Sludge Composting—Is This a Viable Solution for Wastewater Sludge Management?
Abstract
1. Introduction
2. Composting as a Sustainable Solution
2.1. Common Residual Sludge Management Approaches
Method | Description | Advantages | Disadvantages | References |
---|---|---|---|---|
Landfilling | Disposing of dewatered sludge in a sanitary landfill to protect waste from the environment | Isolates contaminants Well-known solution |
| [20,21] |
Land Application | Treated sludge that meets specific regulations can be applied to land as a soil conditioner or fertilizer. | Nutrient source for plants Enhances soil structure Reduces disposal expenses |
| [22,23,24] |
Incineration | High-temperature burning results in reduced volume and organic destruction | Significant volume reduction (up to 95%) Potential for energy production |
| [25,26,27] |
Country, Year | Germany, 2016 [43] | Italy, 2015 [44] | Italy, 2020 [44] | EU, 2019 [45] | Different EU Countries [46] | Germany, 2017 [46] | Poland, 2017 [46] | Sweden, 2017 [46] |
---|---|---|---|---|---|---|---|---|
Composting | 230–290 EUR/t | 150–310 EUR/t | 310 EUR/t | 150 EUR/t | ||||
Incineration | 280–480 EUR/t | 80–90 EUR/t | 120 EUR/t | 80–438 EUR/t | 315 EUR/t | 80–120 EUR/t | 438 EUR/t | |
Agriculture | 94–180 EUR/t | 50–70 EUR/t | 103 EUR/t | 25–210 EUR/t | 160 EUR/t | 8–45 EUR/t | 75 EUR/t | 100 EUR/t |
Landfilling | 70–250 EUR/t | 202 EUR/t | 125–255 EUR/t | 255 EUR/t | 125 EUR/t | 215 EUR/t |
2.2. Role of Composting in the Circular Economy
Characteristic | Description | Range | Citation |
---|---|---|---|
Nutrient concentration | Source of macro- and micro-nutrients for plant growth | Nitrogen: 2–6% Phosphorus: 1–3% Potassium: 0.5–2% | [3,56] |
Particle Size | Influences handling, application, and nutrient release | Can vary widely depending on pre-treatment processes and the bulking agents used. Usually are in the sand-silt fraction (1 μm–5 mm) | [57] |
Organic Matter Content | Provides a source of energy for soil microbes | 25–60% depending on the initial sludge composition, composting method, additives, and bulking agents used | [16,58] |
Moisture Content | Affects storage, transportation, and use | 30–60% | [49,59] |
C:N Ratio | Indicates potential for nitrogen immobilization or release | 10–30:1 | [60,61] |
pH Level | Affects nutrient availability and microbial activity | 6.2–8.5 | [17,58] |
Pathogen Levels | Crucial for safe land application | Stringent regulations to minimize pathogens (e.g., E. coli) The composting process can significantly reduce pathogens | [62,63] |
3. Process of Sludge Composting
3.1. Feedstock Selection and Characteristics
Parameter | Units | Municipal Sludge (Typical Range) | US EPA 503 Biosolids Rule [65] | Sludge Directive [66] |
---|---|---|---|---|
Total Solids (TS) | % dry weight | 30–90 depending on the drying method and climate conditions [37,67,68] | Minimum 75% | - |
Moisture Content | % | 65–95 [60,69] | ≤25% sewage sludge that does not contain unstabilized solids for direct soil application ≤10% sewage sludge that contains unstabilized solids for direct soil application | - |
pH | - | 5–8 [70,71] | 12 or higher | - |
Total Nitrogen (TN) | mg/kg dry solids | 4200–7000 [72] | - | - |
Total Phosphorus (TP) | mg/kg dry solids | 2400–4700 [73] | - | - |
Organic Matter | % dry weight | 45–67 [72] | - | - |
Heavy Metals | ||||
Cd | mg/kg dry solids | 0.2–2.8 [73] 4.35 [74] | 85 | 20–40 |
Ni | mg/kg dry solids | 9–129 [73] 151 [74] | 420 | 300–400 |
Pb | mg/kg dry solids | 0–80 [73] 67 [74] | 840 | 750–1200 |
Zn | mg/kg dry solids | 150–3000 [73] 1027 [74] | 7500 | 2500–4000 |
Hg | mg/kg dry solids | 0.7–15 [73] 2.5 [74] | 57 | 16–25 |
Organic Contaminants | ||||
polyaromatic hydrocarbons (PAHs) | µg/kg dry solids | 9700 [75] | 9212 | 6866 |
polychlorinated biphenyls (PCBs) | µg/kg dry solids | - | 10–1000 | - |
Pathogens | ||||
Coliforms | MPN/g | 0.1−107 × 104 [76] | ≤1000 | - |
Salmonella | MPN/g | ≤3 | - |
3.2. Mixing and Bulking Agents
Bulking Agent | Characteristics | Benefits of Sludge Composting |
---|---|---|
Wood Chips |
|
|
Sawdust |
|
|
Straw |
|
|
Yard Trimmings and Leaves |
|
|
Chopped Bark |
|
|
Amendment Type | Description and Scope | |
---|---|---|
Nutrients |
|
|
Lime (CaCO3) |
|
|
Bulking agents with additional benefits |
|
|
Sewage Sludge Type | Bulking Agent | Ratio (Sewage Sludge: Bulking Agent) | Benefits | Drawbacks | Citations |
---|---|---|---|---|---|
Primary Sludge (High Moisture) | Wood chips, sawdust, straw, leaves, cardboard (shredded) | 1:1 (dry weight basis) | High Carbon Content (2:1 C:N) Improves aeration Reduces moisture content (50–60% ideal) Promotes microbial activity Readily available | Requires grinding/shredding May contain contaminants Not always readily available | [83] |
Secondary Sludge (Lower Moisture) | Composted wood chips, yard trimmings, forestry residues, rice hulls, empty fruit bunches (palm oil industry) | 1:2 (dry weight basis) | Readily available (composted wood chips) Sustainable source (yard trimmings) Promotes microbial diversity (forestry residues) Low bulk density (improves aeration) High nutrient content (empty fruit bunches) | Requires composting wood chips beforehand Seasonal availability (yard trimmings) May require processing (forestry residues) High transportation costs (rice hulls) Limited availability (empty fruit bunches) | [84] |
Anaerobic Digestate (Low Carbon) | Biochar (10–20% by weight), mushroom compost (spent) (1:1), animal manure (1:2) | As a percentage of the total mix or ratio with sludge | High surface area (biochar) Supplements nutrients (mushroom compost) Improves microbial activity (animal manure) | High production cost (biochar) Limited availability (spent mushroom compost) Potential for pathogens (animal manure) | [85,86,87] |
3.3. Factors Influencing the Composting Process
3.4. Aerobic Decomposition and Microbial Activity
4. Laboratory and Full-Scale Experiences
4.1. Case Studies and Experimental Research
Location/ Scale | Feedstock | Composting Method | Key Findings | Advantages | Disadvantages | Source |
---|---|---|---|---|---|---|
Vilnius wastewater treatment plant/ Two 8 m × 1.7 m × 3.5 m piles |
|
|
|
|
| [3] |
Lab-scale/ Two-stage system: 100 dm3 aerated bioreactor followed by a periodically turned windrow |
|
|
|
|
| [17] |
Lab-scale/ 216 L reactor |
|
|
|
|
| [15] |
Composting plant pilot experiment/ conical pile: 0.6 m height, 1.5 m diameter | 3 experiments:
|
|
|
|
| [109] |
Lab-scale/ 6 L containers |
|
|
|
|
| [110] |
Lab-scale/ Column reactor of 30 cm diameter and 45 cm height |
|
|
|
|
| [111] |
Pilot scale/ windrow pyramid of 1.5 m high, 2 m wide and 4 m long |
|
|
|
|
| [112] |
Lab-scale/ 5 L composters |
|
|
|
|
| [18] |
Lab-scale/ 12 cm × 36 cm height × diameter composter |
|
|
|
|
| [113] |
Lab-scale/ 550 mm diameter and a height of 600 mm cells in controlled conditions |
|
|
|
|
| [114] |
4.2. Challenges and Solutions in Scaling Up
5. End-Product Quality and Utilization
5.1. Characteristics of Composted Sludge
5.2. Potential Applications in Agriculture, Landscaping, and Soil Improvement
5.3. Economic Feasibility and Market Demand
Factor | Description | Potential Advantages | Potential Disadvantages |
---|---|---|---|
Production Costs | Composting process costs (equipment, labor, bulking agents, etc.) | Reduced landfill fees, potential revenue from compost sales | High upfront investment, ongoing operational costs |
Transportation Costs | Transporting sludge and finished compost | Economies of scale for larger facilities, potential for local markets | Distance to markets can impact profitability |
Compost Quality | Nutrient content, organic matter, level of contaminants | Premium pricing for high-quality compost suitable for specific applications | Lower prices for compost with limited use cases |
