Modelling Approach for Assessment of Groundwater Potential of the Moghra Aquifer, Egypt, for Extensive Rural Development
Abstract
:1. Introduction
2. Study Area
3. Conceptual Model Development
3.1. Digital Hydro-Geologic Framework Model
3.2. Hydro-Geologic Boundary Conditions
3.3. Domain Discretization
3.4. Subsurface Stratigraphy
3.5. Hydrogeological and Pumping Data
4. Numerical Model Set-Up
4.1. Steady-State Simulation
4.1.1. Model Calibration
4.1.2. Model Sensitivity
4.2. Time-Dependent Simulation
4.2.1. Transient Calibration Using Pumping Test Data
4.2.2. Transient Verification Using GRACE-Retrieved Data
4.3. Management Schemes
5. Results and Discussions
5.1. Pumping Scenarios
5.2. Climate Change Impacts
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Model Development and Calibration
Appendix B. Optimum Pumping Scheme without Considering Climate Change Impact
Appendix C. Optimum Pumping Scheme Considering Climate Change Impact
References
- Frappart, F.; Ramillien, G. Monitoring groundwater storage changes using the Gravity Recovery and Climate Experiment (GRACE) satellite mission: A review. Remote Sens. 2018, 10, 829. [Google Scholar] [CrossRef]
- Closas, A.; Rap, E. Solar-based groundwater pumping for irrigation: Sustainability, policies, and limitations. Energy Policy 2017, 104, 33–37. [Google Scholar] [CrossRef]
- Rubio-Aliaga, Á.; Sánchez-Lozano, J.M.; García-Cascales, M.S.; Benhamou, M.; Molina-García, A. GIS based solar resource analysis for irrigation purposes: Rural areas comparison under groundwater scarcity conditions. Sol. Energy Mater. Sol. Cells 2016, 156, 128–139. [Google Scholar] [CrossRef]
- Zektser, S.; Loáiciga, H.A.; Wolf, J.T. Environmental impacts of groundwater overdraft: Selected case studies in the southwestern United States. Environ. Geol. 2005, 47, 396–404. [Google Scholar] [CrossRef]
- Khater, A.R.; Water, N. Intensive groundwater use in Middle East and North Africa. In Intensive Use of Groundwater: Challenges and Opportunities; CRC Press: Boca Raton, FL, USA, 2019; pp. 355–386. [Google Scholar]
- Gado, T.A.; El-Hagrsy, R.M.; Rashwan, I.M.H. Spatial and temporal rainfall changes in Egypt. Environ. Sci. Pollut. Res. 2019, 26, 28228–28242. [Google Scholar] [CrossRef]
- Gado, T.A.; Mohameden, M.B.; Rashwan, I.M.H. Bias correction of regional climate model simulations for the impact assessment of the climate change in Egypt. Environ. Sci. Pollut. Res. 2022, 29, 20200–20220. [Google Scholar] [CrossRef]
- Farrag, A.A. The hydraulic and hydrochemical impacts of the Nile system on the groundwater in upper Egypt. Assuit Univ. Bull. Environ. Resour 2005, 8, 87–102. [Google Scholar]
- Aziz, S.A.; Zelenáková, M.; Mésároš, P.; Purcz, P.; Abd-Elhamid, H. Assessing the Potential Impacts of the Grand Ethiopian Renaissance Dam on Water Resources and Soil Salinity in the Nile Delta, Egypt. Sustainability 2019, 11, 7050. [Google Scholar] [CrossRef]
- Shalaby, M.Y.; Al-Zahrani, K.H.; Baig, M.B.; Straquadine, G.S.; Aldosari, F. Threats and challenges to sustainable agriculture and rural development in Egypt: Implications for agricultural extension. J. Anim. Plant Sci. 2011, 21, 581–588. [Google Scholar]
- Aly, M.M.; Elhamid, A.M.I.A.; Abu-Bakr, H.A.-A.; Shalby, A.; Fayad, S.A.K. Integrated Management and Environmental Impact Assessment of Sustainable Groundwater-Dependent Development in Toshka District, Egypt. Water 2023, 15, 2183. [Google Scholar] [CrossRef]
