Meteorological Drought Analysis and Regional Frequency Analysis in the Kızılırmak Basin: Creating a Framework for Sustainable Water Resources Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Precipitation Drought Indices
2.2.1. Standardized Precipitation Index (SPI)
2.2.2. Z-Score Index (ZSI)
2.2.3. China-Z Index (CZI)
2.2.4. Modified China-Z Index (MCZI)
2.3. Regional Frequency Analysis (RFA) and L-Moment Statistics
2.3.1. L-Moments and L-Coefficients
2.3.2. Non-Compliance Criterion According to L-Moments Method
2.3.3. Homogenization Test
2.3.4. Choosing ZDIST Goodness-of-Fit Tests
2.3.5. Inverse Distance-Weighted Interpolation Method (IDW)
3. Results
3.1. Drought Indices Results
3.2. Regionalization with L-Moments Method
3.2.1. Calculation of L-Coefficients, Non-Compliance Criterion and Homogeneity
3.2.2. Choosing ZDIST Goodness-of-Fit Tests
3.3. Inverse Distance Weighted Interpolation Method (IDW)
4. Discussion
5. Conclusions
- One of the most important results of the drought analysis in this study is that the MCZI method is not suitable for the basin.
- According to the results of the four different indices, the basin experienced its longest and most severe periods of drought events predominantly in the 2000s.
- Despite their proximity and similar rainfall data statistics, the Sivas (1294) and Zara (1338) stations show significant differences in terms of the drought duration and severity.
- The Ilgaz station was found to be a discordant station for the four different drought indices. In addition, the Boyabat (350) station for the CZI and the Vezirköprü (378) station for the ZSI were found to be discordant. The homogeneity test was thought to not reflect the truth without removing the discordant stations.
- In the study conducted using the different drought indices, it was determined that a large region such as the Kızılırmak Basin would be defined as a single homogeneous region. A single homogeneous region has led to more practical and effective results.
- Hosking’s goodness-of-fit method was used to select the appropriate probability distribution function for estimating the drought severity of the SPI, MCZI, CZI, and ZSI drought indices at various recurrence periods. The PE3 distribution for the SPI and ZSI, GEV distribution for the CZI, and GLO distribution for the MCZI were determined to be the most appropriate distributions.
- It is unclear to what extent the average drought severity depends on the meteorological variables, station spatial characteristics, basin characteristics, and other parameters.
- Especially, these thresholds are thought to provide important information for the region in terms of reducing the effects of drought in drought forecasting, risk analysis and management studies.
- These thresholds are thought to provide vital information for the region in terms of reducing the effects of drought in drought forecasting, risk analysis, and management studies.