Market Demand | Demand for composted sludge in agriculture, landscaping, or other applications | Reduced disposal burden, potential for environmental benefit | Fluctuations in demand, competition from other organic fertilizers |
Regulations | Government regulations on compost use and safety standards | Ensures safe application, potential government incentives for sustainable practices | Regulatory compliance can add complexity and cost |
6. Environmental and Regulatory Considerations
6.1. Impact on GHG Emissions
Aspect | Impact on GHG Emissions | Explanation |
---|---|---|
Landfilling vs. Composting | Positive | During anaerobic decomposition, CH4 is produced in landfills, a GHG. CH4 production is reduced by aerobic composting. |
Fertilizer Replacement | Positive | Composting reduces the need for energy-intensive synthetic fertilizers. |
Incomplete Composting | Negative | If composting is mismanaged, CH4 is produced. |
Nitrous Oxide Emissions | Negative | Composting can also generate nitrous oxide, another harmful GHG. |
Energy Use | Negative (potentially) | Operating composting facilities use energy, possibly producing additional harmful emissions depending on its source. |
6.2. Pathogen Reduction and Safety Considerations
6.3. Compliance with Environmental Regulations and Standards
7. Future Directions and Conclusions
7.1. Emerging Trends and Innovations
7.2. Recommendations for Further Research
7.3. Summary of Key Findings and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation List | |
Abbreviation | Meaning |
ARG | Antibiotic resistance genes |
BA | Bulking agents |
BS | Biolysed sludge |
C:N ratio | Carbon-to-nitrogen ratio |
COD | Chemical oxygen demand |
EU | European Union |
EC | European Commission |
FA | Fatty acids |
FAO | Food and Agriculture Organization |
FS | Fecal sludge |
GHG | Greenhouse gas |
GI | Germination index |
HA | humic acids |
HR | herb residue |
HS | humic substances |
LCA | Life Cycle Assessment |
MC | Mature compost |
MSS | Municipal sewage sludge |
MSW | Municipal solid waste |
OFMSW | Organic fraction of municipal solid waste |
PTE | Potential toxic elements |
SM | spent mushroom |
SOM | Soil organic matter |
SWD | Sawdust |
TK | Total potassium |
TN | Total nitrogen |
TP | Total phosphorus |
WHO | World Health Organization |
WWTP | Waste Water Treatment Plant |
References
- Fijałkowski, K. Emerging contaminants in sludge (endocrine disruptors, pesticides, and pharmaceutical residues, including illicit drugs/controlled substances, etc.). Ind. Munic. Sludge 2019, 455–473. [Google Scholar] [CrossRef]
- Kasiński, S.; Dębowski, M.; Tylus, G.; Rudnicki, M. Characteristics of Wastewater from Municipal Waste Bio-Drying and Its Impact on Aquatic Environment—Long-Term Research on a Technical Scale. Energies 2022, 15, 9467. [Google Scholar] [CrossRef]
- Klipova, I.; Stunžėnas, E.; Kruopienė, J.; Budrys, R.P. Environmental and Economic Performance of Sludge Composting Optimization Alternatives: A Case Study for Thermally Hydrolyzed Anaerobically Digested Sludge. Water 2022, 14, 4102. [Google Scholar] [CrossRef]
- Anjum, M.; Al-Makishah, N.H.; Barakat, M.A. Wastewater Sludge Stabilization Using Pre-Treatment Methods. Process Saf. Environ. Prot. 2016, 102, 615–632. [Google Scholar] [CrossRef]
- Herrera-Navarrete, R.; Colín-Cruz, A.; Arellano-Wences, H.J.; Sampedro-Rosas, M.L.; Rosas-Acevedo, J.L.; Rodríguez-Herrera, A.L. Municipal Wastewater Treatment Plants: Gap, Challenges, and Opportunities in Environmental Management. Environ. Manag. 2022, 69, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Dede, C.; Ozer, H.; Dede, O.H.; Celebi, A.; Ozdemir, S. Recycling Nutrient-Rich Municipal Wastes into Ready-to-Use Potting Soil: An Approach for the Sustainable Resource Circularity with Inorganic Porous Materials. Horticulturae 2023, 9, 203. [Google Scholar] [CrossRef]
- Xie, N.; Zhong, L.; Ouyang, L.; Xu, W.; Zeng, Q.; Wang, K.; Zaynab, M.; Chen, H.; Xu, F.; Li, S. Community Composition and Function of Bacteria in Activated Sludge of Municipal Wastewater Treatment Plants. Water 2021, 13, 852. [Google Scholar] [CrossRef]
- Szulc, P.; Kasprzak, J.; Dymaczewski, Z.; Kurczewski, P. Life Cycle Assessment of Municipal Wastewater Treatment Processes Regarding Energy Production from the Sludge Line. Energies 2021, 14, 356. [Google Scholar] [CrossRef]
- Moško, J.; Pohořelý, M.; Skoblia, S.; Beňo, Z.; Jeremiáš, M. Detailed Analysis of Sewage Sludge Pyrolysis Gas: Effect of Pyrolysis Temperature. Energies 2020, 13, 4087. [Google Scholar] [CrossRef]
- Goldan, E.; Nedeff, V.; Barsan, N.; Culea, M.; Tomozei, C.; Panainte-Lehadus, M.; Mosnegutu, E. Evaluation of the Use of Sewage Sludge Biochar as a Soil Amendment—A Review. Sustainability 2022, 14, 5309. [Google Scholar] [CrossRef]
- Callegari, A.; Hlavinek, P.; Capodaglio, A.G. Production of energy (biodiesel) and recovery of materials (biochar) from pyrolysis of urban waste sludge. Rev. Ambiente Água 2018, 13, e2128. [Google Scholar] [CrossRef]
- Boguniewicz-Zablocka, J.; Klosok-Bazan, I.; Capodaglio, A.G. Sustainable management of biological solids in small treatment plants: Overview of strategies and reuse options for a solar drying facility in Poland. Environ. Sci. Pollut. Res. 2021, 28, 24680–24693. [Google Scholar] [CrossRef] [PubMed]
- Stegenta-Dąbrowska, S.; Sobieraj, K.; Rosik, J.; Sidełko, R.; Valentin, M.; Białowiec, A. The Development of Anammox and Chloroflexi Bacteria during the Composting of Sewage Sludge. Sustainability 2022, 14, 10248. [Google Scholar] [CrossRef]
- Górka, J.; Cimochowicz-Rybicka, M.; Poproch, D. Sludge Management at the Kraków-Płaszów WWTP—Case Study. Sustainability 2022, 14, 7982. [Google Scholar] [CrossRef]
- Wang, H.; Chen, S.; Gu, J.; Liu, Y.; Yang, G.; Su, W.; Xie, Y.; Zhu, J.; Yu, R. Biolysed Sludge Composting for Nitrogen Conservation and Humification Improvements and Mechanisms. Sustainability 2023, 15, 10119. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Callegari, A. Energy and Resources Recovery from Excess Sewage Sludge: A Holistic Analysis of Opportunitiesand Strategies. RCR Adv. 2023, 19, 200184. [Google Scholar] [CrossRef]
- Kulikowska, D.; Bernat, K.; Zaborowska, M.; Zielińska, M. Municipal Sewage Sludge Composting in the Two-Stage System: The Role of Different Bulking Agents and Amendments. Energies 2022, 15, 5014. [Google Scholar] [CrossRef]
- Neczaj, E.; Grosser, A.; Grobelak, A.; Celary, P.; Singh, B.R. Conversion of Sewage Sludge and Other Biodegradable Waste into High-Value Soil Amendment within a Circular Bioeconomy Perspective. Energies 2021, 14, 6953. [Google Scholar] [CrossRef]
- Sylwan, I.; Thorin, E. Potential of sludge-derived char as a metal sorbent during primary settling of municipal wastewater. Environ. Technol. Innov. 2023, 32, 103258. [Google Scholar] [CrossRef]
- Yazdani, M.; Monavari, S.M.; Omrani, G.A.; Shariat, M.; Hosseini, S.M. Landfill site suitability assessment using geographic information system analysis. Solid Earth 2015, 6, 945–956. [Google Scholar] [CrossRef]
- Spinosa, L. Sludge Treatment and Disposal. In Water Encyclopedia; Lehr, J.H., Keeley, J., Eds.; Wiley Online Library: Hoboken, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Achkir, A.; Aouragh, A.; El Mahi, M.; Lotfi, E.M.; Kabriti, M.; Abid, A.; Mousauri, T.; Yagoubi, M. Benefits and Risks of Liquid Sewage Sludge Recycling in Agricultural Spreading—A Case Study of WWTP of Skhirat, Morocco. J. Ecol. Eng. 2023, 24, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Schiptsova, N.; Larionov, G.; Vasilyev, O.; Fadeeva, N.; Terentyeva, M. Effect of sewage sludge application on heavy metals contamination in soil and carrot. In Proceedings of the International AgroScience Conference (AgroScience-2020), Cheboksary, Russia, 10 April 2020. [Google Scholar] [CrossRef]
