Water Use in Livestock Agri-Food Systems and Its Contribution to Local Water Scarcity: A Spatially Distributed Global Analysis †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview
2.2. Direct Water Use
2.3. Indirect Water Use
2.3.1. Modeling Irrigation Water Requirements for All Crops
2.3.2. Allocating Irrigation Water to Feed Crops
2.3.3. Accounting for International Trade of Feed Crops
2.4. Blue Water Stress Index
3. Results
3.1. Livestock Water Withdrawals
3.1.1. Global Total Withdrawals by Category
3.1.2. Regional Livestock Water Withdrawals
3.2. Consumptive Water Use
Water Consumption per Livestock Species
3.3. Basin Blue Water Scarcity
4. Discussion
4.1. Comparison to Other Studies
4.2. Relevance to Dietary Changes
4.3. International Trade of Feed and Food
4.4. Policy Implications
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shiklomanov, I.A.; Rodda, J.C. World Water Resources at the Beginning of the Twenty-First Century; Cambridge University Press: Cambridge, UK, 2003; ISBN 0-521-61722-7. [Google Scholar]
- FAO. Pathways towards Lower Emissions—A Global Assessment of the Greenhouse Gas Emissions and Mitigation Options from Livestock Agrifood Systems; Food and Agriculture Organization: Rome, Italy, 2023; ISBN 978-92-5-138448-0. [Google Scholar]
- Hoekstra, A.Y. The Water Footprint Assessment Manual: Setting the Global Standard, 1st ed.; Routledge: London, UK, 2012; ISBN 978-1-84977-552-6. [Google Scholar]
- Gerbens-Leenes, P.W.; Mekonnen, M.M.; Hoekstra, A.Y. The Water Footprint of Poultry, Pork and Beef: A Comparative Study in Different Countries and Production Systems. Water Resour. Ind. 2013, 1–2, 25–36. [Google Scholar] [CrossRef]
- Vanham, D.; Mekonnen, M.M.; Hoekstra, A.Y. The Water Footprint of the EU for Different Diets. Ecol. Indic. 2013, 32, 1–8. [Google Scholar] [CrossRef]
- Sharma, H.; Singh, P.K.; Kaur, I.; Singh, R. Water Footprints of Dairy Milk Processing Industry: A Case Study of Punjab (India). Water 2024, 16, 435. [Google Scholar] [CrossRef]
- Grossi, G.; Bernabucci, U.; Rossi, C.; Cesarini, F.; Lacetera, N.; Evangelista, C.; Turriziani, G.; Vitali, A. Water Footprint of Italian Buffalo Mozzarella Cheese. J. Agric. Food Res. 2024, 16, 101150. [Google Scholar] [CrossRef]
- Fereres, E.; Villalobos, F.J.; Orgaz, F.; Minguez, M.I.; van Halsema, G.; Perry, C.J. Commentary: On the Water Footprint as an Indicator of Water Use in Food Production. Irrig. Sci. 2017, 35, 83–85. [Google Scholar] [CrossRef]
- Perry, C. Water Footprints: Path to Enlightenment, or False Trail? Agric. Water Manag. 2014, 134, 119–125. [Google Scholar] [CrossRef]
- Döll, P.; Siebert, S. Global Modeling of Irrigation Water Requirements. Water Resour. Res. 2002, 38, 8-1–8-10. [Google Scholar] [CrossRef]
- Pfister, S.; Boulay, A.-M.; Berger, M.; Hadjikakou, M.; Motoshita, M.; Hess, T.; Ridoutt, B.; Weinzettel, J.; Scherer, L.; Döll, P.; et al. Understanding the LCA and ISO Water Footprint: A Response to Hoekstra (2016) “A Critique on the Water-Scarcity Weighted Water Footprint in LCA”. Ecol. Indic. 2017, 72, 352–359. [Google Scholar] [CrossRef]
- Boulay, A.-M.; Drastig, K.; Amanullah; Chapagain, A.; Charlon, V.; Civit, B.; DeCamillis, C.; De Souza, M.; Hess, T.; Hoekstra, A.Y.; et al. Building Consensus on Water Use Assessment of Livestock Production Systems and Supply Chains: Outcome and Recommendations from the FAO LEAP Partnership. Ecol. Indic. 2021, 124, 107391. [Google Scholar] [CrossRef]
- FAO. Water Use in Livestock Production Systems and Supply Chains: Guidelines for Assessment, Version 1; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; ISBN 978-92-5-131713-6. [Google Scholar]
- Gilbert, M.; Nicolas, G.; Cinardi, G.; Van Boeckel, T.P.; Vanwambeke, S.O.; Wint, G.R.W.; Robinson, T.P. Global Distribution Data for Cattle, Buffaloes, Horses, Sheep, Goats, Pigs, Chickens and Ducks in 2010. Sci Data 2018, 5, 180227. [Google Scholar] [CrossRef]
- FAOSTAT Statistical Database. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 21 August 2020).