- Using equations derived from the IDW maps, estimating the probability of drought in any part of the basin would be more practical without sufficient data for hydrological studies.
- When drought determination is required for some specific drought events in non-measured areas, the procedure presented in this study will provide better estimates than the other available methods. With this procedure, it will not be necessary to have a long-term station data series to develop a drought-monitoring network, as with an in situ approach.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Station Name | Occurrences Classification of Drought Events (Drought Months) According to SPI | Average Drought | Longest Duration of Drought Events in Months | Maximum Drought Severity | Major Drought Events Experienced in the Kızılırmak Basin | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Extreme Drought | Severe Drought | Moderate Drought | Duration | Severity | Start Time | End Time | Duration | Severity | Time | Time (Year) | |
(Month) | (Month) | (Year/Month) | |||||||||
Bafra | 20 | 27 | 66 | 3.9 | −1.55 | 2013/12 | 2015/2 | 15 | −3.46 | 2014/8 | 1961, 2001, 2014, 2018, 2019, 2020 |
Boğazlıyan | 24 | 31 | 51 | 4.42 | −1.65 | 2016/3 | 2018/5 | 27 | −3.37 | 2017/5 | 2001, 2016, 2017, 2018 |
Boyabat | 8 | 22 | 76 | 3.53 | −1.39 | 2017/5 | 2018/4, | 12 | −2.67 | 2017/9 | 2017, 2018, 2020 |
1993/12 | 1994/11 | ||||||||||
Çankırı | 18 | 31 | 61 | 3.67 | −1.53 | 2007/2 | 2008/9 | 20 | −3.07 | 2007/10 | 1973, 1974, 1986, 2007, 2008 |
Çiçekdağı | 15 | 17 | 50 | 3.73 | −1.54 | 1973/6 | 1975/3 | 22 | −2.6 | 2014/1 | 1973, 1974, 2001, 2012, 2014, 2020 |
Develi | 26 | 21 | 50 | 4.85 | −1.77 | 2013/12 | 2015/1 | 14 | −4.41 | 2014/4 | 1985, 1989, 1990, 1995, 2012, 2014 |
Gemerek | 18 | 34 | 62 | 4.38 | −1.52 | 2018/4 | 2019/7 | 16 | −2.47 | 2001/10 | 1961, 1995, 2001, 2014, 2017, 2018, 2019 |
Ilgaz | 3 | 18 | 68 | 3.56 | −1.32 | 2006/7 | 2008/3 | 21 | −2.22 | 1962/7 | 1962 |
Kaman | 11 | 39 | 73 | 3.84 | −1.45 | 1973/10 | 1974/12 | 15 | −2.69 | 2020/12 | 1974, 1976, 2001, 2005, 2007, 2014, 2020 |
Kastamonu | 8 | 38 | 75 | 5.04 | −1.45 | 2006/8 | 2008/4 | 21 | −2.4 | 1994/9 | 1962, 1964, 1974, 1994 |
Kayseri | 20 | 28 | 64 | 4.87 | −1.55 | 2016/3 | 2017/10 | 20 | −2.87 | 2016/11 | 1994, 2001, 2016, 2017 |
Keskin | 18 | 21 | 84 | 2.93 | −1.47 | 2017/1 | 2018/4 | 16 | −2.93 | 2017/5 | 2001, 2005, 2007, 2017, 2018, 2020 |
Kırıkkale | 9 | 43 | 61 | 4.04 | −1.51 | 2007/2 | 2009/1 | 24 | −3.02 | 2007/10 | 1979, 2001, 2003, 2007, 2008 |
Kırşehir | 14 | 43 | 76 | 4.75 | −1.5 | 1973/6 | 1975/3 | 22 | −2.51 | 1974/8 | 1973, 1974, 1984, 1995, 2004, 2008, 2014 |
Osmancık | 11 | 26 | 45 | 3.73 | −1.51 | 1986/3 | 1987/2 | 12 | −2.7 | 2014/2 | 1977, 1985, 1986, 1994, 2013, 2014 |
Sivas | 31 | 37 | 52 | 5 | −1.65 | 1973/6 | 1974/9 | 16 | −2.76 | 1973/10 | 1961, 1965, 1967, 1971, 1973, 1974, 1984, |
1994, 2007, 2014 | |||||||||||