- Wydro, U.; Jankowska, M.; Wołejko, E.; Kondzior, P.; Łozowicka, B.; Kaczyński, P.; Rodziewicz, J.; Janczukowicz, W.; Pietryczuk, A.; Cudowski, A.; et al. Changes in Soil Biological Properties after Sewage Sludge and Pesticide Application in Wheat Cultivation. Appl. Sci. 2022, 12, 11452. [Google Scholar] [CrossRef]
- Di Giacomo, G.; Romano, P. Evolution and Prospects in Managing Sewage Sludge Resulting from Municipal Wastewater Purification. Energies 2022, 15, 5633. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, D.; Feng, P.; Hao, B.; Guo, Y.; Wang, S. Municipal sewage sludge incineration and its air pollution control. J. Clean. Prod. 2021, 295, 126456. [Google Scholar] [CrossRef]
- Murray, A.; Horvath, A.; Nelson, K.L. Hybrid life-cycle environmental and cost inventory of sewage sludge treatment and end-use scenarios: A case study from China. Environ. Sci. Technol. 2008, 42, 3163–3169. [Google Scholar] [CrossRef] [PubMed]
- Tiron, O.; Bumbac, C.; Manea, E.; Nita Lazar, M. Overcoming Microalgae Harvesting Barrier by Activated Algae Granules. Sci. Rep. 2017, 7, 4646. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Flo, E.; Ortiz, A.; Arias, C.A.; Díez-Montero, R.; Kohlheb, N.; Schauser, U.-H.; García, J.; Gregersen, P.K.S. Sludge Treatment Wetland for Treating Microalgae Digestate Grown in Agricultural Runoff: A Technical, Economic, and Environmental Assessment. Water 2023, 15, 2159. [Google Scholar] [CrossRef]
- Wang, C.; Dong, D.; Strong, P.J.; Zhu, W.; Ma, Z.; Qin, Y.; Wu, W. Microbial phylogeny determines transcriptional response of resistome to dynamic composting processes. Microbiome 2017, 5, 103. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.T.K.; Le, T.H.; Tran, C.-S.; Nguyen, P.-T.; Thai, V.-N.; Bui, X.-T. Compost to improve sustainable soil cultivation and crop productivity. Case Stud. Chem. Environ. Eng. 2022, 6, 100211. [Google Scholar] [CrossRef]
- Wu, J.Q.; Zhao, Y.; Qi, H.S.; Zhao, X.Y.; Yang, T.X.; Du, Y.Q.; Zhang, H.; Wei, Z.M. Identifying the key factors that affect the formation of humic substance during different materials composting. Bioresour. Technol. 2017, 244, 1193–1196. [Google Scholar] [CrossRef] [PubMed]
- Abdellah, Y.A.; Shi, Z.-J.; Sun, S.-S.; Luo, Y.-S.; Yang, X.; Hou, W.-T.; Wang, R.L. An assessment of composting conditions, humic matters formation, and product maturity in response to different additives: A meta-analysis. J. Clean. Prod. 2022, 366, 132953. [Google Scholar] [CrossRef]
- Gaspar, S.S.; Assis, L.L.R.; Carvalho, C.A.; Buttrós, V.H.; Ferreira, G.M.R.; Schwan, R.F.; Pasqual, M.; Rodrigues, F.A.; Rigobelo, E.C.; Castro, R.P.; et al. Dynamics of microbiota and physicochemical characterization of food waste in a new type of composter. Front. Sustain. Food Syst. 2022, 6, 960196. [Google Scholar] [CrossRef]
- Lasaridi, K.-E.; Manios, T.; Stamatiadis, S.; Chroni, C.; Kyriacou, A. The Evaluation of Hazards to Man and the Environment during the Composting of Sewage Sludge. Sustainability 2018, 10, 2618. [Google Scholar] [CrossRef]
- Fan, S.; Li, A.; Ter Heijne, A.; Buisman, C.J.N.; Chen, W.-S. Heat potential, generation, recovery and utilization from composting: A review. Resour. Conserv. Recycl. 2021, 175, 105850. [Google Scholar] [CrossRef]
- Barthod, J.; Rumpel, C.; Dignac, M.F. Composting with additives to improve organic amendments. A review. Agron. Sustain. Dev. 2018, 38, 17. [Google Scholar] [CrossRef]
- Wiśniowska, E.; Kowalczyk, M. Recovery of Cellulose, Extracellular Polymeric Substances and Microplastics from Sewage Sludge: A Review. Energies 2022, 15, 7744. [Google Scholar] [CrossRef]
- Sugurbekova, G.; Nagyzbekkyzy, E.; Sarsenova, A.; Danlybayeva, G.; Anuarbekova, S.; Kudaibergenova, R.; Frochot, C.; Acherar, S.; Zhatkanbayev, Y.; Moldagulova, N. Sewage Sludge Management and Application in the Form of Sustainable Fertilizer. Sustainability 2023, 15, 6112. [Google Scholar] [CrossRef]
- Major, N.; Schierstaedt, J.; Schikora, A.; Palčić, I.; Černe, M.; Goreta Ban, S.; Pasković, I.; Perković, J.; Užila, Z.; Ban, D. Pyrolyzed or Composted Sewage Sludge Application Induces Short-Term Changes in the Terra Rossa Soil Bacterial and Fungal Communities. Sustainability 2022, 14, 11382. [Google Scholar] [CrossRef]
- Lin, X.; Chen, C.; Li, H.; Hei, L.; Zeng, L.; Wei, Z.; Chen, Y.; Wu, Q.T. Comprehensive recycling of fresh municipal sewage sludge to fertilize garden plants and achieve low carbon emission: A pilot study. Front. Environ. Sci. 2022, 10, 1023356. [Google Scholar] [CrossRef]
- Serafini, L.F.; Feliciano, M.; Rodrigues, M.A.; Gonçalves, A. Systematic Review and Meta-Analysis on the Use of LCA to Assess the Environmental Impacts of the Composting Process. Sustainability 2023, 15, 1394. [Google Scholar] [CrossRef]
- Amann, A.; Weber, N.; Krampe, J.; Rechberger, H.; Zoboli, O.; Zessner, M. Operation and Performance of Austrian Wastewater and Sewage Sludge Treatment as a Basis for Resource Optimization. Water 2021, 13, 2998. [Google Scholar] [CrossRef]
- Domini, M.; Abbà, A.; Bertanza, G. Analysis of the variation of costs for sewage sludge transport, recovery, and disposal in Northern Italy: A recent survey (2015–2021). Water Sci. Technol. 2022, 85, 1167–1175. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Olsson, G. Energy Issues in Sustainable Urban Wastewater Management: Use, Demand Reduction and Recovery in the Urban Water Cycle. Sustainability 2020, 12, 266. [Google Scholar] [CrossRef]
- Kacprzak, M.; Neczaj, E.; Fijałkowski, K.; Grobelak, A.; Grosser, A.; Worwag, M.; Singh, B.R. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef]
- Đurđević, D.; Žiković, S.; Blecich, P. Sustainable Sewage Sludge Management Technologies Selection Based on Techno-Economic-Environmental Criteria: Case Study of Croatia. Energies 2022, 15, 3941. [Google Scholar] [CrossRef]
- Đurđević, D.; Žiković, S.; Čop, T. Socio-Economic, Technical and Environmental Indicators for Sustainable Sewage Sludge Management and LEAP Analysis of Emissions Reduction. Energies 2022, 15, 6050. [Google Scholar] [CrossRef]
- Saghi, M.H.; Payam, G.; Bay, A.; Saeidi, F. Physico-chemical changes and maturity evaluation of composts from wood residue mixed with sewage sludge and chicken manure. Int. J. Recycl. Org. Waste Agric. 2024, 10, 175–184. [Google Scholar] [CrossRef]
- Markowicz, A.; Bondarczuk, K.; Wiekiera, A.; Sułowicz, S. Is sewage sludge a valuable fertilizer? A soil microbiome and resistome study under field conditions. J. Soils Sediments 2021, 21, 2882–2895. [Google Scholar] [CrossRef]
- Sessa, V.; Bhandari, R. Composting Heat Recovery for Residential Consumption: An Assessment of Viability. Sustainability 2023, 15, 4006. [Google Scholar] [CrossRef]
- Cecconet, D.; Capodaglio, A.G. Sewage Sludge Biorefinery for Circular Economy. Sustainability 2022, 14, 14841. [Google Scholar] [CrossRef]
- Myszura-Dymek, M.; Żukowska, G. The Influence of Sewage Sludge Composts on the Enzymatic Activity of Reclaimed Post-Mining Soil. Sustainability 2023, 15, 4749. [Google Scholar] [CrossRef]
- De Amorim Júnior, S.S.; de Souza Pereira, M.A.; Morishigue, M.; da Costa, R.B.; de Oliveira Guilherme, D.; Magalhães Filho, F.J.C. Circular Economy in the Biosolids Management by Nexus Approach: A View to Enhancing Safe Nutrient Recycling—Pathogens, Metals, and Emerging Organic Pollutants Concern. Sustainability 2022, 14, 14693. [Google Scholar] [CrossRef]
- Pecorini, I.; Peruzzi, E.; Albini, E.; Doni, S.; Macci, C.; Masciandaro, G.; Iannelli, R. Evaluation of MSW Compost and Digestate Mixtures for a Circular Economy Application. Sustainability 2020, 12, 3042. [Google Scholar] [CrossRef]
- De Oliveira, G.S.; Jalal, A.; Prates, A.R.; Teixeira Filho, M.C.M.; Alves, R.S.; Silva, L.C.; do Nascimento, R.E.N.; Silva, P.S.T.; Arf, O.; Galindo, F.S.; et al. Common Bean Productivity and Micronutrients in the Soil–Plant System under Residual Applications of Composted Sewage Sludge. Plants 2023, 12, 2153. [Google Scholar] [CrossRef]