- Shaw, M.I.; Beaulieu, A.D.; Patience, J.F. Effect of Diet Composition on Water Consumption in Growing Pigs. J. Anim. Sci. 2006, 84, 3123–3132. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.J.; Engle, T.E. Invited Review: Water Consumption, and Drinking Behavior of Beef Cattle, and Effects of Water Quality. Appl. Anim. Sci. 2021, 37, 418–435. [Google Scholar] [CrossRef]
- Grogan, D.; Zuidema, S.; Prusevich, A.; Wollheim, W.M.; Glidden, S.; Lammers, R.B. Water Balance Model (WBM) v.1.0.0: A Scalable Gridded Global Hydrologic Model with Water-Tracking Functionality. Geosci. Model. Dev. 2022, 15, 7287–7323. [Google Scholar] [CrossRef]
- Wisser, D.; Fekete, B.M.; Vorosmarty, C.J.; Schumann, A.H. Reconstructing 20th Century Global Hydrography: A Contribution to the Global Terrestrial Network-Hydrology (GTN-H). Hydrol. Earth Syst. Sci. 2010, 14, 1–24. [Google Scholar] [CrossRef]
- Grogan, D.; Zuidema, S. Wsag/WBM: V1.0.0. Available online: https://doi.org/10.5281/zenodo.6263097 (accessed on 20 May 2024).
- Grogan, D.; Frolking, S.; Wisser, D.; Prusevich, A.; Glidden, S. Global Gridded Crop Harvested Area, Production, Yield, and Monthly Physical Area Data circa 2015. Sci. Data 2022, 9, 15. [Google Scholar] [CrossRef] [PubMed]
- Frolking, S.; Wisser, D.; Grogan, D.; Proussevitch, A.; Glidden, S. GAEZ+_2015 Crop Harvest Area. Available online: https://dataverse.harvard.edu/citation?persistentId=doi:10.7910/DVN/KAGRFI (accessed on 21 August 2020).
- USDA. Agricultural Statistics 2013; USDA: Washington, DC, USA, 2013.
- Australian Bureau of Statistics Water Use on Australian Farms 2020–2021. Available online: https://www.abs.gov.au/statistics/industry/agriculture/water-use-australian-farms/latest-release (accessed on 3 March 2024).
- Siebert, S.; Döll, P. Quantifying Blue and Green Virtual Water Contents in Global Crop Production as Well as Potential Production Losses without Irrigation. J. Hydrol. 2010, 384, 198–217. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- FAO. FAO: Supply Utilization Accounts (2010–). Available online: https://www.fao.org/faostat/en/#data/FBS (accessed on 21 August 2020).
- FAO. Detailed Trade Matrix. Available online: https://www.fao.org/faostat/en/#data/TM (accessed on 21 August 2020).