Tosya | 18 | 32 | 70 | 4.62 | −1.52 | 2007/2 | 2008/8 | 19 | −2.83 | 2020/12 | 1964, 1974, 2001, 2007, 2008, 2012, |
2013, 2014, 2020 | |||||||||||
Ürgüp | 19 | 27 | 59 | 4.57 | −1.61 | 2012/4 | 2014/10 | 31 | −3.33 | 2012/9 | 2012, 2013, 2014 |
Vezirköprü | 18 | 31 | 60 | 3.89 | −1.6 | 1976/2, 2013/10 | 1977/3, 2014/11 | 14 | −3.89 | 2014/4 | 1964, 1985, 1986, 2013, 2014, 2020 |
Yozgat | 26 | 23 | 60 | 3.41 | −1.61 | 1972/12 | 1975/3 | 28 | −3.24 | 2001/10 | 1971, 1973, 1974, 2001, 2007, 2014 |
Zara | 23 | 25 | 49 | 5.11 | −1.72 | 2013/12 | 2015/1 | 14 | −3.68 | 2014/5 | 2007, 2012, 2013, 2014, 2017, 2020 |
Station Name | Occurances Classification of Drought Events (Drought Months) According to MCZI | Average Drought | Longest Duration of Drought Events in Months | Maximum Drought Severity | Major Drought Events Experienced in the Kızılırmak Basin | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Extreme Drought | Severe Drought | Moderate Drought | Duration | Severity | Start Time | End Time | Duration | Severity | Time | Time (Year) | |
(Month) | (Month) | (Year/Month) | |||||||||
Bafra | 18 | 23 | 69 | 3.67 | −1.52 | 2013/12 | 2015/2 | 15 | −3.49 | 2014/5 | 1961, 2001, 2014, 2018, 2019, 2020 |
Boğazlıyan | 22 | 30 | 56 | 4.91 | −1.6 | 2016/3 | 2018/5 | 27 | −3.72 | 2017/6 | 2001, 2016, 2017 |
Boyabat | 23 | 21 | 29 | 3.48 | −2.29 | 1993/12 | 1994/11 | 12 | −6.87 | 2017/9 | 1983, 1994, 2001, 2003, 2014, 2017, 2018, 2020 |
Çankırı | 20 | 28 | 34 | 3.73 | −1.73 | 2007/9 | 2008/8 | 12 | −6.5 | 1986/8 | 1973, 1974, 1986, 1994, 2007, 2008 |
Çiçekdağı | 13 | 17 | 36 | 3.88 | −1.61 | 1974/3 | 1975/3 | 13 | −3.23 | 2012/7 | 1974, 2012, 2013, 2014, 2017, 2020 |
Develi | 24 | 21 | 64 | 4.74 | −1.58 | 2013/12 | 2015/1 | 14 | −2.86 | 2014/5 | 1985, 1989, 1995, 2012, 2014 |
Gemerek | 28 | 28 | 42 | 3.77 | −1.68 | 2000/11 | 2001/12 | 14 | −4.44 | 2001/10 | 1961, 1964, 1995, 2001, 2013, 2014, |
2017, 2018, 2019 | |||||||||||
Ilgaz | 49 | 4 | 19 | 2.77 | −2.62 | 1962/1 | 1962/10 | 10 | −4.73 | 1962/7 | 1962, 1964, 1971, 1977, 1993, 1994, 1995, 2001, 2003, 2005, 2007, 2008, 2014, 2017, 2020 |
Kaman | 15 | 27 | 48 | 3.46 | −1.62 | 1974/2 | 1974/11 | 10 | −5.98 | 2005/1 | 1974, 1976, 2001, 2005, 2007, |
2014, 2020 | |||||||||||
Kastamonu | 23 | 22 | 51 | 3.84 | −1.73 | 2006/9 | 2008/4 | 20 | −5.8 | 1994/8 | 1962, 1964, 1971, 1974, 1994, 1995, |
2007, 2008 | |||||||||||
Kayseri | 22 | 23 | 55 | 4 | −1.8 | 2016/4 | 2017/5 | 14 | −7.2 | 2016/6 | 1994, 2001, 2016, 2017 |
Keskin | 14 | 19 | 73 | 2.52 | −1.59 | 2017/1 | 2018/4 | 16 | −8.55 | 2017/3 | 2005, 2007, 2017, 2018, 2020 |
Kırıkkale | 11 | 35 | 44 | 4.09 | −1.55 | 2007/5 | 2009/1 | 21 | −2.8 | 2008/6 | 1979, 2001, 2003, 2007, 2008 |
Kırşehir | 9 | 39 | 74 | 4.52 | −1.46 | 1973/6 | 1975/3 | 22 | −2.59 | 1995/2 | 1974, 1995, 2008, 2014 |
Osmancık | 7 | 26 | 24 | 3.35 | −1.63 | 1986/4 | 1986/12 | 9 | −3.88 | 2014/3 | 1977, 1986, 2013, 2014 |