- Sessitsch, A.; Weilharter, A.; Gerzabek, M.H.; Kirchmann, H.; Kandeler, E. Microbial Population Structures in Soil Particle Size Fractions of a Long-Term Fertilizer Field Experiment. Appl. Environ. Microbiol. 2001, 67, 4215–4224. [Google Scholar] [CrossRef]
- Kulikowska, D.; Bernat, K. Composting of Municipal Sewage Sludge and Lignocellulosic Waste: Nitrogen Transformations and Humic Substances Molecular Weight. Energies 2023, 16, 376. [Google Scholar] [CrossRef]
- Yañez, R.; Alonso, J.L.; Díaz, M.J. Influence of bulking agent on sewage sludge composting process. Bioresour. Technol. 2009, 100, 5827–5833. [Google Scholar] [CrossRef]
- Nayak, A.K.; Kalamdhad, A.S. Sewage sludge composting in a rotary drum reactor: Stability and kinetic analysis. Int. J. Recycl. Org. Waste Agric. 2015, 4, 249–259. [Google Scholar] [CrossRef]
- Neugebauer, M.; Sołowiej, P.; Piechocki, J.; Czekała, W.; Janczak, D. The influence of the C:N ratio on the composting rate. Int. J. Smart Grid Clean Energy 2017, 6, 54–60. [Google Scholar] [CrossRef]
- Fatunla, K.; Inam, E.; Essien, J.; Dan, E.; Odon, A.; Kang, S.; Semple, K.T. Influence of composting and thermal processing on the survival of microbial pathogens and nutritional status of Nigeria sewage sludge. Int. J. Recycl. Org. Waste Agric. 2017, 6, 301–310. [Google Scholar] [CrossRef]
- Werner, K.A.; Castro-Herrera, D.; Yimer, F.; Tadesse, M.; Kim, D.-G.; Prost, K.; Brüggemann, N.; Grohmann, E. Microbial Risk Assessment of Mature Compost from Human Excreta, Cattle Manure, Organic Waste, and Biochar. Sustainability 2023, 15, 4624. [Google Scholar] [CrossRef]
- Mininni, G.; Blanch, A.R.; Lucena, F.; Berselli, S. EU policy on sewage sludge utilization and perspectives on new approaches of sludge management. Environ. Sci. Pollut. Res. Int. 2015, 22, 7361–7374. [Google Scholar] [CrossRef]
- USEPA. Preparing Sewage Sludge for Land Application or Surface Disposal: Guide for Preparers of Sewage Sludge on the Monitoring, Record Keeping, and Reporting Requirements of the Federal Standards for the Use and Disposal of Sewage Sludge, 40 CFR Part 503; EPA/831B-93-002; Environmental Protection Agency USEPA: Washington, DC, USA, 1994.
- ECC. EUR-Lex Council Directive 86/278/EEC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Off. J. Eur. Union 1986, 181, 6–12. [Google Scholar]
- Sichler, T.C.; Montag, D.; Barjenbruch, M.; Mauch, T.; Sommerfeld, T.; Ehm, J.H.; Adam, C. Variation of the element composition of municipal sewage sludges in the context of new regulations on phosphorus recovery in Germany. Environ. Sci. Eur. 2022, 34, 84. [Google Scholar] [CrossRef] [PubMed]
- An-nori, A.; Ezzariai, A.; El Mejahed, K.; El Fels, L.; El Gharous, M.; Hafidi, M. Solar Drying as an Eco-Friendly Technology for Sewage Sludge Stabilization: Assessment of Micropollutant Behavior, Pathogen Removal, and Agronomic Value. Front. Environ. Sci. 2022, 10, 814590. [Google Scholar] [CrossRef]
- Yang, K.; Sun, J.; Liu, H.; Yang, W.; Dong, L. Study on the Thermogravimetric Kinetics of Dehydrated Sewage Sludge Regulated by Cationic Polyacrylamide and Sawdust. Polymers 2023, 15, 2396. [Google Scholar] [CrossRef]
- El-Nahhal, I.; Al-Najar, H.; El-Nahhal, Y. Physicochemical Properties of Sewage Sludge from Gaza. Int. J. Geosci. 2014, 5, 586–594. [Google Scholar] [CrossRef]
- Pöykiö, R.; Watkins, G.; Dahl, O. Characterization of municipal sewage sludge as a soil improver and a fertilizer product. Ecol. Chem. Eng. S 2019, 26, 547–557. [Google Scholar] [CrossRef]
- Sáez, J.A.; Flores, P.; Bustamante, M.Á.; Sanchez-Hernandez, J.C.; Moral, R.; Pérez-Murcia, M.D. Nitrogen Isotope Fractionation during Composting of Sewage and Agri-Food Sludge with Pruning Waste. Agronomy 2020, 10, 1954. [Google Scholar] [CrossRef]
- Xiao, D.; Li, H.; Wang, Y.; Wen, G.; Wang, C. Distribution Characteristics of Typical Heavy Metals in Sludge from Wastewater Plants in Jiangsu Province (China) and Their Potential Risks. Water 2023, 15, 313. [Google Scholar] [CrossRef]
- Tytła, M.; Widziewicz-Rzońca, K.; Bernaś, Z. A Comparison of Conventional and Ultrasound-Assisted BCR Sequential Extraction Methods for the Fractionation of Heavy Metals in Sewage Sludge of Different Characteristics. Molecules 2022, 27, 4947. [Google Scholar] [CrossRef]
- Stańczyk-Mazanek, E.; Stępniak, L.; Kępa, U. Analysis of Migration of Polycyclic Aromatic Hydrocarbons from Sewage Sludge Used for Fertilization to Soils, Surface Waters, and Plants. Water 2019, 11, 1270. [Google Scholar] [CrossRef]
- Sun, Y.; Luo, Y.; Wu, L.; Li, Z.; Song, J.; Christie, P. Survival of faecal coliforms and hygiene risks in soils treated with municipal sewage sludges. Environ. Geochem. Health 2006, 28, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Manea, E.E.; Bumbac, C.; Dinu, L.R.; Bumbac, M.; Nicolescu, C.M. Composting as a Sustainable Solution for Organic Solid Waste Management: Current Practices and Potential Improvements. Sustainability 2024, 16, 6329. [Google Scholar] [CrossRef]
- Ogawa, L.; Matsumoto, L.S.; Toledo, R.; Almeida, J.; Tabacow, V.; Dias, F.; Rodrigues, D.; Cabral, M.; Freire, R.; Navarro, I. The effectiveness of composting using stabilizing urban sewage sludge compounds. J. Appl. Life Sci. Environ. 2023, 56, 139–151. [Google Scholar] [CrossRef]
- Balaganesh, P.; Vasudevan, M.; Natarajan, N. Evaluating sewage sludge contribution during co-composting using cause-evidence-impact analysis based on morphological characterization. Environ. Sci. Pollut. Res. 2022, 29, 51161–51182. [Google Scholar] [CrossRef]
- Nordahl, S.; Preble, C.; Kirchstetter, T.; Scown, C. Greenhouse Gas and Air Pollutant Emissions from Composting. Environ. Sci. Technol. 2023, 57, 2235–2247. [Google Scholar] [CrossRef]
- Singh, Y.P.; Arora, S.; Mishra, V.K.; Singh, A. Composting of Municipal Solid Waste Using Earthworms and Ligno-Cellulolytic Microbial Consortia for Reclamation of the Degraded Sodic Soils and Harnessing Their Productivity Potential. Sustainability 2023, 15, 2317. [Google Scholar] [CrossRef]
- Castro-Jiménez, C.C.; Saldarriaga-Molina, J.C.; García, E.F.; Correa-Ochoa, M.A. Primary Treatment of Domestic Wastewater with the Use of Unmodified and Chemically Modified Drinking Water Treatment Sludge. Sustainability 2022, 14, 9827. [Google Scholar] [CrossRef]
- Skripsts, E.; Mezule, L.; Klaucans, E. Primary Sludge from Dairy and Meat Processing Wastewater and Waste from Biomass Enzymatic Hydrolysis as Resources in Anaerobic Digestion and Co-Digestion Supplemented with Biodegradable Surfactants as Process Enhancers. Energies 2022, 15, 4333. [Google Scholar] [CrossRef]
- Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef]
- Casini, D.; Barsali, T.; Rizzo, A.M.; Chiaramonti, D. Production and characterization of co-composted biochar and digestate from biomass anaerobic digestion. Biomass Convers. Biorefin. 2021, 11, 2271–2279. [Google Scholar] [CrossRef]
- Bernat, K.; Le, T.C.T.; Kulikowska, D.; Thapa, R. Anaerobic Digestion as a Possible Method of Managing Waste from Mushroom Production with Sewage Sludge as Co-Substrate. Energies 2024, 17, 1938. [Google Scholar] [CrossRef]
- Cárdenas-Talero, J.L.; Silva-Leal, J.A.; Pérez-Vidal, A.; Torres-Lozada, P. The Influence of Municipal Wastewater Treatment Technologies on the Biological Stabilization of Sewage Sludge: A Systematic Review. Sustainability 2022, 14, 5910. [Google Scholar] [CrossRef]
- Wu, J.; Yang, J.; Wang, J.; Fang, L.; Fang, J. A field-scale evaluation of the removal of odorous gases by a plant material-based deodorant. Front. Environ. Sci. 2023, 10, 107835. [Google Scholar] [CrossRef]
- Kim, S.; Shim, S.; Won, S.; Kwag, J.; Ra, C. Real-Time Control Technology for a Bio-Liquor Circulation System in a Swine Barn with Slurry Pit: Pilot Scale Study. Animals 2022, 12, 2941. [Google Scholar] [CrossRef] [PubMed]