- Kastner, T.; Kastner, M.; Nonhebel, S. Tracing Distant Environmental Impacts of Agricultural Products from a Consumer Perspective. Ecol. Econ. 2011, 70, 1032–1040. [Google Scholar] [CrossRef]
- Falkenmark, M.; Berntell, A.; Jägerskog, A.; Lundqvist, J.; Matz, M.; Tropp, H. On the Verge of a New Water Scarcity: A Call for Good Governance and Human Ingenuity; Stockholm International Water Institute (SIWI): Stockholm, Sweden, 2007. [Google Scholar]
- Sun, G.; McNulty, S.G.; Moore Myers, J.A.; Cohen, E.C. Impacts of Multiple Stresses on Water Demand and Supply Across the Southeastern United States. J. Am. Water Resour. Assoc. 2008, 44, 1441–1457. [Google Scholar] [CrossRef]
- Wada, Y.; van Beek, L.P.H.; Bierkens, M.F.P. Modelling Global Water Stress of the Recent Past: On the Relative Importance of Trends in Water Demand and Climate Variability. Hydrol. Earth Syst. Sci. 2011, 15, 3785–3808. [Google Scholar] [CrossRef]
- Lehner, B.; Verdin, K.; Jarvis, A. New Global Hydrography Derived from Spaceborne Elevation Data. Eos Trans. AGU 2008, 89, 93. [Google Scholar] [CrossRef]
- Smakhtin, V.U.; Eriyagama, N. Developing a Software Package for Global Desktop Assessment of Environmental Flows. Environ. Model. Softw. 2008, 23, 1396–1406. [Google Scholar] [CrossRef]
- Sood, A.; Smakhtin, V.; Eriyagama, N.; Villholth, K.G.; Liyanage, N.; Wada, Y.; Ebrahim, G.; Dickens, C. Global Environmental Flow Information for the Sustainable Development Goals; International Water Management Institute (IWMI): Stockholm, Sweden, 2017. [Google Scholar]
- Heinke, J.; Lannerstad, M.; Gerten, D.; Havlík, P.; Herrero, M.; Notenbaert, A.M.O.; Hoff, H.; Müller, C. Water Use in Global Livestock Production—Opportunities and Constraints for Increasing Water Productivity. Water Resour. Res. 2020, 56, e2019WR026995. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. A Global Assessment of the Water Footprint of Farm Animal Products. Ecosystems 2012, 15, 401–415. [Google Scholar] [CrossRef]
- Mekonnen, M.; Hoekstra, A. The Green, Blue and Grey Water Footprint of Farm Animals and Animal Products; Value of Water; Daugherty Water for Food Global Institute: Lincoln, NE, USA, 2010. [Google Scholar]
- Weindl, I.; Bodirsky, B.L.; Rolinski, S.; Biewald, A.; Lotze-Campen, H.; Müller, C.; Dietrich, J.P.; Humpenöder, F.; Stevanović, M.; Schaphoff, S.; et al. Livestock Production and the Water Challenge of Future Food Supply: Implications of Agricultural Management and Dietary Choices. Glob. Environ. Chang. 2017, 47, 121–132. [Google Scholar] [CrossRef]
- Jalava, M.; Kummu, M.; Porkka, M.; Siebert, S.; Varis, O. Diet Change—A Solution to Reduce Water Use? Environ. Res. Lett. 2014, 9, 074016. [Google Scholar] [CrossRef]
- Harris, F.; Moss, C.; Joy, E.J.M.; Quinn, R.; Scheelbeek, P.F.D.; Dangour, A.D.; Green, R. The Water Footprint of Diets: A Global Systematic Review and Meta-Analysis. Adv. Nutr. 2020, 11, 375–386. [Google Scholar] [CrossRef]
- Haqiqi, I.; Grogan, D.S.; Horeh, M.B.; Liu, J.; Baldos, U.L.C.; Lammers, R.; Hertel, T.W. Local, Regional, and Global Adaptations to a Compound Pandemic-Weather Stress Event. Environ. Res. Lett. 2023, 18, 035005. [Google Scholar] [CrossRef]