Sivas | 14 | 46 | 64 | 4.77 | −1.54 | 1973/6 | 1974/11 | 18 | −2.84 | 2014/5 | 1961, 1971, 1973, 1974, 2014 |
Tosya | 17 | 24 | 70 | 3.83 | −1.49 | 2007/2 | 2008/8 | 19 | −2.57 | 2020/12 | 1964, 1974, 2001, 2007, 2008, 2012, |
2013, 2014, 2020 | |||||||||||
Ürgüp | 13 | 30 | 78 | 4.17 | −1.46 | 2012/4 | 2014/10 | 31 | −2.95 | 2014/5 | 2012, 2013, 2014 |
Vezirköprü | 9 | 36 | 57 | 3.19 | −1.5 | 2013/10 | 2014/11 | 14 | −2.83 | 2014/5 | 1964, 2013, 2014 |
Yozgat | 17 | 28 | 50 | 3.17 | −1.59 | 1972/12 | 1975/3 | 28 | −2.87 | 1974/6 | 1973, 1974, 2001, 2014 |
Zara | 19 | 23 | 57 | 4.71 | −1.6 | 2017/5 | 2018/8 | 16 | −4.17 | 2012/11 | 2012, 2013, 2014, 2019 |
Station Name | Occurances Classification of Drought Events (Drought Months) According to CZI | Average Drought | Longest Duration of Drought Events in Months | Maximum Drought Severity | Major Drought Events Experienced in the Kızılırmak Basin | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Extreme Drought | Severe Drought | Moderate Drought | Duration | Severity | Start Time | End Time | Duration | Severity | Time | Time (Year) | |
(Month) | (Month) | (Year/Month) | |||||||||
Bafra | 15 | 26 | 76 | 4.03 | −1.48 | 2013/12 | 2015/3 | 16 | −2.83 | 2014/3 | 1961, 2014, 2018, 2019, 2020 |
Boğazlıyan | 22 | 31 | 55 | 4.7 | −1.58 | 2016/3 | 2018/5 | 27 | −3.7 | 2017/5 | 2001, 2016, 2017 |
Boyabat | 19 | 35 | 55 | 3.76 | −1.91 | 2017/5, | 2018/4, | 12 | −7.92 | 2017/9 | 1983, 1994, 2003, 2017, 2018, 2020 |
1993/12 | 1994/11 | ||||||||||
Çankırı | 18 | 31 | 60 | 3.63 | −1.53 | 2007/5 | 2008/9 | 17 | −2.75 | 1986/8 | 1973, 1974, 1986, 2007, 2008 |
Çiçekdağı | 11 | 20 | 51 | 3.73 | −1.52 | 1973/6 | 1975/3 | 22 | −2.46 | 2014/2 | 1974, 2012, 2013, 2014, 2020 |
Develi | 24 | 18 | 61 | 5.42 | −1.61 | 2013/12 | 2015/1 | 14 | −2.91 | 2014/5 | 1985, 1989, 1995, 2012, 2014 |
Gemerek | 25 | 31 | 57 | 4.35 | −1.59 | 2018/4 | 2019/6 | 15 | −3.52 | 2001/10 | 1961, 1964, 1995, 2001, 2013, 2014, |
2017, 2018, 2019 | |||||||||||
Ilgaz | 66 | 14 | 23 | 3.68 | −2.89 | 2006/7 | 2008/3 | 21 | −5.69 | 1962/8 | 1962, 1964, 1971, 1977, 1985, 1986, |
1992, 1993, 1994, 1995, | |||||||||||
2001, 2003, 2005, 2007, 2008, 2013, | |||||||||||
2014, 2017, 2020 | |||||||||||
Kaman | 9 | 40 | 71 | 3.64 | −1.46 | 1973/10 | 1974/12 | 15 | −2.92 | 2005/1 | 1974, 1976, 2001, 2005, 2007, 2014, |
2020 | |||||||||||
Kastamonu | 18 | 31 | 68 | 4.68 | −1.52 | 2006/8 | 2008/4 | 21 | −2.49 | 1964/5 | 1962, 1964, 1971, 1974, 1994, 1995, |
2007, 2008 | |||||||||||
Kayseri | 22 | 29 | 61 | 4.87 | −1.59 | 2016/3 | 2017/10 | 20 | −3.15 | 2016/6 | 1994, 2001, 2016, 2017 |
Keskin | 15 | 22 | 85 | 2.9 | −1.44 | 2017/1 | 2018/4 | 16 | −3.14 | 2017/3 | 2005, 2007, 2017, 2018, 2020 |
Kırıkkale | 10 | 41 | 61 | 4.15 | −1.5 | 2007/2 | 2009/1 | 24 | −2.43 | 2007/10 | 1979, 2003, 2007, 2008 |
Kırşehir | 7 | 42 | 85 | 4.79 | −1.45 | 1973/6 | 1975/3 | 22 | −2.33 | 1995/2 | 1974, 1995, 2008 |