- Aly, M.M.; Sakr, S.A.; Fayad, S.A.K. Evaluation of the impact of Lake Nasser on the groundwater system in Toshka under future development scenarios, Western Desert, Egypt. Arab. J. Geosci. 2019, 12, 553. [Google Scholar] [CrossRef]
- El-Agha, D.E.; Molle, F.; Metwally, M.I.; Emara, S.R.; Shalby, A.; Armanuos, A.M.; Negm, A.; Gado, T.A. Review: Toward sustainable management of groundwater in the deserts of Egypt. Hydrogeol. J. 2023. [Google Scholar] [CrossRef]
- Shalby, A.; Emara, S.R.; Metwally, M.I.; Negm, A.M.; Gado, T.A.; Armanuos, A.M. Geospatial model for allocating favorable plots for groundwater-dependent cultivation activities in Egypt. Egypt. J. Remote Sens. Sp. Sci. 2023, 26, 777–788. [Google Scholar] [CrossRef]
- Sayed, E.; Riad, P.; Elbeih, S.; Hagras, M.; Hassan, A.A. Multi criteria analysis for groundwater management using solar energy in Moghra Oasis, Egypt. Egypt. J. Remote Sens. Sp. Sci. 2019, 22, 227–235. [Google Scholar] [CrossRef]
- Elmenshawy, M.R.; Shalaby, S.M.; Elshinnawy, A.I.; Gado, T.A. Groundwater desalination for agricultural purposes using reverse osmosis and nanofiltration technologies: Case study wadi El-natrun, Egypt. Process Saf. Environ. Prot. 2023, 180, 669–685. [Google Scholar] [CrossRef]
- Gomaa, S.M.; Hassan, T.M.; Helal, E. Assessment of seawater intrusion under different pumping scenarios in Moghra aquifer, Egypt. Sci. Total Environ. 2021, 781, 146710. [Google Scholar] [CrossRef]
- Elmansy, Y.; Mohamed, M.S.; Hassan, A.A.; Riad, P. Sustainable Agricultural Groundwater Management for New Reclaimed Areas in Farafra Oasis, Western Desert of Egypt. Int. J. Eng. Adv. Technol. 2020, 9, 118–127. [Google Scholar] [CrossRef]
- Singh, A. Groundwater resources management through the applications of simulation modeling: A review. Sci. Total Environ. 2014, 499, 414–423. [Google Scholar] [CrossRef]
- Alley, W.M.; Leake, S.A. The Journey from Safe Yield to Sustainability. Ground Water 2004, 42, 12–16. [Google Scholar] [CrossRef]
- Janipella, R.; Pujari, P.R. Review on Groundwater Flow and Solute Transport Modelling in India: Recent Advances and Future Directions. J. Geol. Soc. India 2022, 98, 278–284. [Google Scholar] [CrossRef]
- Dibaj, M.; Javadi, A.A.; Akrami, M.; Ke, K.Y.; Farmani, R.; Tan, Y.C.; Chen, A.S. Modelling seawater intrusion in the Pingtung coastal aquifer in Taiwan, under the influence of sea-level rise and changing abstraction regime. Hydrogeol. J. 2020, 28, 2085–2103. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, W. A review of regional groundwater flow modeling. Geosci. Front. 2011, 2, 205–214. [Google Scholar] [CrossRef]
- Strack, O.D.L. Finite differences and finite elements. In Analytical Groundwater Mechanics; Cambridge University Press: Cambridge, UK, 2017; Volume 7, pp. 403–422. ISBN 9781316563144. [Google Scholar]
- Koukidou, I.; Panagopoulos, A. Application of Feflow for the Simulation of Groundwater Flow at the Tirnavos (Central Greece). Bull. Geol. Soc. Greece 2010, 43, 1747–1757. [Google Scholar] [CrossRef]
- Arenas, M.C.; Pescador, J.P.; Garzón, L.D.D.; Saavedra, E.Y.; Obando, P.F.A. Hydrogeological modeling in tropical regions via feflow. Earth Sci. Res. J. 2020, 24, 283–293. [Google Scholar] [CrossRef]
- Dufour, R.; Aguirre, C.; Sanchez, M.; Maqueda, A.; Zwinger, J.; Renz, A.; Cho, J.; Evans, D. Pit Dewatering Optimisation of a 3D Feflow Unstructured Groundwater Model at Geologically Complex Antamina Mine Site in Peru; Australian Centre for Geomechanics: Perth, Australia, 2020; pp. 1329–1348. [Google Scholar] [CrossRef]