- Liu, J.; Hertel, T.W.; Lammers, R.B.; Prusevich, A.; Baldos, U.L.C.; Grogan, D.S.; Frolking, S. Achieving Sustainable Irrigation Water Withdrawals: Global Impacts on Food Security and Land Use. Environ. Res. Lett. 2017, 12, 104009. [Google Scholar] [CrossRef]
- Hertel, T.W.; Baldos, U.L.C. Livestock and Processed Foods. In Global Change and the Challenges of Sustainably Feeding a Growing Planet; Springer International Publishing: Cham, Switzerland, 2016; pp. 115–124. ISBN 978-3-319-22661-3. [Google Scholar]
- Golub, A.; Hertel, T.W. Global Economic Integration and Land Use Change. J. Econ. Integr. 2008, 23, 463–488. [Google Scholar] [CrossRef]
- Graham, N.T.; Hejazi, M.I.; Kim, S.H.; Davies, E.G.R.; Edmonds, J.A.; Miralles-Wilhelm, F. Future Changes in the Trading of Virtual Water. Nat. Commun. 2020, 11, 3632. [Google Scholar] [CrossRef] [PubMed]
- Broom, D.M. Land and Water Usage in Beef Production Systems. Animals 2019, 9, 286. [Google Scholar] [CrossRef] [PubMed]
- De Miguel, Á.; Hoekstra, A.Y.; García-Calvo, E. Sustainability of the Water Footprint of the Spanish Pork Industry. Ecol. Indic. 2015, 57, 465–474. [Google Scholar] [CrossRef]
- Humayra, S.; Hossain, L.; Hasan, S.R.; Khan, M.S. Water Footprint Calculation, Effluent Characteristics and Pollution Impact Assessment of Leather Industry in Bangladesh. Water 2023, 15, 378. [Google Scholar] [CrossRef]
- Van Beek, L.P.H.; Wada, Y.; Bierkens, M.F.P. Global Monthly Water Stress: 1. Water Balance and Water Availability. Water Resour. Res. 2011, 47, 2010WR009791. [Google Scholar] [CrossRef]
- Veldkamp, T.I.E.; Eisner, S.; Wada, Y.; Aerts, J.C.J.H.; Ward, P.J. Sensitivity of Water Scarcity Events to ENSO-Driven Climate Variability at the Global Scale. Hydrol. Earth Syst. Sci. 2015, 19, 4081–4098. [Google Scholar] [CrossRef]
- Fischer, G.; Nachtergaele, F.; Prieler, S.; van Velthuizen, H.T.; Verelst, L.; Wiberg, D. Global Agro-Ecological Zones Assessment for Agriculture (GAEZ 2008); IIASA: Laxenburg, Austria; FAO: Rome, Italy, 2008. [Google Scholar]
- FAO/UNESCO 2003 FAO/UNESCO Soil Map of the World. Available online: https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/ (accessed on 10 October 2014).
- Yang, Y.; Donohue, R.J.; McVicar, T.R. Global estimation of effective plant rooting depth: Implications for hydrological modeling: Global hydrological effective rooting depth. Water Resour. Res. 2016, 52, 8260–8276. [Google Scholar] [CrossRef]
- Wisser, D.; Frolking, S.; Douglas, E.M.; Fekete, B.M.; Vörösmarty, C.J.; Schumann, A.H. Global Irrigation Water Demand: Variability and Uncertainties Arising from Agricultural and Climate Data Sets. Geophys. Res. Lett. 2008, 35, L24408. [Google Scholar] [CrossRef]
- Center for International Earth Science Information Network-CIESIN-Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Density Adjusted to Match 2015 Revision UN WPP Country Totals, Revision 11; NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2018. [CrossRef]
- Lehner, B.; Liermann, C.R.; Revenga, C.; Vörösmarty, C.; Fekete, B.; Crouzet, P.; Döll, P.; Endejan, M.; Frenken, K.; Magome, J.; et al. High-resolution Mapping of the World’s Reservoirs and Dams for Sustainable River-flow Management. Front. Ecol. Environ. 2011, 9, 494–502. [Google Scholar] [CrossRef]
- FAO AQUASTAT Dissemination System. Available online: https://data.apps.fao.org/aquastat/?lang=en (accessed on 3 June 2024).