Osmancık | 7 | 29 | 46 | 3.73 | −1.47 | 1986/3 | 1987/2 | 12 | −2.74 | 2014/3 | 1977, 1986, 2013, 2014 |
Sivas | 15 | 44 | 66 | 5 | −1.53 | 1973/6 | 1974/9 | 16 | −2.38 | 2014/5 | 1961, 1971, 1973, 1974, 2007, 2014 |
Tosya | 17 | 27 | 76 | 4.62 | −1.47 | 2007/2 | 2008/8 | 19 | −2.7 | 2020/12 | 1964, 1974, 2001, 2007, 2008, 2012, |
2013, 2014, 2020 | |||||||||||
Ürgüp | 14 | 26 | 72 | 4.15 | −1.48 | 2012/4 | 2014/10 | 31 | −2.88 | 2014/5 | 2012, 2013, 2014 |
Vezirköprü | 10 | 36 | 71 | 3.77 | −1.45 | 1976/2, | 1977/3, | 14 | −2.7 | 2014/4 | 1964, 1986, 2013, 2014 |
2013/10 | 2014/11 | ||||||||||
Yozgat | 17 | 29 | 70 | 3.41 | −1.49 | 1972/12 | 1975/3 | 28 | −2.47 | 1974/6 | 1973, 1974, 2001, 2014 |
Zara | 18 | 28 | 53 | 5.5 | −1.59 | 2017/3 | 2018/6 | 16 | −3.23 | 2012/11 | 2012, 2013, 2014 |
Station Name | Occurances Classification of Drought Events (Drought Months) According to ZSI | Average Drought | Longest Duration of Drought Events in Months | Maximum Drought Severity | Major Drought Events Experienced in the Kızılırmak Basin | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Extreme Drought | Severe Drought | Moderate Drought | Duration | Severity | Start Time | End Time | Duration | Severity | Time | Time (Year) | |
(Month) | (Month) | (Year/Month) | |||||||||
Bafra | 12 | 26 | 78 | 4 | −1.45 | 2013/12 | 2015/2 | 15 | −2.83 | 2014/8 | 2014, 2020 |
Boğazlıyan | 19 | 31 | 57 | 4.65 | −1.51 | 2016/3 | 2018/5 | 27 | −2.58 | 2017/5 | 2001, 2016, 2017 |
Boyabat | 1 | 12 | 73 | 3.74 | −1.27 | 1993/12 | 1994/11 | 12 | −2.03 | 2017/9 | 2017 |
Çankırı | 8 | 33 | 65 | 3.66 | −1.42 | 2007/5 | 2008/9 | 17 | −2.5 | 2007/10 | 1973, 1974, 1986, 2007 |
Çiçekdağı | 5 | 24 | 53 | 3.73 | −1.42 | 1973/6 | 1975/3 | 22 | −2.22 | 2014/1 | 2012, 2014 |
Develi | 24 | 19 | 60 | 5.42 | −1.61 | 2013/12 | 2015/1 | 14 | −3.36 | 2014/4 | 1985, 1989, 1995, 2012, 2014 |
Gemerek | 5 | 44 | 64 | 4.35 | −1.41 | 2018/4 | 2019/6 | 15 | −2.17 | 1995/3 | 1995, 2001, 2014 |
Ilgaz | 0 | 3 | 55 | 3.22 | −1.18 | 1962/1 | 1962/11 | 11 | −1.68 | 1962/7 | - |
Kaman | 4 | 28 | 84 | 3.63 | −1.38 | 1973/10 | 1974/12 | 15 | −2.3 | 2020/12 | 1974, 1976, 2014, 2020 |
Kastamonu | 1 | 32 | 82 | 4.42 | −1.35 | 2006/8 | 2008/4 | 21 | −2.07 | 1994/9 | 1994 |
Kayseri | 8 | 29 | 73 | 4.78 | −1.43 | 2016/4 | 2017/10 | 19 | −2.36 | 2016/11 | 1994, 2016 |
Keskin | 14 | 17 | 90 | 2.88 | −1.39 | 2017/1 | 2018/4 | 16 | −2.46 | 2017/9 | 2005, 2007, 2017, 2018, 2020 |
Kırıkkale | 6 | 34 | 67 | 3.96 | −1.42 | 2007/5 | 2009/1 | 21 | −2.52 | 2007/10 | 2007, 2008 |
Kırşehir | 7 | 39 | 86 | 5.08 | −1.42 | 1973/6 | 1975/3 | 22 | −2.19 | 1974/8 | 1974, 1995, 2008 |
Osmancık | 4 | 31 | 46 | 3.68 | −1.4 | 1986/3 | 1987/2 | 12 | −2.23 | 2014/2 | 2014 |
Sivas | 18 | 44 | 62 | 4.77 | −1.55 | 1973/6 | 1974/9 | 16 | −2.42 | 1973/10 | 1961, 1971, 1973, 1974, 1984, |
2007, 2014 | |||||||||||