- Normi Idris, A.; Zaharin Aris, A.; Sheikhy Narany, T.; Praveena Mangala, S.; Suratman, S.; Tawnie, I.; Khairul Nizar Shamsuddin, M.; Sefie, A. Simulation of Saltwater Intrusion in Coastal Aquifer of Kg. Salang, Tioman Island, Pahang, Malaysia. MATEC Web Conf. 2017, 103, 4024. [Google Scholar] [CrossRef]
- Chu, J.; Liu, N.; Miao, Y.; Lin, X.; Tan, H.; Liu, F. Numerical simulation and pollution prediction of karst groundwater in water-conducting faults distribution area. IOP Conf. Ser. Earth Environ. Sci. 2020, 585, 012097. [Google Scholar] [CrossRef]
- Sefelnasr, A.; Sherif, M. Impacts of Seawater Rise on Seawater Intrusion in the Nile Delta Aquifer, Egypt. Groundwater 2014, 52, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Emara, S.R.; Armanuos, A.M.; Shalby, A. Groundwater for Sustainable Development Appraisal seawater intrusion vulnerability for the Moghra coastal aquifer, Egypt—Application of the GALDIT index, sensitivity analysis, and hydro-chemical indicators. Groundw. Sustain. Dev. 2024, 25, 101166. [Google Scholar] [CrossRef]
- Shalby, A.; Emara, S.R.; Metwally, M.I.; Armanuos, A.M.; El-Agha, D.E.; Negm, A.M.; Gado, T.A. Satellite-based Estimates of Groundwater Depletion over Egypt. Environ. Monit. Assess. 2023, 105, 594. [Google Scholar] [CrossRef]
- Abdel Mogith, S.; Ibrahim, S.; Hafiez, R. Groundwater Potentials and Characteristics of El-Moghra Aquifer in the Vicinity of Qattara Depression. Egypt. J. Desert Res. 2013, 63, 1–20. [Google Scholar] [CrossRef]
- Ahmed, M.; Chen, Y.; Khalil, M.M. Isotopic composition of groundwater resources in arid environments. J. Hydrol. 2022, 609, 127773. [Google Scholar] [CrossRef]
- Sayed, E.; Riad, P.; Elbeih, S.F.; Hassan, A.A.; Hagras, M. Sustainable groundwater management in arid regions considering climate change impacts in Moghra region, Egypt. Groundw. Sustain. Dev. 2020, 11, 100385. [Google Scholar] [CrossRef]
- Yousf, A.F.; El Fakharany, M.A.; Abu Risha, U.A.; Afifi, M.M.; Al Sayyad, M.A. Contributions to the geology of the New Valley area, Western Desert, Egypt. J. Basic Environ. Sci. 2018, 5, 1–19. [Google Scholar]
- el-Aziz Abu-Bakr, H.A.; Abdelmoniem, M. Groundwater potentiality delineation in Moghra, Egypt. Ain Shams Eng. J. 2023, 102337. [Google Scholar] [CrossRef]
- Morad, N.A.; Masoud, M.H.; Abdel Moghith, S.M. Hydrologic factors controlling groundwater salinity in northwestern coastal zone, Egypt. J. Earth Syst. Sci. 2014, 123, 1567–1578. [Google Scholar] [CrossRef]
- Selim, T.; Moghazy, N.H.; Elasbah, R.; Elkiki, M.; Eltarabily, M.G. Sustainable agricultural development under different climate change scenarios for El Moghra region, Western Desert of Egypt. Environ. Dev. Sustain. 2024, 26, 14957–14979. [Google Scholar] [CrossRef]
- El Osta, M.; Masoud, M.; Alqarawy, A.; Badran, O. Utilizing of aquifer hydraulic parameters to assess the groundwater sustainability in the new reclamation area of Moghra Oasis: Western Desert—Egypt. Appl. Water Sci. 2023, 13, 238. [Google Scholar] [CrossRef]
- Diersch, H.J.G. FEFLOW: Finite Element Modeling of Flow, Mass and Heat Transport in Porous and Fractured Media; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 9783642387395. [Google Scholar]
- Zheng, Y.; Chen, S.; Qin, H.; Jiao, J.J. Modeling the spatial and seasonal variations of groundwater head in an urbanized area under low impact development. Water 2018, 10, 803. [Google Scholar] [CrossRef]
- ECDC “Egyptian Countryside Development Company” EGDC “Egyptian Countryside Development Company”. Available online: http://elreefelmasry.com (accessed on 1 May 2023).