Species | Herd Size [Million Heads] | Service Water [L/Day/Head] | Drinking Water [L/Day/Head] |
---|---|---|---|
Buffalo | 200 | 5 | 60 |
Cattle | 1460 | 4 | 50 |
Chicken | 21,900 | 0.05 | 0.4 |
Goats | 1010 | 4 | 3 |
Pigs | 992 | 20 | 10 |
Sheep | 1190 | 4 | 5 |
GAEZ Crop | Withdrawal, WBM [km3] | Withdrawal, Allocated to GLEAM Feed Use [km3] | Allocated to GLEAM Feed [%] |
---|---|---|---|
Banana | 9.33 | 0.47 | 5 |
Barley | 19.9 | 8.7 | 44 |
Cotton | 209 | 71.7 | 34 |
Crops not elsewhere specified (NES) | 368 | 53.7 | 15 |
Fodder crops | 53.8 | 45 | 84 |
Groundnut | 17 | 4.45 | 26 |
Maize | 336 | 167 | 50 |
Millet | 7.34 | 0.63 | 8.5 |
Olives | 1.02 | 0 | 0 |
Other Cereals | 2.28 | 1.94 | 85 |
Pasture | 11.6 | 11.6 | 100 |
Potato/Sweet Potato | 32.5 | 5.77 | 18 |
Pulses | 58.5 | 5.49 | 9.4 |
Rapeseed | 5.3 | 3.52 | 66 |
Rice | 1440 | 53.8 | 3.7 |
Sorghum | 24.3 | 6.48 | 27 |
Soybean | 20.4 | 12.7 | 62 |
Stimulants | 2.53 | 0 | 0 |
Sugar beet | 7.43 | 0.45 | 6 |
Sugarcane | 256 | 4.24 | 1.7 |
Sunflower | 11.2 | 3.92 | 35 |
Tobacco | 1.71 | 0 | |
Vegetables | 129 | 4.81 | 3.7 |
Wheat | 653 | 46.5 | 7.1 |
Yams and other roots | 0.77 | 0 | 0.22 |
Total | 3670 | 513 | 14 |
Direct Water Withdrawal | Feed Water Withdrawal | Total | |||
---|---|---|---|---|---|
FAO Region | [km3] | Percent of Total [%] | [km3] | Percent of Total [%] | [km3] |
Australia and New Zealand | 1.18 | 15 | 6.74 | 85 | 7.92 |
Caribbean | 0.259 | 20 | 1.02 | 80 | 1.27 |
Central America | 1.41 | 10 | 12.2 | 90 | 13.6 |
Central Asia | 0.683 | 2.7 | 24.4 | 97 | 25.1 |
Eastern Africa | 2.88 | 51 | 2.72 | 49 | 5.6 |
Eastern Asia | 9.17 | 5.4 | 161 | 95 | 170 |
Eastern Europe | 1.77 | 7.4 | 22.1 | 93 | 23.9 |
Middle Africa | 0.886 | 83 | 0.178 | 17 | 1.06 |
Northern Africa | 1.77 | 13 | 11.5 | 87 | 13.3 |
Northern America | 4.16 | 6.3 | 61.6 | 94 | 65.8 |
Northern Europe | 0.968 | 82 | 0.218 | 18 | 1.19 |
South America | 8.89 | 43 | 11.7 | 57 | 20.6 |
South-Eastern Asia | 2.51 | 7.9 | 29.1 | 92 | 31.6 |
Southern Africa | 0.519 | 27 | 1.38 | 73 | 1.89 |
Southern Asia | 10.3 | 7.5 | 127 | 92 | 137 |
Southern Europe | 1.19 | 6.5 | 17 | 93 | 18.2 |
Western Africa | 1.99 | 63 | 1.17 | 37 | 3.16 |
Western Asia | 1.02 | 5.5 | 17.4 | 94 | 18.4 |
Western Europe | 1.66 | 25 | 5.11 | 75 | 6.77 |
Total | 53.2 | 9.4 | 513 | 91 | 566.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wisser, D.; Grogan, D.S.; Lanzoni, L.; Tempio, G.; Cinardi, G.; Prusevich, A.; Glidden, S. Water Use in Livestock Agri-Food Systems and Its Contribution to Local Water Scarcity: A Spatially Distributed Global Analysis. Water 2024, 16, 1681. https://doi.org/10.3390/w16121681
Wisser D, Grogan DS, Lanzoni L, Tempio G, Cinardi G, Prusevich A, Glidden S. Water Use in Livestock Agri-Food Systems and Its Contribution to Local Water Scarcity: A Spatially Distributed Global Analysis. Water. 2024; 16(12):1681. https://doi.org/10.3390/w16121681
Chicago/Turabian StyleWisser, Dominik, Danielle S. Grogan, Lydia Lanzoni, Giuseppe Tempio, Giuseppina Cinardi, Alex Prusevich, and Stanley Glidden. 2024. "Water Use in Livestock Agri-Food Systems and Its Contribution to Local Water Scarcity: A Spatially Distributed Global Analysis" Water 16, no. 12: 1681. https://doi.org/10.3390/w16121681
APA StyleWisser, D., Grogan, D. S., Lanzoni, L., Tempio, G., Cinardi, G., Prusevich, A., & Glidden, S. (2024). Water Use in Livestock Agri-Food Systems and Its Contribution to Local Water Scarcity: A Spatially Distributed Global Analysis. Water, 16(12), 1681. https://doi.org/10.3390/w16121681