Application of Low-Pressure Nanofiltration Membranes NF90 and NTR-729HF for Treating Diverse Wastewater Streams for Irrigation Use
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Feedwater
2.1.1. Preparation of AMD Solution
2.1.2. Preparation of Surface Water Containing NOM
2.1.3. Microfiltered Biologically Treated Sewage Effluent (MF-BTSE)
2.2. NF Membrane and Operation
2.2.1. Selection of NF Membranes
2.2.2. NF Operation
2.3. Characterization of Feedwater
2.3.1. Determination of Inorganics/Metals in AMD
2.3.2. Determination of Organic Carbon Fraction
2.3.3. Determination of DOC, Color, and Inorganic Ions
3. Results
3.1. Characteristics of Feedwater
3.2. Performance of NF (NF90) in Treating AMD Solution
3.2.1. Permeate Flux and Concentration Factor
3.2.2. Rejection of Solutes from AMD
3.3. Performance of NF90 in the Removal of Organic Fractions from Surface Water
Rejection of Organic Fractions
3.4. Performance of NTR-729HF in Treating MF-BTSE to Produce Water for Irrigation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, S.; Ba, C.; Yao, Y.; Zheng, W.; Economy, J.; Wang, P. Removal of Antibiotics Using Polyethylenimine Cross-Linked Nanofiltration Membranes: Relating Membrane Performance to Surface Charge Characteristics. Chem. Eng. J. 2018, 335, 101–109. [Google Scholar] [CrossRef]
- Wadekar, S.S.; Hayes, T.; Lokare, O.R.; Mittal, D.; Vidic, R.D. Laboratory and Pilot-Scale Nanofiltration Treatment of Abandoned Mine Drainage for the Recovery of Products Suitable for Industrial Reuse. Ind. Eng. Chem. Res. 2017, 56, 7355–7364. [Google Scholar] [CrossRef]
- Pino, L.; Beltran, E.; Schwarz, A.; Ruiz, M.C.; Borquez, R. Optimization of Nanofiltration for Treatment of Acid Mine Drainage and Copper Recovery by Solvent Extraction. Hydrometallurgy 2020, 195, 105361. [Google Scholar] [CrossRef]
- Jamil, S.; Loganathan, P.; Kandasamy, J.; Ratnaweera, H.; Vigneswaran, S. Comparing Nanofiltration Membranes Effectiveness for Inorganic and Organic Compounds Removal from a Wastewater-Reclamation Plant’s Micro-Filtered Water. Mater. Today Proc. 2021, 47, 1389–1393. [Google Scholar] [CrossRef]
- Vass, C.R.; Noble, A.; Ziemkiewicz, P.F. The Occurrence and Concentration of Rare Earth Elements in Acid Mine Drainage and Treatment By-Products: Part 1—Initial Survey of the Northern Appalachian Coal Basin. Min. Metall. Explor. 2019, 36, 903–916. [Google Scholar] [CrossRef]
- Fonseka, C.; Ryu, S.; Naidu, G.; Kandasamy, J.; Vigneswaran, S. Recovery of Water and Valuable Metals Using Low Pressure Nanofiltration and Sequential Adsorption from Acid Mine Drainage. Environ. Technol. Innov. 2022, 28, 102753. [Google Scholar] [CrossRef]
- Lopez, J.; Reig, M.; Gibert, O.; Valderrama, C.; Cortina, J.L. Evaluation of NF Membranes as Treatment Technology of Acid Mine Drainage: Metals and Sulfate Removal. Desalination 2018, 440, 122–134. [Google Scholar] [CrossRef]
- Saha, S.; Sinha, A. Review on Treatment of Acid Mine Drainage with Waste Materials: A Novel Approach. Glob. NEST J. 2018, 20, 512–528. [Google Scholar] [CrossRef]
- Mohiuddin, A.; Cox, P.; Blayney, B. The Impact of the Millennium Drought on Water Filtration Plants. Water E-J. 2020, 5, 1–10. [Google Scholar] [CrossRef]
- Guo, Y.; Li, T.; Xiao, K.; Wang, X.; Xie, Y.F. Key Foulants and Their Interactive Effect in Organic Fouling of Nanofiltration Membranes. J. Membr. Sci. 2020, 610, 118252. [Google Scholar] [CrossRef]