- Kumaresan, K.; Balan, R.; Sridhar, A.; Aravind, J.; Kanmani, P. An integrated approach of composting methodologies for solid waste management. Glob. J. Environ. Sci. Manag. 2016, 2, 157–162. [Google Scholar] [CrossRef]
- Bellini, A.; Ferrocino, I.; Cucu, M.A.; Pugliese, M.; Garibaldi, A.; Gullino, M.L. A Compost Treatment Acts as a Suppressive Agent in Phytophthora capsica–Cucurbita pepo Pathosystem by Modifying the Rhizosphere Microbiota. Front. Plant Sci. 2020, 24, 885. [Google Scholar] [CrossRef]
- Nunes, N.; Ragonezi, C.; Gouveia, C.S.S.; Pinheiro de Carvalho, M.Â.A. Review of Sewage Sludge as a Soil Amendment in Relation to Current International Guidelines: A Heavy Metal Perspective. Sustainability 2021, 13, 2317. [Google Scholar] [CrossRef]
- Malarski, M.; Wichowski, P.; Czajkowska, J. Heavy Metals in Fly Ash as a Factor Limiting Its Use in Fertilizing Composts. Water 2023, 15, 2247. [Google Scholar] [CrossRef]
- Scheinemann, H.A.; Dittmar, K.; Stöckel, F.S.; Müller, H.; Krüger, M.E. Hygienisation and nutrient conservation of sewage sludge or cattle manure by lactic acid fermentation. PLoS ONE 2015, 10, e0118230. [Google Scholar] [CrossRef] [PubMed]
- Leone, A.; Romaniello, R.; Tamborrino, A.; Beneduce, L.; Gagliardi, A.; Giuliani, M.; Gatta, G. Composting of Olive Mill Pomace, Agro-Industrial Sewage Sludge and Other Residues: Process Monitoring and Agronomic Use of the Resulting Composts. Foods 2021, 10, 2143. [Google Scholar] [CrossRef]
- Dastpak, H.; Pasalari, H.; Jafari, A.J.; Gholami, M.; Farzadkia, M. Improvement of Co-Composting by a combined pretreatment Ozonation/Ultrasonic process in stabilization of raw activated sludge. Sci. Rep. 2020, 10, 1070. [Google Scholar] [CrossRef]
- Hosseini Koupaie, E.; Johnson, T.; Eskicioglu, C. Comparison of Different Electricity-Based Thermal Pretreatment Methods for Enhanced Bioenergy Production from Municipal Sludge. Molecules 2018, 23, 2006. [Google Scholar] [CrossRef]
- El-Sebaie, O.D.; Hussein, A.H.; Abdel-Aty, M.M.; Ramadan, M.H.; Helaly, H.A. Quality monitoring of composting processes of wastewater sludge in Alexandria. J. Egypt. Public Health Assoc. 2002, 77, 517–536. [Google Scholar] [PubMed]
- Liang, Z.; Shi, J.; Wang, C.; Li, J.; Liang, D.; Yong, E.L.; He, Z.; Wang, S. Genome-Centric Metagenomic Insights into the Impact of Alkaline/Acid and Thermal Sludge Pretreatment on the Microbiome in Digestion Sludge. Appl. Environ. Microbiol. 2020, 86, e01920-20. [Google Scholar] [CrossRef] [PubMed]
- Kiruba, N.J.M.; Saeid, A. An Insight into Microbial Inoculants for Bioconversion of Waste Biomass into Sustainable “Bio-Organic” Fertilizers: A Bibliometric Analysis and Systematic Literature Review. Int. J. Mol. Sci. 2022, 23, 13049. [Google Scholar] [CrossRef] [PubMed]
- McKinley, V.L.; Vestal, J.R. Physical and chemical correlates of microbial activity and biomass in composting municipal sewage sludge. Appl. Environ. Microbiol. 1985, 50, 1395–1403. [Google Scholar] [CrossRef]
- Galitskaya, P.; Biktasheva, L.; Saveliev, A.; Grigoryeva, T.; Boulygina, E.; Selivanovskaya, S. Fungal and bacterial successions in the process of co-composting of organic wastes as revealed by 454 pyrosequencing. PLoS ONE 2017, 12, e0186051. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Zhang, L.; Wang, D.; Niu, B. Bioaugmentation mitigates ammonia and hydrogen sulfide emissions during the mixture compost of dewatered sewage sludge and reed straw. Environ. Sci. Pollut. Res. 2021, 28, 68487–68497. [Google Scholar] [CrossRef]
- Rastogi, M.; Nandal, M.; Nain, L. Additive effect of cow dung slurry and cellulolytic bacterial inoculation on humic fractions during composting of municipal solid waste. Int. J. Recycl. Org. Waste Agric. 2019, 8, 325–332. [Google Scholar] [CrossRef]
- Fagundes, P.; Castro, F.; Santos, L.; Castro, S.; Lange, L. Study of the Nutritional Increase in Organic Composts Obtained by Aerobic Biostabilization in the Management of Food Wastes. J. Manag. Sustain. 2021, 11, 15–26. [Google Scholar] [CrossRef]
- Jia, Y.; Chen, G.; Qi, B.; Yu, J.; Liu, P.; Zhou, Y. Molecular insight into the transformation of dissolved organic matter during sewage sludge composting: An investigation of a full-scale composting plant. Environ. Res. 2023, 233, 116460. [Google Scholar] [CrossRef] [PubMed]
- Cahyanto, T.; Ulfa, R.A.; Kamelia, S.Q.; Musa’adah, M. Potential of Sewage Sludge from the Integrated Laboratory of UIN Sunan Gunung Djati Bandung as Organic Fertilizers through Vermicomposting. J. Biol. Trop. 2022, 22, 1384–1389. [Google Scholar] [CrossRef]
- Ibrahim Irka, C.; Prudent, P.; Théraulaz, F.; Farnet Da Silva, A.-M.; Asia, L.; Gori, D.; Vassalo, L.; Durand, A.; Demelas, C.; Höhener, P.; et al. Treatment of Sewage Sludge Compost Leachates on a Green Waste Biopile: A Case Study for an On-Site Application. Processes 2022, 10, 1196. [Google Scholar] [CrossRef]
- Han, W.; Chen, S.; Tan, X.; Li, X.; Pan, H.; Ma, P.; Wu, Z.; Xie, Q. Microbial community succession in response to sludge composting efficiency and heavy metal detoxification during municipal sludge composting. Front. Microbiol. 2022, 13, 1015949. [Google Scholar] [CrossRef]
- Wu, C.; Li, W.; Wang, K.; Li, Y. Usage of pumice as bulking agent in sewage sludge composting. Bioresour. Technol. 2015, 190, 516–521. [Google Scholar] [CrossRef]
- Ibrahim, J.A.K.; Salman, I.S.; Chyad, T.F. Wastewater Bio-Solids Management for Fertilizer Quality Using Co- Composting Process. J. Eng. 2015, 21, 29–44. [Google Scholar] [CrossRef]
- Wu, D.; Liu, P.; Luo, Y.; Tian, G.; Mahmood, Q. Nitrogen transformations during co-composting of herbal residues, spent mushrooms, and sludge. J. Zhejiang Univ. Sci. B 2010, 11, 497–505. [Google Scholar] [CrossRef]
- Cui, G.; Fu, X.; Bhat, S.A.; Tian, W.; Lei, X.; Wei, Y.; Li, F. Temperature impacts fate of antibiotic resistance genes during vermicomposting of domestic excess activated sludge. Environ. Res. 2022, 207, 112654. [Google Scholar] [CrossRef]
- Nemati, S.; Samali, B.; Sanati, F. Optimized Design of Wastewater Treatment Sludge and Municipal Solid Wastes Co-Composting. J. Sustain. Dev. 2019, 12, 203–211. [Google Scholar] [CrossRef]
- Kriipsalu, M.; Nammari, D. Does size matter: Scaling a composting experiment. In Proceedings of the Second Baltic Symposium on Environmental Chemistry, Kalmar, Sweden, 28–30 November 2005. [Google Scholar] [CrossRef]
- Shen, Y.; Zhou, H.; Meng, H.; Guo, R.; Zheng, G.; Chen, T. Generation and Emission of Ammonia During the Full-Scale Composting of Sewage Sludge. Waste Biomass Valorization 2020, 11, 4757–4766. [Google Scholar] [CrossRef]
- Tran, T.; Giang, L.V.; Loc, H.H.; Hong, L.T.A.; Thi, V.D.; Tan, L.V. The Initial Study on the Application of Sewage Sludge for Agriculture on the Laboratory Scale. Mater. Sci. Forum 2022, 1048, 524–530. [Google Scholar] [CrossRef]
- Pan, T.H.; Chen, T.B.; Gao, D.; Zheng, G.D.; Chen, J.; Zhou, H.B. Comparison of Cassava Distillery Residues and Straw as Bulking Agents for Full-scale Sewage Sludge Composting. Compost. Sci. Util. 2017, 25, 1–12. [Google Scholar] [CrossRef]
- Sołowiej, P.; Pochwatka, P.; Wawrzyniak, A.; Łapiński, K.; Lewicki, A.; Dach, J. The Effect of Heat Removal during Thermophilic Phase on Energetic Aspects of Biowaste Composting Process. Energies 2021, 14, 1183. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Y.; Kuzyakov, Y.; Wang, D.; Olesen, J.E. Challenges in upscaling laboratory studies to ecosystems in soil microbiology research. Glob. Chang. Biol. 2023, 29, 569–574. [Google Scholar] [CrossRef]
- Martínez-Gallardo, M.R.; Estrella-González, M.J.; Suárez-Estrella, F.; López-González, J.A.; Jurado, M.M.; Toribio, A.J.; López, M.J. Effect of Upstream Bioactivation of Plant Residues to Accelerate the Composting Process and Improve Product Quality. Agronomy 2023, 13, 1638. [Google Scholar] [CrossRef]