Tosya | 12 | 28 | 80 | 4.62 | −1.43 | 2007/2 | 2008/8 | 19 | −2.41 | 2020/12 | 1964, 2007, 2012, 2013, |
2014, 2020 | |||||||||||
Ürgüp | 13 | 29 | 70 | 4.15 | −1.48 | 2012/4 | 2014/10 | 31 | −2.71 | 2012/9 | 2012, 2013, 2014 |
Vezirköprü | 12 | 32 | 72 | 3.74 | −1.49 | 1976/2, | 1977/3, | 14 | −3.18 | 2014/4 | 1964, 1986, 2013, 2014 |
2013/10 | 2014/11 | ||||||||||
Yozgat | 19 | 27 | 69 | 3.38 | −1.5 | 1972/12 | 1975/3 | 28 | −2.79 | 2001/10 | 1971, 1973, 1974, 2001, |
2007, 2014 | |||||||||||
Zara | 18 | 29 | 52 | 5.5 | −1.6 | 2017/3 | 2018/6 | 16 | −3.02 | 2014/5 | 2012, 2013, 2014 |
References
- Sheffield, J.; Goteti, G.; Wood, E.F. Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling. J. Clim. 2006, 19, 3088–3111. [Google Scholar] [CrossRef]
- Kasei, R.; Diekkrüger, B.; Leemhuis, C. Drought Frequency in the Volta Basin of West Africa. Sustain. Sci. 2010, 5, 89–97. [Google Scholar] [CrossRef]
- Tayfur, G. Discrepancy Precipitation Index for Monitoring Meteorological Drought. J. Hydrol. 2021, 597, 126174. [Google Scholar] [CrossRef]
- Corlett, R.T. The Impacts of Droughts in Tropical Forests. Trends Plant Sci. 2016, 21, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Kuwayama, Y.; Thompson, A.; Bernknopf, R.; Zaitchik, B.; Vail, P. Estimating the Impact of Drought on Agriculture Using the U.S. Drought Monitor. Am. J. Agric. Econ. 2019, 101, 193–210. [Google Scholar] [CrossRef]
- Hoque, M.A.A.; Pradhan, B.; Ahmed, N. Assessing Drought Vulnerability Using Geospatial Techniques in Northwestern Part of Bangladesh. Sci. Total Environ. 2020, 705, 135957. [Google Scholar] [CrossRef] [PubMed]
- Meza, I.; Siebert, S.; Döll, P.; Kusche, J.; Herbert, C.; Rezaei, E.E.; Nouri, H.; Gerdener, H.; Popat, E.; Frischen, J.; et al. Global-Scale Drought Risk Assessment for Agricultural Systems. Nat. Hazards Earth Syst. Sci. 2020, 20, 695–712. [Google Scholar] [CrossRef]
- Elhoussaoui, A.; Zaagane, M.; Benaabidate, L. Comparison of Various Drought Indices for Assessing Drought Status of the Northern Mekerra Watershed, Northwest of Algeria. Arab. J. Geosci. 2021, 14, 915. [Google Scholar] [CrossRef]
- Savari, M.; Eskandari Damaneh, H.; Eskandari Damaneh, H. Drought Vulnerability Assessment: Solution for Risk Alleviation and Drought Management among Iranian Farmers. Int. J. Disaster Risk Reduct. 2022, 67, 102654. [Google Scholar] [CrossRef]
- Niaz, R.; Almazah, M.M.A.; Al-Duais, F.S.; Iqbal, N.; Khan, D.M.; Hussain, I. Spatiotemporal Analysis of Meteorological Drought Variability in a Homogeneous Region Using Standardized Drought Indices. Geomat. Nat. Hazards Risk 2022, 13, 1457–1481. [Google Scholar] [CrossRef]
- Bryant, E.A. Natural Hazards; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Eslamian, S.; Hassanzadeh, H.; Abedi-Koupai, J.; Gheysari, M. Application of L-Moments for Regional Frequency Analysis of Monthly Drought Indexes. J. Hydrol. Eng. 2012, 17, 32–42. [Google Scholar] [CrossRef]
