ML models were optimized by a genetic algorithm (GA) and included support vector regression (GA-SVR), random forest (GA-RF), artificial neural networks (GA-ANN), and extreme learning machines (GA-ELM). Meteorological data and direct measurements of well-watered alfalfa grown under reference ET conditions obtained from weighing lysimeters and a nearby weather station in Bushland, Texas (1996–1998), were used for training and testing. Model performance was assessed using metrics such as root mean square error (RMSE), mean absolute error (MAE), mean bias error (MBE), and coefficient of determination (R2). ASCE-PM consistently underestimated alfalfa ET across all timescales (above 7.5 mm/day, 0.6 mm/h, and 0.2 mm/h daily, hourly, and quarter-hourly, respectively). On hourly and quarter-hourly timescales, datasets predominantly composed of radiation components or a blend of radiation and aerodynamic components demonstrated superior performance. Conversely, datasets primarily composed of aerodynamic components exhibited enhanced performance on a daily timescale. Overall, GA-ELM outperformed the other models and was thus recommended for ETr estimation at all timescales. The findings emphasize the significance of ML models in accurately estimating ETr across varying temporal resolutions, crucial for effective water management, water resources, and agricultural planning. Full article
(This article belongs to the Topic Hydrology and Water Resources in Agriculture and Ecology)
Show Figures

Figure 1

19 pages, 865 KB  
Article
Planning and Design Strategies for Green Stormwater Infrastructure from an Urban Design Perspective
by Jianxi Ou, Junqi Li, Xiaojing Li and Jianqin Zhang
Water 2024, 16(1), 29; https://doi.org/10.3390/w16010029 - 20 Dec 2023
Cited by 9 | Viewed by 4383
Abstract
With the rapid advancement of ecological civilization construction, prioritizing green stormwater infrastructure to address urban stormwater management issues has become an important strategy for ecological priority and green development in sustainable urban development. Green stormwater infrastructure, as a major facility in the construction [...] Read more.
With the rapid advancement of ecological civilization construction, prioritizing green stormwater infrastructure to address urban stormwater management issues has become an important strategy for ecological priority and green development in sustainable urban development. Green stormwater infrastructure, as a major facility in the construction of sponge cities, can reduce the generation and external discharge of runoff and play a purification role. However, there are various types of green stormwater infrastructure, each with different control effects and applicable conditions. Therefore, to facilitate the planning, design, acceptance, assessment, and monitoring evaluation of sponge city green stormwater infrastructure, this study proposes the “sponge equivalent” method. By comparing the control effects of different facilities with bioretention facilities, the method standardizes the effects, making them easier to understand and apply. Taking a typical area of Beijing and its urban roads as examples, the study analyzed and applied planning and design control strategies. The results show that for a residential area of 1 km2, to achieve the annual runoff total control rate target of 85%, the method of converting runoff volume control equivalents, using bioretention pools as a benchmark, allows for the calculation of various combinations of areas of different types of green stormwater infrastructure, such as sunken green spaces, permeable paving bricks, green roofs, and water storage tanks. This optimizes the planning index of Beijing, which mandates stormwater detention facilities for new projects with a hardened surface area of 2000 m2 or more. The sponge equivalent method can optimize the planning and design control strategy of green stormwater infrastructure, allowing for rapid assessment and application of the design scale of green stormwater infrastructure in areas during the planning and design stage, providing theoretical and technical support for ecological and green urban stormwater management. The application of this research method helps promote green development and ecological priority in urban sustainable development strategies, and the conclusions provide valuable references for decision-makers and practitioners in related fields. Full article
(This article belongs to the Special Issue Urban Water Management and Hydrological Process)
Show Figures