- Ayilara, M.S.; Olanrewaju, O.S.; Babalola, O.O.; Odeyemi, O. Waste Management through Composting: Challenges and Potentials. Sustainability 2020, 12, 4456. [Google Scholar] [CrossRef]
- Aguilar-Paredes, A.; Valdés, G.; Araneda, N.; Valdebenito, E.; Hansen, F.; Nuti, M. Microbial Community in the Composting Process and Its Positive Impact on the Soil Biota in Sustainable Agriculture. Agronomy 2023, 13, 542. [Google Scholar] [CrossRef]
- De la Rosa, J.M.; Miller, A.Z.; Knicker, H. Soil-borne fungi challenge the concept of long-term biochemical recalcitrance of pyrochar. Sci. Rep. 2018, 8, 2896. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Li, J.; Shi, D.; Liu, G.; Zhao, Y.; Shimaoka, T. Environmental challenges impeding the composting of biodegradablemunicipal solid waste: A critical review. Resour. Conserv. Recycl. 2017, 122, 51–65. [Google Scholar] [CrossRef]
- Ruan, M.; Zhang, Y.; Wu, X.; Sun, Y.; Huang, Z.; Li, H.; Hu, Z.; Wu, Z.; Zhang, X.; Qin, X.; et al. Effects of initial particle sizes of Triarrhena lutarioriparia on processing performance, material properties, and heavy metal speciation in sewage sludge composting. Environ. Sci. Pollut. Res. Int. 2023, 30, 19980–19993. [Google Scholar] [CrossRef] [PubMed]
- Leśniańska, A.; Janowska, B.; Sidełko, R. Immobilization of Zn and Cu in Conditions of Reduced C/N Ratio during Sewage Sludge Composting Process. Energies 2022, 15, 4507. [Google Scholar] [CrossRef]
- Silva, R.d.S.; Jalal, A.; do Nascimento, R.E.N.; Elias, N.C.; Kawakami, K.C.; Abreu-Junior, C.H.; Oliveira, F.C.; Jani, A.D.; He, Z.; Zhao, F.; et al. Composted Sewage Sludge Application Reduces Mineral Fertilization Requirements and Improves Soil Fertility in Sugarcane Seedling Nurseries. Sustainability 2022, 14, 4684. [Google Scholar] [CrossRef]
- Feitosa, M.C.A.; Ferreira, S.R.M.; Delgado, J.M.P.Q.; Silva, F.A.N.; Oliveira, J.T.R.; Oliveira, P.E.S.; Azevedo, A.C. Sewage Sludge Valorization for Collapsible Soil Improvement. Buildings 2023, 13, 338. [Google Scholar] [CrossRef]
- Marin, E.; Rusănescu, C.O. Agricultural Use of Urban Sewage Sludge from the Wastewater Station in the Municipality of Alexandria in Romania. Water 2023, 15, 458. [Google Scholar] [CrossRef]
- Santos, A.F.; Veríssimo, A.M.; Brites, P.; Baptista, F.M.; Góis, J.C.; Quina, M.J. Greenhouse Assays with Lactuca sativa for Testing Sewage Sludge-Based Soil Amendments. Agronomy 2022, 12, 209. [Google Scholar] [CrossRef]
- Feodorov, C.; Velcea, A.M.; Ungureanu, F.; Apostol, T.; Robescu, L.D.; Cocarta, D.M. Toward a Circular Bioeconomy within Food Waste Valorization: A Case Study of an On-Site Composting System of Restaurant Organic Waste. Sustainability 2022, 14, 8232. [Google Scholar] [CrossRef]
- Cucina, M.; De Nisi, P.; Sordi, S.; Adani, F. Sewage Sludge as N-Fertilizers for Crop Production Enabling the Circular Bioeconomy in Agriculture: A Challenge for the New EU Regulation 1009/2019. Sustainability 2021, 13, 13165. [Google Scholar] [CrossRef]
- Kacprzak, M.J.; Kupich, I. The Specificities of the Circular Economy (CE) in the Municipal Wastewater and Sewage Sludge Sector—Local Circumstances in Poland. Clean Technol. Environ. Policy 2021, 25, 519–535. [Google Scholar] [CrossRef]
- Capodaglio, A.G. Biorefinery of Sewage Sludge: Overview of Possible Value-Added Products and Applicable Process Technologies. Water 2023, 15, 1195. [Google Scholar] [CrossRef]
- Ayeyemi, T.; Recena, R.; García-López, A.M.; Delgado, A. Circular Economy Approach to Enhance Soil Fertility Based on Recovering Phosphorus from Wastewater. Agronomy 2023, 13, 1513. [Google Scholar] [CrossRef]
- Nguyen, D.; Thomas, M.; Surapaneni, A.; Moon, E.M.; Milne, N.A. Beneficial reuse of water treatment sludge in the context of circular economy. Environ. Technol. Innov. 2022, 28, 102651. [Google Scholar] [CrossRef]
- Danso, G.K.; Otoo, M.; Ekere, W.; Ddungu, S.; Madurangi, G. Market Feasibility of Faecal Sludge and Municipal Solid Waste-Based Compost as Measured by Farmers’ Willingness-to-Pay for Product Attributes: Evidence from Kampala, Uganda. Resources 2017, 6, 31. [Google Scholar] [CrossRef]
- Ceyhan, V.; Akça, İ.; Kızılkaya, R.; Veselova, A.; Novikova, K. The financial feasibility of hazelnut husk and sewage sludge based vermicompost production. Eurasian J. Soil Sci. 2015, 4, 259–265. [Google Scholar] [CrossRef]
- Lima, B.C.; Lima, L.M.; Brandão, M.L.; Zanta, V.; Vich, D.; Queiroz, L. Composting as an Alternative for Final Disposal of Digested Sludge from UASB Reactors: A Case Study in the Small Municipalities of the State of Bahia, Brazil. Waste Biomass Valorization 2018, 9, 2275–2283. [Google Scholar] [CrossRef]
- Quadar, J.; Chowdhary, A.B.; Dutta, R.; Angmo, D.; Singh, S.; Singh, J.; Singh, S.; Kumar, S.I.; Sohal, B.; Vig, A.P. Economic and quality evaluation of composting technologies. In Current Developments in Biotechnology and Bioengineering; Pandey, A., Awasthi, M., Zhan, Z., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 295–318. [Google Scholar] [CrossRef]
- Radziemska, M.; Gusiatin, Z.M.; Bęś, A.; Czajkowska, J.; Mazur, Z.; Hammerschmiedt, T.; Sikorski, Ł.; Kobzova, E.; Klik, B.K.; Sas, W.; et al. Can the Application of Municipal Sewage Sludge Compost in the Aided Phytostabilization Technique Provide an Effective Waste Management Method? Energies 2021, 14, 1984. [Google Scholar] [CrossRef]
- Wang, Q.; Li, X.; Liu, W.; Zhai, S.; Xu, Q.; Huan, C.; Nie, S.; Ouyang, Q.; Wang, H.; Wang, A. Carbon source recovery from waste sludge reduces greenhouse gas emissions in a pilot-scale industrial wastewater treatment plant. Environ. Sci. Ecotechnol. 2023, 14, 100235. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Chang, H. Soil Greenhouse Gas Emissions and Nitrogen Change for Wheat Field Application of Composted Sewage Sludge. Agronomy 2022, 12, 1946. [Google Scholar] [CrossRef]
- Hwang, H.Y.; Kim, S.H.; Shim, J.; Park, S.J. Composting Process and Gas Emissions during Food Waste Composting under the Effect of Different Additives. Sustainability 2020, 12, 7811. [Google Scholar] [CrossRef]
- Chai, C.; Zhang, D.; Yu, Y.; Feng, Y.; Wong, M.S. Carbon Footprint Analyses of Mainstream Wastewater Treatment Technologies under Different Sludge Treatment Scenarios in China. Water 2015, 7, 918–938. [Google Scholar] [CrossRef]
- Abis, L.; Sadet-Bourgeteau, S.; Lebrun, B.; Ciuraru, R.; Lafouge, F.; Nowak, V.; Tripied, J.; Houot, S.; Maron, P.A.; Loubet, B. Short-Term Effect of Green Waste and Sludge Amendment on Soil Microbial Diversity and Volatile Organic Compound Emissions. Appl. Microbiol. 2021, 1, 123–141. [Google Scholar] [CrossRef]
- Goliopoulos, N.; Mamais, D.; Noutsopoulos, C.; Dimopoulou, A.; Kounadis, C. Energy Consumption and Carbon Footprint of Greek Wastewater Treatment Plants. Water 2022, 14, 320. [Google Scholar] [CrossRef]
- Wang, D.; Ye, W.; Wu, G.; Li, R.; Guan, Y.; Zhang, W.; Wang, J.; Shan, Y.; Hubacek, K. Greenhouse gas emissions from municipal wastewater treatment facilities in China from 2006 to 2019. Sci. Data 2022, 9, 317. [Google Scholar] [CrossRef]
- Dume, B.; Hanč, A.; Švehla, P.; Chane, A.; Nigussie, A. Carbon Dioxide and Methane Emissions during the Composting and Vermicomposting of Sewage Sludge under the Effect of Different Proportions of Straw Pellets. Environ. Sci. Proc. 2021, 8, 7. [Google Scholar] [CrossRef]
- Song, B.; Duan, Z.; Liu, W.; Pei, W.; Huang, K. Analysis of carbon emissions in composting and vermicomposting of excess sludge. In Waste and the Environment: Underlying Burdens and Managment Strategies, Earthworm Technology in Organic Waste Management; Huang, K., Bhat, S.A., Li, F., Kumar, V., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; Chapter 17; pp. 359–366. [Google Scholar] [CrossRef]
- González, D.; Guerra, N.; Colón, J.; Gabriel, D.; Ponsá, S.; Sánchez, A. Characterization of the Gaseous and Odour Emissions from the Composting of Conventional Sewage Sludge. Atmosphere 2020, 11, 211. [Google Scholar] [CrossRef]