- Shanmuganathan, S.; Vigneswaran, S.; Nguyen, T.V.; Loganathan, P.; Kandasamy, J. Use of Nanofiltration and Reverse Osmosis in Reclaiming Micro-Filtered Biologically Treated Sewage Effluent for Irrigation. Desalination 2015, 364, 119–125. [Google Scholar] [CrossRef]
- Australian and New Zealand Environment and Conservation Council. Australian and New Zealand Guidelines for Fresh and Marine Water Quality 2000; Australian and New Zealand Environment and Conservation Council: Canberra, ACT, Australia, 2000. [Google Scholar]
- Ramdani, A.; Deratani, A.; Taleb, S.; Drouiche, N.; Lounici, H. Performance of NF90 and NF270 Commercial Nanofiltration Membranes in the Defluoridation of Algerian Brackish Water. Desalination Water Treat. 2021, 212, 286–296. [Google Scholar] [CrossRef]
- Ozaki, H.; Ikejima, N.; Matsui, S.; Terashima, Y.; Takeda, S.; Tari, I.; Li, H. The Role of Membrane ξ-Potential in Solute Rejection by Low-Pressure Reverse Osmosis Membrane. Water Supply 2002, 2, 321–328. [Google Scholar] [CrossRef]
- Nicolini, J.V.; Borges, C.P.; Ferraz, H.C. Selective Rejection of Ions and Correlation with Surface Properties of Nanofiltration Membranes. Sep. Purif. Technol. 2016, 171, 238–247. [Google Scholar] [CrossRef]
- Huber, S.A.; Balz, A.; Abert, M.; Pronk, W. Characterisation of Aquatic Humic and Non-Humic Matter with Size-Exclusion Chromatography—Organic Carbon Detection—Organic Nitrogen Detection (LC-OCD-OND). Water Res. 2011, 45, 879–885. [Google Scholar] [CrossRef]
- Krzeminski, P.; Vogelsang, C.; Meyn, T.; Köhler, S.J.; Poutanen, H.; De Wit, H.A.; Uhl, W. Natural Organic Matter Fractions and Their Removal in Full-Scale Drinking Water Treatment under Cold Climate Conditions in Nordic Capitals. J. Environ. Manag. 2019, 241, 427–438. [Google Scholar] [CrossRef]
- Fonseka, C.; Ryu, S.; Choo, Y.; Naidu, G.; Kandasamy, J.; Thiruvenkatachari, R.; Foseid, L.; Ratnaweera, H.; Vigneswaran, S. Selective Recovery of Europium from Real Acid Mine Drainage by Using Novel Amine Based Modified SBA15 Adsorbent and Membrane Distillation System. J. Water Process Eng. 2023, 56, 104551. [Google Scholar] [CrossRef]
- Lim, Y.J.; Goh, K.; Wang, R. The Coming of Age of Water Channels for Separation Membranes: From Biological to Biomimetic to Synthetic. Chem. Soc. Rev. 2022, 51, 4537–4582. [Google Scholar] [CrossRef] [PubMed]
- Drioli, E.; Quist-Jensen, C.A.; Giorno, L. Molecular weight cutoff. In Encyclopedia of Membranes; Drioli, E., Giorno, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–2. [Google Scholar] [CrossRef]
- Mehiguene, K.; Garba, Y.; Taha, S.; Gondrexon, N.; Dorange, G. Influence of Operating Conditions on the Retention of Copper and Cadmium in Aqueous Solutions by Nanofiltration: Experimental Results and Modelling. Sep. Purif. Technol. 1999, 15, 181–187. [Google Scholar] [CrossRef]
- Franke, V.; McCleaf, P.; Lindegren, K.; Ahrens, L. Efficient Removal of Per- and Polyfluoroalkyl Substances (PFASs) in Drinking Water Treatment: Nanofiltration Combined with Active Carbon or Anion Exchange. Environ. Sci. Water Res. Technol. 2019, 5, 1836–1843. [Google Scholar] [CrossRef]