Figure 1

16 pages, 6284 KB  
Article
A Quantitative Approach for Identifying Nitrogen Sources in Complex Yeongsan River Watershed, Republic of Korea, Based on Dual Nitrogen Isotope Ratios and Hydrological Model
by Seoyeon Hong, Youngun Han, Jihae Kim, Bo Ra Lim, Si-Young Park, Heeju Choi, Mi Rae Park, Eunmi Kim, Soohyung Lee, Yujeong Huh, Kyunghyun Kim, Won-Seok Lee, Taewoo Kang and Min-Seob Kim
Water 2023, 15(24), 4275; https://doi.org/10.3390/w15244275 - 14 Dec 2023
Cited by 9 | Viewed by 2183
Abstract
Effective management of nitrate loading in complex river systems requires quantitative estimation to trace different nitrogen sources. This study aims to validate an integrated framework using soluble nitrogen isotope ratios (δ15N–NH4 and δ15N–NO3) and hydrological modeling [...] Read more.
Effective management of nitrate loading in complex river systems requires quantitative estimation to trace different nitrogen sources. This study aims to validate an integrated framework using soluble nitrogen isotope ratios (δ15N–NH4 and δ15N–NO3) and hydrological modeling (hydrological simulation program SPARROW) of the main stream and tributaries in the Yeongsan River to determine anthropogenic nitrogen fluxes among different land-use types in the complex river watershed. The δ15N–NH4 and δ15N–NO3 isotopic compositions varied across different land-use types (4.9 to 15.5‰ for δ15N–NH4 and −4.9 to 12.1‰ for δ15N–NO3), reflecting the different sources of nitrogen in the watershed (soil N including synthetic fertilizer N, manure N, and sewage treatment plant effluent N). We compared the soluble nitrogen isotopic compositions (δ15N–NH4 and δ15N–NO3) of the river water with various nitrogen sources (soil N, manure N, and sewage N) to assess their contribution, revealing that N from sewage treatment plant effluent as a point source was dominant during the dry season and N from forest- and soil-derived non-point sources was dominant due to intensive rainfall during the wet season. The coefficient of determination (R2) between the measured pollution load and the predicted pollution load calculated by the SPARROW model was 0.95, indicating a high correlation. In addition, the EMMA-based nitrogen contributions compared to the SPARROW-based nitrogen fluxes were similar to each other, indicating that large amounts of forest- and soil-derived N may be transported to the Yeongsan River watershed as non-point sources, along with the effect of sewage treatment plant effluent N as a point source. This study provides valuable insights for the formulation of management policies to control nitrogen inputs from point and non-point sources across different land-use types for the restoration of water quality and aquatic ecosystems in complex river systems. Given the recent escalation in human activity near aquatic environments, this framework is effective in estimating the quantitative contribution of individual anthropogenic nitrogen sources transported along riverine systems. Full article
(This article belongs to the Special Issue Transport of Pollutants in Agricultural Watersheds)
Show Figures

Figure 1

19 pages, 2026 KB  
Article
Mitigating Ammonia, Methane, and Carbon Dioxide Emissions from Stored Pig Slurry Using Chemical and Biological Additives
by Oumaima El bied, Martire Angélica Terrero Turbí, Amalia García-Valero, Ángel Faz Cano and José A. Acosta
Water 2023, 15(23), 4185; https://doi.org/10.3390/w15234185 - 4 Dec 2023
Cited by 12 | Viewed by 3591
Abstract
This study addresses the challenge of mitigating ammonia and greenhouse gas (GHG) emissions from stored pig slurry using chemical and biological additives. The research employs dynamic chambers to evaluate the effectiveness of these additives. Chemical agents (sulfuric acid) and biological additives (DAB bacteria) [...] Read more.
This study addresses the challenge of mitigating ammonia and greenhouse gas (GHG) emissions from stored pig slurry using chemical and biological additives. The research employs dynamic chambers to evaluate the effectiveness of these additives. Chemical agents (sulfuric acid) and biological additives (DAB bacteria) containing specific microbial strains are tested (a mixture of Rhodopseudomonas palustris, Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus licheniformis, Nitrosomona europea, Nictobacter winogradaskyi, and nutritional substrate). Controlled experiments simulate storage conditions and measure emissions of ammonia, methane, and carbon dioxide. Through statistical analysis of the results, this study evaluates the additives’ impact on emission reduction. Sulfuric acid demonstrated a reduction of 92% in CH4, 99% in CO2, and 99% in NH3 emissions. In contrast, the biological additives showed a lesser impact on CH4, with an 8% reduction, but more substantial reductions of 71% for CO2 and 77% for NH3.These results shed light on the feasibility of employing these additives to mitigate environmental impacts in pig slurry management and contribute to sustainable livestock practices by proposing strategies to reduce the ecological consequences of intensive animal farming. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

Back to TopTop