- Czekała, W.; Dach, J.; Malińska, K.; Przybył, J.; Myszura, M. Dynamics of gaseous emissions during composting of sewage sludge with maize straw as a bulking agent. J. Ecol. Eng. 2015, 16, 108–114. [Google Scholar] [CrossRef] [PubMed]
- DeLonge, M.S.; Ryals, R.; Silver, W.L. A Lifecycle Model to Evaluate Carbon Sequestration Potential and Greenhouse Gas Dynamics of Managed Grasslands. Ecosystems 2013, 16, 962–979. [Google Scholar] [CrossRef]
- Baral, K.R.; Labouriau, R.; Olesen, J.E.; Petersen, S.O. Nitrous oxide emissions andnitrogen use efficiency of manure and digestates applied to spring barley. Agric. Ecosyst. Environ. 2017, 239, 188–198. [Google Scholar] [CrossRef]
- Vergara, S.E.; Silver, W.L. Greenhouse gas emissions from windrow composting of organic wastes: Patterns and emissions factors. Environ. Res. Lett. 2019, 14, 124027. [Google Scholar] [CrossRef]
- Jellali, S.; Charabi, Y.; Usman, M.; Al-Badi, A.; Jeguirim, M. Investigations on Biogas Recovery from Anaerobic Digestion of Raw Sludge and Its Mixture with Agri-Food Wastes: Application to the Largest Industrial Estate in Oman. Sustainability 2021, 13, 3698. [Google Scholar] [CrossRef]
- De Rosa, D.; Biala, J.; Nguyen, T.H.; Mitchell, E.; Friedl, J.; Scheer, C.; Grace, P.R.; Rowlings, D.W. Environmental and economic trade-offs of using composted or stockpiled manure as partial substitute for synthetic fertilizer. J. Environ. Qual. 2022, 51, 589–601. [Google Scholar] [CrossRef] [PubMed]
- Monpoeho, S.; Maul, A.; Bonnin, C.; Patria, L.; Ranarijaona, S.; Billaudel, S.; Ferré, V. Clearance of Human-Pathogenic Viruses from Sludge: Study of Four Stabilization Processes by Real-Time Reverse Transcription-PCR and Cell Culture. Appl. Environ. Microbiol. 2004, 70, 5434–5440. [Google Scholar] [CrossRef]
- Karimi, H.; Mokhtari, M.; Salehi, F.; Ebrahimi, A. Changes in microbial pathogen dynamics during vermicomposting mixture of cow manure–organic solid waste and cow manure–sewage sludge. Int. J. Recycl. Org. Waste Agric. 2017, 6, 57–61. [Google Scholar] [CrossRef]
- Lemunier, M.; Francou, C.; Rousseaux, S.; Houot, S.; Dantigny, P.; Piveteau, P.; Guzzo, J. Long-Term Survival of Pathogenic and Sanitation Indicator Bacteria in Experimental Biowaste Composts. Appl. Environ. Microbiol. 2005, 71, 5779–5786. [Google Scholar] [CrossRef]
- Liao, H.P.; Lu, X.M.; Rensing, C.; Friman, V.P.; Geisen, S.; Chen, Z.; Yu, Z.; Wei, Z.; Zhou, S.G.; Zhu, Y.G. Hyperthermophilic composting accelerates the removal of antibiotic resistance genes and mobile genetic elements in sewage sludge. Environ. Sci. Technol. 2018, 52, 266–276. [Google Scholar] [CrossRef]
- Tan, Z.; Zhu, H.; He, X.; Xi, B.; Tian, Y.; Sun, X.; Zhang, H.; Ouche, Q. Effect of ventilation quantity on electron transfer capacity and spectral characteristics of humic substances during sludge composting. Environ. Sci. Pollut. Res. 2022, 29, 70269–70284. [Google Scholar] [CrossRef]
- Fahir, H.; Prasetya, K.D.; Hanun, J.N.; Bui, H.M.; Rajendran, S.; Kataria, N.; Khoo, K.S.; Wang, F.; You, S.; Jiang, J. Microplastic contamination in sewage sludge: Abundance, characteristics, and impacts on the environment and human health. Environ. Technol. Innov. 2023, 31, 103176. [Google Scholar] [CrossRef]
- Domínguez, J.; Aira, M.; Crandall, K.A.; Pérez-Losada, M. Earthworms drastically change fungal and bacterial communities during vermicomposting of sewage sludge. Sci. Rep. 2021, 11, 15556. [Google Scholar] [CrossRef]
- Lima, D.; Appleby, G.; Li, L. A Scoping Review of Options for Increasing Biogas Production from Sewage Sludge: Challenges and Opportunities for Enhancing Energy Self-Sufficiency in Wastewater Treatment Plants. Energies 2023, 16, 2369. [Google Scholar] [CrossRef]
- Baloch, M.Y.J.; Zhang, W.J.; Sultana, T.; Akram, M.; Shoumik, B.A.A.; Khan, M.Z.; Farooq, M.A. Utilization of sewage sludge tomanage saline-alkali soil and increase crop production: Is it safe or not? Environ. Technol. Innov. 2023, 32, 103266. [Google Scholar] [CrossRef]
- Machnicka, A.; Grübel, K. The effect of pre-treatment and anaerobic digestion for pathogens reduction in agricultural utilization of sewage sludge. Environ. Sci. Pollut. Res. Int. 2023, 30, 13801–13810. [Google Scholar] [CrossRef] [PubMed]
Feature | Composting | Landfilling | Incineration |
---|---|---|---|
Volume reduction | Moderate (30–50%). | Up to 90% (through dewatering and drying). | Significant (up to 95%). |
Resource recovery | Nutrients in obtained compost. | No resource recovery. | Potential for heat production (recovered during the process). |
Environmental Impact | Low risk of groundwater contamination. Low risk of soil contamination. | Potential impact (air, water, and soil). | Air pollution concerns from emissions. |
Cost | Variable depending on existing infrastructure and sludge characteristics. | Lower than incineration. | High costs. |
Feature | Description | Importance for Composting |
---|---|---|
Sludge Characteristics |
|
|
Bulking Agents | Various materials with high carbon content and good structure |
|
C:N Ratio |
|
|
Moisture Content |
|
|
Particle Size |
|
|
Factor | Description | Impact on Sludge Composting |
---|---|---|
Sludge characteristics | Solid content, organic matter content, presence of heavy metals and pathogens. | High solid content can lead to moisture management issues. Organic matter content influences the decomposition rate. Heavy metals can limit compost use and require pre-treatment. Pathogen presence requires proper sanitation. |
Bulking agents | Materials that improve composting piles aeration and humidity distribution (wood chips, sawdust, or straw). | Important for moisture contents and porosity management, considering the dense structure of sludge. |
C:N ratio adjustment | In most cases sludge has a reduced C:N ratio, needing supplementary carbon sources (e.g., wood chips). | Maintaining the C:N ratio in the optimal range is essential for both microbial activity and control of odor. |
Pre-treatment methods | Techniques that aim to improve sludge characteristics for composting. | Increase solid content, increase sludge dewaterability, and address pathogen concerns. |
Temperature management | High temperatures are required for pathogen destruction. | Ensuring proper insulation and turning the piles are essential for sustaining thermophilic composting conditions. |
Nutrient availability | Sewage sludge is likely to have a lower concentration of some necessary nutrients for microbial growth. | Supplementation of nutrients might be necessary for decomposition to work in an optimal way. |
Composting technology | Open windrow systems, in-vessel composting systems. | Different technologies might be various as to aeration, temperature control, odor management, and processing time. |
Microbial Group | Specific Examples | Role in Decomposition |
---|---|---|
Bacteria | Thermomonas spp., Bacillus spp., Pseudomonas spp. | Dominant in the thermophilic phase, responsible for the breakdown of simple sugars, proteins, and fats. |
Actinomycetes | Streptomyces spp., Nocardia spp. | Breakdown of complex polymers, e.g., cellulose, and hemicellulose. |
Fungi | Aspergillus spp., Penicillium spp., Trichoderma spp. | Directly involved throughout the process, the breakdown of complex organic matter, contributes to compost structure. |
Aspect | Case Studies and Experimental Research | Challenges in Scaling Up | Solutions |
---|---|---|---|
Microbial activity and process optimization | Studies comparing different bulking agents and their impact on microbial communities and decomposition rates. Research on the effectiveness of temperature control strategies for pathogen reduction. | Maintaining consistent and optimal conditions for diverse microbial populations across a larger volume. Ensuring efficient heat retention and temperature control in larger piles. | Implementing automated turning systems for improved aeration and moisture management. Utilizing in-vessel composting systems with controlled temperature settings. |