- Sarwar, A.; Eggers, H. Development of a conjunctive use model to evaluate alternative management options for surface and groundwater resources. Hydrogeol. J. 2006, 14, 1676–1687. [Google Scholar] [CrossRef]
- Sobeih, M.M.; El-Arabi, N.E.; Helal, E.E.D.Y.; Awad, B.S. Management of water resources to control groundwater levels in the southern area of the western Nile delta, Egypt. Water Sci. 2017, 31, 137–150. [Google Scholar] [CrossRef]
- Gado, T.A.; Shalaby, B.A.; Guo, Y.; Rashwan, I.M.H. Assessment of Satellite-Based Precipitation Estimates over Egypt. J. Hydrol. Eng. 2024, 29, 05023027. [Google Scholar] [CrossRef]
- Thomas, B.F.; Behrangi, A.; Famiglietti, J.S. Precipitation intensity effects on groundwater recharge in the southwestern United States. Water 2016, 8, 90. [Google Scholar] [CrossRef]
- Shah, N.; Nachabe, M.; Ross, M. Extinction depth and evapotranspiration from ground water under selected land covers. Ground Water 2007, 45, 329–338. [Google Scholar] [CrossRef]
- Campoli, D.; Crestaz, E.; Fehervari, M.; Patata, L.; Scipioni, P. 3D density-dependent groundwater modeling in assessing optimisation of a pumping strategy within a chemical plant. Water Resour. Manag. III 2005, 80, 131–141. [Google Scholar]
- Wassef, R.; Schüttrumpf, H. Impact of sea-level rise on groundwater salinity at the development area western delta, Egypt. Groundw. Sustain. Dev. 2016, 2–3, 85–103. [Google Scholar] [CrossRef]
- Abdel Azeem, H.; El-Didy, S.; Eizeldin, M.; Helmi, A. Hydrogeological Evaluation of Massive Salty Lagoons, (Case Study: Qattara Depression). Al-Azhar Univ. Civ. Eng. Res. Mag. 2017, 39, 277–291. [Google Scholar]
- El Shazly, E.M.; Abdel Hady, M.A.; El Ghawaby, M.A.; Khawasik, S.M.; El Shazly, M.M. Landsat satellite imagery of the Qattara Depression area, Egypt. Acta Astronaut. 1978, 5, 947–957. [Google Scholar] [CrossRef]
- Moharram, S.H.; Gad, M.I.; Saafan, T.A.; Allah, S.K. Optimal groundwater management using Genetic Algorithm in El-Farafra Oasis, Western Desert, Egypt. Water Resour. Manag. 2012, 26, 927–948. [Google Scholar] [CrossRef]
- Al-Muqdadi, S.W.H.; Abo, R.; Khattab, M.O.; Abdulhussein, F.M. Groundwater flow-modeling and sensitivity analysis in a hyper arid region. Water 2020, 12, 2131. [Google Scholar] [CrossRef]
- Sultan, M.; Yan, E.; Sturchio, N.; Wagdy, A.; Abdel Gelil, K.; Becker, R.; Manocha, N.; Milewski, A. Natural discharge: A key to sustainable utilization of fossil groundwater. J. Hydrol. 2007, 335, 25–36. [Google Scholar] [CrossRef]
- Haddad, O.B.; Tabari, M.M.R.; Fallah-Mehdipour, E.; Mariño, M.A. Groundwater Model Calibration by Meta-Heuristic Algorithms. Water Resour. Manag. 2013, 27, 2515–2529. [Google Scholar] [CrossRef]