- Soyekwo, F.; Zhang, Q.; Gao, R.; Qu, Y.; Lin, C.; Huang, X.; Zhu, A.; Liu, Q. Cellulose Nanofiber Intermediary to Fabricate Highly-Permeable Ultrathin Nanofiltration Membranes for Fast Water Purification. J. Membr. Sci. 2017, 524, 174–185. [Google Scholar] [CrossRef]
- Kim, S.; Ozaki, H.; Kim, J. Effect of pH on the Rejection of Inorganic Salts and Organic Compound Using Nanofiltration Membrane. Korean J. Chem. Eng. 2006, 23, 28–33. [Google Scholar] [CrossRef]
- Sadrzadeh, M.; Hajinasiri, J.; Bhattacharjee, S.; Pernitsky, D. Nanofiltration of Oil Sands Boiler Feed Water: Effect of pH on Water Flux and Organic and Dissolved Solid Rejection. Sep. Purif. Technol. 2015, 141, 339–353. [Google Scholar] [CrossRef]
- Li, Q.; Xu, Z.; Pinnau, I. Fouling of Reverse Osmosis Membranes by Biopolymers in Wastewater Secondary Effluent: Role of Membrane Surface Properties and Initial Permeate Flux. J. Membr. Sci. 2007, 290, 173–181. [Google Scholar] [CrossRef]
- Hwang, J.; Jegal, J.; Lee, K. Separation of Humic Acid with Nanofiltration Polyamide Composite Membranes. J. Appl. Polym. Sci. 2002, 86, 2847–2853. [Google Scholar] [CrossRef]
- Bellona, C.; Marts, M.; Drewes, J.E. The Effect of Organic Membrane Fouling on the Properties and Rejection Characteristics of Nanofiltration Membranes. Sep. Purif. Technol. 2010, 74, 44–54. [Google Scholar] [CrossRef]
- Dang, H.Q.; Nghiem, L.D.; Price, W.E. Factors Governing the Rejection of Trace Organic Contaminants by Nanofiltration and Reverse Osmosis Membranes. Desalination Water Treat. 2014, 52, 589–599. [Google Scholar] [CrossRef]
- Yu, W.; Liu, T.; Crawshaw, J.; Liu, T.; Graham, N. Ultrafiltration and Nanofiltration Membrane Fouling by Natural Organic Matter: Mechanisms and Mitigation by Pre-Ozonation and pH. Water Res. 2018, 139, 353–362. [Google Scholar] [CrossRef]
- Suhalim, N.S.; Kasim, N.; Mahmoudi, E.; Shamsudin, I.J.; Mohammad, A.W.; Mohamed Zuki, F.; Jamari, N.L.-A. Rejection Mechanism of Ionic Solute Removal by Nanofiltration Membranes: An Overview. Nanomaterials 2022, 12, 437. [Google Scholar] [CrossRef]
- Mohammad, A.W.; Teow, Y.H.; Ang, W.L.; Chung, Y.T.; Oatley-Radcliffe, D.L.; Hilal, N. Nanofiltration Membranes Review: Recent Advances and Future Prospects. Desalination 2015, 356, 226–254. [Google Scholar] [CrossRef]
- Qadir, D.; Mukhtar, H.; Keong, L.K. Mixed Matrix Membranes for Water Purification Applications. Sep. Purif. Rev. 2017, 46, 62–80. [Google Scholar] [CrossRef]
- Khettaf, S.; Boumaraf, R.; Benmahdi, F.; Bouhidel, K.-E.; Bouhelassa, M. Removal of the Neutral Dissolved Organic Matter (NDOM) from Surface Water by Coagulation/Flocculation and Nanofiltration. Anal. Lett. 2021, 54, 2713–2726. [Google Scholar] [CrossRef]
- Virga, E.; De Grooth, J.; Žvab, K.; De Vos, W.M. Stable Polyelectrolyte Multilayer-Based Hollow Fiber Nanofiltration Membranes for Produced Water Treatment. ACS Appl. Polym. Mater. 2019, 1, 2230–2239. [Google Scholar] [CrossRef]
- Shanmuganathan, S.; Loganathan, P.; Kazner, C.; Johir, M.A.H.; Vigneswaran, S. Submerged Membrane Filtration Adsorption Hybrid System for the Removal of Organic Micropollutants from a Water Reclamation Plant Reverse Osmosis Concentrate. Desalination 2017, 401, 134–141. [Google Scholar] [CrossRef]
- Devaisy, S.; Kandasamy, J.; Aryal, R.; Johir, M.A.H.; Ratnaweera, H.; Vigneswaran, S. Removal of Organics with Ion-Exchange Resins (IEX) from Reverse Osmosis Concentrate. Membranes 2023, 13, 136. [Google Scholar] [CrossRef]