Nutrient availability and compost quality | Experiments evaluating co-composting sludge with various organic materials for nutrient balance and compost properties. Research on the impact of pre-treatment methods on final compost quality and nutrient content. | Balancing nutrient composition (especially nitrogen) in large-scale composting operations. Ensuring consistent quality and meeting regulatory standards for heavy metal content in the final compost. | Utilizing co-composting strategies with materials rich in specific nutrients (e.g., yard trimmings for nitrogen). Implementing pre-treatment methods like lime stabilization to address potential heavy metal issues. |
Odor control | Research on the effectiveness of bulking agents and moisture management techniques for minimizing odor generation. Studies evaluating odor control technologies like biofilters for full-scale operations. | Managing large volumes of odorous material during turning and pile manipulation. Potential for public nuisance from odors if not properly controlled. | Selecting appropriate bulking agents with high odor adsorption capacity. Implementing odor control systems like biofilters or positive aeration systems in full-scale facilities. |
Cost-effectiveness and long-term sustainability | Life cycle assessments comparing different sludge composting technologies. Economic analyses evaluating the cost–benefit of sludge composting compared to alternative disposal methods. | High initial capital investment for large-scale composting facilities. Balancing operational costs with long-term benefits like reduced landfill reliance and potential revenue from compost sales. | Utilizing government grants or public–private partnerships to finance infrastructure development. Exploring innovative marketing strategies to increase the demand for high-quality compost produced from sludge. |
Characteristic | Description |
---|---|
Appearance | Dark brown, crumbly material with minimal earthy odor (if managed properly). |
Particle Size | Varies depending on initial feedstock and processing methods. |
Organic Matter Content | Significant, lower than initial sludge. |
Moisture Content | 40–60% |
Nutrient Content | High nitrogen, phosphorus, and micronutrient contents |
C:N Ratio | 10:1 to 20:1. |
pH Level | Acidic to neutral (pH 6.5–7.5). |
Pathogen Levels | Significantly reduced due to high temperatures |
Regulation | Key Points | Impact on Sludge Compost Use |
---|---|---|
Sludge Directive (86/278/EEC) | Sets limits for contaminants (heavy metals, pathogens) in sludge for agricultural use. | Ensures composted sludge used on land meets safety and quality standards. |
Landfill Directive (1999/31/EC) (Policy-Driven) | Promotes diverting waste from landfills. | Creates potential demand for compost as a soil amendment (indirect encouragement). |
Waste Framework Directive (2008/98/EC) (Policy-Driven) | Establishes waste hierarchy prioritizing reuse/recycling over disposal. | Positions compost use favorably by utilizing a recycled product. |
U.S. EPA Part 503 Rule | Sets national standards for land application of sewage sludge (biosolids). | Establishes pollutant limits for heavy metals, and pathogens. Requires monitoring, and recordkeeping.—Restricts use on specific crops/areas. |
Individual State Regulations | Most states have stricter standards than the federal rule. | May have lower pollutant limits. May have additional use restrictions. May require permits for compost facilities. |
Trend/Innovation | Description | Potential Benefits |
---|---|---|
Advanced in-vessel composting systems | Using closed composting systems, where the temperature, aeration, and moisture are all controlled. | This leads to uniform and optimum composting conditions resulting in speedy decomposition and minimized odor emissions. There is potential for capturing and using biogas for generating energy. It causes a minimum amount of impact on the surrounding environment because of the controlled conditions. |
Microbial augmentation with targeted strains | Adding certain strains of bacteria or fungi to help the decomposition of more complex organic matter in the sludge. | It will increase the speed of composting and the breakdown of specific pollutants. It creates the possibility of modifying microbial communities to deal with specific sludge characteristics. |
Thermal hydrolysis pre-treatment | Pre-treating sludge with high temperature and pressure to break down complex organics and improve dewaterability. | There would be improved biodegradability of the sludge, and it can be composted in a shorter time and higher quality. It decreases amount of sludge, so less money is required for moving and treating sludge. |
Vermicomposting | Adding earthworms to traditional composting to give an extra boost to decomposition, enhancing compost quality. | It generates a compost that is rich in nutrients and has excellent soil-enriching properties. Compared to traditional composting, there is potential for odor reduction. |
Use of alternative bulking agents | Using new constituents like biochar, composted food waste, or agricultural residues as bulking agents. | These are sustainable and readily available alternatives to traditional bulking agents (wood chips, straw). Biochar can improve moisture-holding capacity and conceivably diminish odor and volatile emissions. Composted food scraps can increase the nutrient content of the finished compost. |
Research Area | Description | Potential Impact |
---|---|---|
Improving the composting process for specific types of sludge | Study the optimal composting conditions (temperature, aeration, bulking agents) for different types of sludge (primary, secondary, waste activated sludge). | Design composting procedures to enable the best composting results and compost quality for different types of sludge |
Assessing the long-term consequences of composted sludge on soil health | Undertake long-term research to examine the impact of applying composted sludge on soil properties, microbial communities, and crop productivity. | Generate reliable data for establishing safe and effective long-term approaches to employing sludge in agriculture. |
Life cycle assessments (LCAs) of emerging technologies | Conduct comprehensive LCAs of emerging technological solutions. | Optimize these technologies for maximum sustainability. |
Minimizing emissions from composting processes | Develop control strategies for further reducing ammonia (NH3) and nitrous oxide (N2O) emissions during composting while maintaining process efficiency. | Contribute to lower overall GHG emissions from sludge composting. |
Public perception and social acceptance | Investigate drivers of public perception of sludge composting and develop strategies for promoting sludge composting’s environmental and economic benefits. | Address public concerns and build social acceptability for expanded application of sludge composting. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manea, E.E.; Bumbac, C. Sludge Composting—Is This a Viable Solution for Wastewater Sludge Management? Water 2024, 16, 2241. https://doi.org/10.3390/w16162241
Manea EE, Bumbac C. Sludge Composting—Is This a Viable Solution for Wastewater Sludge Management? Water. 2024; 16(16):2241. https://doi.org/10.3390/w16162241
Chicago/Turabian StyleManea, Elena Elisabeta, and Costel Bumbac. 2024. "Sludge Composting—Is This a Viable Solution for Wastewater Sludge Management?" Water 16, no. 16: 2241. https://doi.org/10.3390/w16162241
APA StyleManea, E. E., & Bumbac, C. (2024). Sludge Composting—Is This a Viable Solution for Wastewater Sludge Management? Water, 16(16), 2241. https://doi.org/10.3390/w16162241