- Cook, B.I.; Smerdon, J.E.; Seager, R.; Coats, S. Global Warming and 21st Century Drying. Clim. Dyn. 2014, 43, 2607–2627. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F. Projected Changes in Drought Occurrence under Future Global Warming from Multi-Model, Multi-Scenario, IPCC AR4 Simulations. Clim. Dyn. 2008, 31, 79–105. [Google Scholar] [CrossRef]
- Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated Dryland Expansion under Climate Change. Nat. Clim. Chang. 2016, 6, 166–171. [Google Scholar] [CrossRef]
- Guo, S. The Meteorological Disaster Risk Assessment Based on the Diffusion Mechanism. J. Risk Anal. Cris. Response 2012, 2, 124–130. [Google Scholar] [CrossRef]
- Pei, Z.; Fang, S.; Wang, L.; Yang, W. Comparative Analysis of Drought Indicated by the SPI and SPEI at Various Timescales in Inner Mongolia, China. Water 2020, 12, 1925. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Buchanan-Smith, M. Drought as a Natural Hazard: Understanding the Natural and Social Context. In Drought and Water Crises: Science, Technology, and Management Issues; Wilhite, D.A., Ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Komuscu, A.U. An Analysis of Recent Drought Conditions in Turkey in Relation to Circulation Patterns. Drought Netw. News 2001, 1–3. [Google Scholar]
- Wilhite, D.A.; Glantz, M.H. Understanding: The Drought Phenomenon: The Role of Definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef]
- Wang, L.; Yu, H.; Yang, M.; Yang, R.; Gao, R.; Wang, Y. A Drought Index: The Standardized Precipitation Evapotranspiration Runoff Index. J. Hydrol. 2019, 571, 651–668. [Google Scholar] [CrossRef]
- Zhang, A.; Jia, G. Monitoring Meteorological Drought in Semiarid Regions Using Multi-Sensor Microwave Remote Sensing Data. Remote Sens. Environ. 2013, 134, 12–23. [Google Scholar] [CrossRef]
- Kamali, B.; Kouchi, D.H.; Yang, H.; Abbaspour, K.C. Multilevel Drought Hazard Assessment under Climate Change Scenarios in Semi-Arid Regions-a Case Study of the Karkheh River Basin in Iran. Water 2017, 9, 241. [Google Scholar] [CrossRef]
- Parvizi, S.; Eslamian, S.; Gheysari, M.; Gohari, A.; Kopai, S.S. Regional Frequency Analysis of Drought Severity and Duration in Karkheh River Basin, Iran Using Univariate L-Moments Method. Environ. Monit. Assess. 2022, 194, 336. [Google Scholar] [CrossRef]
- Tirivarombo, S.; Osupile, D.; Eliasson, P. Drought Monitoring and Analysis: Standardised Precipitation Evapotranspiration Index (SPEI) and Standardised Precipitation Index (SPI). Phys. Chem. Earth Parts A B C 2018, 106, 1–10. [Google Scholar] [CrossRef]
- Morid, S.; Smakhtin, V.; Moghaddasi, M. Comparison of Seven Meteorological Indices for Drought Monitoring in Iran. Int. J. Climatol. 2006, 26, 971–985. [Google Scholar] [CrossRef]