NF Membranes | Manufacturer (Material) | MWCO | Zero Point Charge (ZPC) pH | Zeta Potential (mV) at pH = 7 | Contact Angle (Degrees) |
---|---|---|---|---|---|
NF90 | DOW (polyamide TFC) | 90–180 [4] | 3.5 [4] | −25 [13] | 79 [4] |
NTR 729HF | Nitto Denko (polyvinylalcohol/ polyamides (heterocyclic aromatic)) | 700 Da | 3.74 [14] | −100 [11] | 28 |
Parameters | Concentration (mg/L) |
---|---|
pH | 2.0 ± 0.2 |
Na | 112.9 |
Mg | 300.9 |
Al | 101.6 |
Ca | 168.5 |
Fe | 302.9 |
Ni | 6.0 |
Cu | 107.5 |
Zn | 104.3 |
Eu | 0.14 |
Sample | DOC | Hydrophobic | Hydrophilic | Biopolymers | Humic | Building Blocks | LMWOs |
---|---|---|---|---|---|---|---|
mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | |
Surface water | 5.19 | 1.17 | 4.02 | 0.28 | 2.47 | 0.74 | 0.53 |
Parameter | Unit | MF-BTSE |
---|---|---|
pH | 6.8–7.6 | |
DOC | mg/L | 3–7 |
EC | µS/cm | 520–1120 |
SAR | 39 | |
Sulfate | mg/L | 49–51 |
Nitrate | mg/L | 1.0–1.3 |
Chloride | mg/L | 150–300 |
Sodium | mg/L | 81–120 |
Calcium | mg/L | 21–40 |
Magnesium | mg/L | 10–15 |
Orthoborate | mg B/L | 0.04–0.06 |
Element | Initial Concentration (mg/L) | Permeate Quality (mg/L) | Rejection % |
---|---|---|---|
Na | 112.92 | 10.56 | 90.65 |
Al | 101.64 | 1.69 | 98.34 |
Ca | 168.54 | 1.65 | 99.02 |
Cu | 107.48 | 1.08 | 99.00 |
Fe | 302.90 | 2.64 | 99.13 |
Mg | 300.95 | 3.12 | 98.96 |
Ni | 6.02 | 0.07 | 98.84 |
Zn | 101.34 | 0.81 | 99.20 |
Eu | 0.14 | 0.0042 | 97.00 |
Sample | DOC | Hydrophobic | Hydrophilic | Biopolymers | Humic | Building Blocks | LMWOs |
---|---|---|---|---|---|---|---|
mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | |
Initial | 5.19 | 1.17 | 4.02 | 0.28 | 2.47 | 0.74 | 0.53 |
NF permeate | 0.18 | 0.06 | 0.11 | 0.00 | 0.06 | 0.01 | 0.05 |
Rejection% | 96.6 | 95.0 | 97.2 | 100 | 97.7 | 98.5 | 91.7 |
Organic and Inorganic Ions | Rejection (%) by NTR-729HF Membrane |
---|---|
Dissolved organic carbon (DOC) | 95–99 |
Sulfate ions | 99 ± 1 |
Nitrates | 88 ± 2 |
Calcium ions | 62 ± 7 |
Magnesium ions | 62 ± 11 |
Sodium ions | 19 ± 1 |
Chloride ions | 11 ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonseka, C.; Ryu, S.; Devaisy, S.; Kandasamy, J.; McLod, L.; Ratnaweera, H.; Vigneswaran, S. Application of Low-Pressure Nanofiltration Membranes NF90 and NTR-729HF for Treating Diverse Wastewater Streams for Irrigation Use. Water 2024, 16, 1971. https://doi.org/10.3390/w16141971
Fonseka C, Ryu S, Devaisy S, Kandasamy J, McLod L, Ratnaweera H, Vigneswaran S. Application of Low-Pressure Nanofiltration Membranes NF90 and NTR-729HF for Treating Diverse Wastewater Streams for Irrigation Use. Water. 2024; 16(14):1971. https://doi.org/10.3390/w16141971
Chicago/Turabian StyleFonseka, Charith, Seongchul Ryu, Sukanyah Devaisy, Jaya Kandasamy, Lee McLod, Harsha Ratnaweera, and Saravanamuthu Vigneswaran. 2024. "Application of Low-Pressure Nanofiltration Membranes NF90 and NTR-729HF for Treating Diverse Wastewater Streams for Irrigation Use" Water 16, no. 14: 1971. https://doi.org/10.3390/w16141971
APA StyleFonseka, C., Ryu, S., Devaisy, S., Kandasamy, J., McLod, L., Ratnaweera, H., & Vigneswaran, S. (2024). Application of Low-Pressure Nanofiltration Membranes NF90 and NTR-729HF for Treating Diverse Wastewater Streams for Irrigation Use. Water, 16(14), 1971. https://doi.org/10.3390/w16141971