- Hu, L.; Jiao, J.J. Calibration of a large-scale groundwater flow model using GRACE data: A case study in the Qaidam Basin, China. Hydrogeol. J. 2015, 23, 1305–1317. [Google Scholar] [CrossRef]
- Sun, A.Y.; Green, R.; Swenson, S.; Rodell, M. Toward calibration of regional groundwater models using GRACE data. J. Hydrol. 2012, 422–423, 1–9. [Google Scholar] [CrossRef]
- Lo, M.H.; Famiglietti, J.S.; Yeh, P.J.F.; Syed, T.H. Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Sun, A.Y.; Green, R.; Rodell, M.; Swenson, S. Inferring aquifer storage parameters using satellite and in situ measurements: Estimation under uncertainty. Geophys. Res. Lett. 2010, 37, 1–5. [Google Scholar] [CrossRef]
- Richey, A.S.; Thomas, B.F.; Lo, M.H.; Reager, J.T.; Famiglietti, J.S.; Voss, K.; Swenson, S.; Rodell, M. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 2015, 51, 5217–5237. [Google Scholar] [CrossRef] [PubMed]
- Rodell, M.; Chen, J.; Kato, H.; Famiglietti, J.S.; Nigro, J.; Wilson, C.R. Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol. J. 2007, 15, 159–166. [Google Scholar] [CrossRef]
- Bierkens, M.F.P.; Wada, Y. Non-renewable groundwater use and groundwater depletion: A review. Environ. Res. Lett. 2019, 14, 43. [Google Scholar] [CrossRef]
- Shalby, A.; Elshemy, M.; Zeidan, B.A. Assessment of climate change impacts on water quality parameters of Lake Burullus, Egypt. Environ. Sci. Pollut. Res. 2019, 27, 32157–32178. [Google Scholar] [CrossRef] [PubMed]
- Moss, R.; Babiker, M.; Brinkman, S.; Calvo, E.; Carter, T.; Edmonds, J.; Elgizouli, I.; Emori, S.; Erda, L.; Hibbard, K.; et al. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts and Response Strategies. In Proceedings of the IPCC Expert Meeting Report, Noordwijkerhout, The Netherlands, 19–21 September 2008. [Google Scholar]
- Gregory, J. Projections of Sea Level Rise; Climate Research: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Shaltout, M.; Tonbol, K.; Omstedt, A. Sea-level change and projected future flooding along the Egyptian Mediterranean coast. Oceanologia 2015, 57, 293–307. [Google Scholar] [CrossRef]
- Shalby, A.; Elshemy, M.; Zeidan, B.A. Modeling of climate change impacts on Lake Burullus, coastal lagoon (Egypt). Int. J. Sediment Res. 2020. [Google Scholar] [CrossRef]
- Alkhawaga, A.; Zeidan, B.; Elshemy, M. Climate change impacts on water security elements of Kafr El-Sheikh governorate, Egypt. Agric. Water Manag. 2022, 259, 107217. [Google Scholar] [CrossRef]
Change Factor of Conductivity | % Change of Hydraulic Head |
---|---|
0.2 | 0.16 |
0.4 | 0.26 |
0.6 | 0.16 |
0.8 | 0.30 |
1.2 | 0.26 |
1.5 | 0.20 |
2.0 | 0.16 |
2.5 | 0.22 |
3.0 | 0.20 |
Scenario | Total Pumping “Mm3/Day” | Cultivated Area “Acres” * | Time (Years) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | |||
1 | 0.80 | 57,143 | 8.72 | 15.75 | 22.34 | 28.55 | 34.29 | 39.66 | 44.72 | 49.54 | 54.15 | 58.59 |
2 | 0.90 | 64,286 | 9.81 | 17.72 | 25.15 | 32.15 | 38.62 | 44.68 | 50.40 | 55.84 | 61.06 | 66.09 |
3 | 1.00 | 71,429 | 10.90 | 19.70 | 27.96 | 35.75 | 42.96 | 49.71 | 56.09 | 62.17 | 68.00 | 73.62 |
4 | 1.10 | 78,571 | 11.99 | 21.67 | 30.77 | 39.63 | 47.32 | 54.76 | 61.81 | 68.35 | 74.98 | 81.20 |
5 | 1.20 | 85,714 | 13.08 | 23.65 | 33.59 | 42.98 | 51.68 | 59.83 | 67.55 | 74.91 | 81.99 | 88.82 |
6 | 1.30 | 92,857 | 14.17 | 25.63 | 36.41 | 46.6 | 56.05 | 64.91 | 73.31 | 81.33 | 89.04 | 96.49 |
7 | 1.40 | 100,000 | 15.26 | 27.61 | 39.23 | 50.23 | 60.43 | 70.00 | 79.09 | 87.77 | 96.12 | 104.2 |
8 | 1.50 | 107,143 | 16.36 | 29.59 | 42.06 | 53.86 | 64.82 | 75.12 | 84.89 | 94.24 | 103.24 | 111.96 |
Scenario | Cultivated Area “Acres” * | Time (Years) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | ||
1 | 57,143 | 8.85 | 16.19 | 23.09 | 29.67 | 35.81 | 41.64 | 47.19 | 52.53 | 57.74 | 62.89 |
2 | 64,286 | 9.96 | 18.22 | 25.99 | 33.41 | 40.34 | 46.92 | 53.18 | 59.22 | 65.12 | 70.94 |
3 | 71,429 | 11.07 | 20.25 | 28.90 | 37.16 | 44.87 | 52.21 | 59.20 | 65.95 | 72.53 | 79.05 |
4 | 78,571 | 12.17 | 22.28 | 31.81 | 40.91 | 49.42 | 57.52 | 65.23 | 72.70 | 79.98 | 87.20 |
5 | 85,714 | 13.28 | 24.31 | 34.73 | 44.67 | 53.98 | 62.84 | 71.30 | 79.48 | 87.48 | 95.40 |
6 | 92,857 | 14.39 | 26.35 | 37.64 | 48.43 | 58.55 | 68.18 | 77.39 | 86.3 | 95.01 | 103.65 |
7 | 100,000 | 15.5 | 28.38 | 40.56 | 52.2 | 63.13 | 73.54 | 83.5 | 93.14 | 102.59 | 111.96 |
8 | 107,143 | 16.61 | 30.42 | 43.49 | 55.98 | 67.72 | 78.92 | 89.63 | 100.02 | 110.21 | 120.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shalby, A.; Zeidan, B.A.; Pietrucha-Urbanik, K.; Negm, A.M.; Armanuos, A.M. Modelling Approach for Assessment of Groundwater Potential of the Moghra Aquifer, Egypt, for Extensive Rural Development. Water 2024, 16, 1562. https://doi.org/10.3390/w16111562
Shalby A, Zeidan BA, Pietrucha-Urbanik K, Negm AM, Armanuos AM. Modelling Approach for Assessment of Groundwater Potential of the Moghra Aquifer, Egypt, for Extensive Rural Development. Water. 2024; 16(11):1562. https://doi.org/10.3390/w16111562
Chicago/Turabian StyleShalby, Ahmed, Bakenaz A. Zeidan, Katarzyna Pietrucha-Urbanik, Abdelazim M. Negm, and Asaad M. Armanuos. 2024. "Modelling Approach for Assessment of Groundwater Potential of the Moghra Aquifer, Egypt, for Extensive Rural Development" Water 16, no. 11: 1562. https://doi.org/10.3390/w16111562
APA StyleShalby, A., Zeidan, B. A., Pietrucha-Urbanik, K., Negm, A. M., & Armanuos, A. M. (2024). Modelling Approach for Assessment of Groundwater Potential of the Moghra Aquifer, Egypt, for Extensive Rural Development. Water, 16(11), 1562. https://doi.org/10.3390/w16111562