- Nalbantis, I. Evaluation of a Hydrological Drought Index. Eur. Water 2008, 2324, 67–77. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Arun Kumar, K.C.; Reddy, G.P.O.; Masilamani, P.; Turkar, S.Y.; Sandeep, P. Integrated Drought Monitoring Index: A Tool to Monitor Agricultural Drought by Using Time-Series Datasets of Space-Based Earth Observation Satellites. Adv. Space Res. 2021, 67, 298–315. [Google Scholar] [CrossRef]
- Taylor, K.E. Some Spatial Characteristics of Drought Duration in the United States. J. Clim. Appl. Meteorol. 1983, 22, 1356–1366. [Google Scholar] [CrossRef]
- Yao, Z.; Ding, Y. Climate Statistics; Meteorological Press: Beijing, China, 1990. (In Chinese) [Google Scholar]
- Hollinger, S.E.; Isard, S.A.; Welford, M.R. A New Soil Moisture Drought Index for Predicting Crop Yields. In Proceedings of the Preprints, Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 187–190. [Google Scholar]
- Palmer, W.C. Meteorological Drought. Office of Climatology Research Paper No. 45; Weather Bureau: Washington, DC, USA, 1965. [Google Scholar]
- Van-Rooy, M. A Rainfall Anomaly Index (RAI), Independent of the Time and Space. Notos 1965, 14, 43–48. [Google Scholar]
- Gibbs, W.J.; Maher, J.V. Rainfall Deciles as Drought Indicators; Bureau of Meteorology: Melbourne, Australia, 1967; Volume 48. [Google Scholar]
- Palmer, W.C. Keeping Track of Crop Moisture Conditions, Nationwide: The New Crop Moisture Index. Weatherwise 1968, 21, 156–161. [Google Scholar] [CrossRef]
- Shafer, B.A.; Dezman, L.E. Development of a Surface Water Supply Index (SWSI) to Assess the Severity of Drought Conditions in Snowpack Runoff Areas (Colorado). In Proceedings of the Western Snow Conference; Colorado State University: Fort Collins, CO, USA, 1982; pp. 164–175. [Google Scholar]
- Guttman, N.B. A Sensıtıvıty Analysıs of the Palmer Hydrologıc Drought Index. J. Am. Water Resour. Assoc. 1991, 27, 797–807. [Google Scholar] [CrossRef]
- Liu, W.T.; Kogan, F.N. Monitoring Regional Drought Using the Vegetation Condition Index. Int. J. Remote Sens. 1996, 17, 2761–2782. [Google Scholar] [CrossRef]
- Byun, H.R.; Wilhite, D.A. Objective Quantification of Drought Severity and Duration. J. Clim. 1999, 12, 2747–2756. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A Review of Drought Concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Dogan, S.; Berktay, A.; Singh, V.P. Comparison of Multi-Monthly Rainfall-Based Drought Severity Indices, with Application to Semi-Arid Konya Closed Basin, Turkey. J. Hydrol. 2012, 470–471, 255–268. [Google Scholar] [CrossRef]
- Citakoglu, H.; Coşkun, Ö. Comparison of Hybrid Machine Learning Methods for the Prediction of Short-Term Meteorological Droughts of Sakarya Meteorological Station in Turkey. Environ. Sci. Pollut. Res. 2022, 29, 75487–75511. [Google Scholar] [CrossRef] [PubMed]
- Coşkun, Ö.; Citakoglu, H. Prediction of the Standardized Precipitation Index Based on the Long Short-Term Memory and Empirical Mode Decomposition-Extreme Learning Machine Models: The Case of Sakarya, Türkiye. Phys. Chem. Earth Parts A B C 2023, 131, 103418. [Google Scholar] [CrossRef]
- Wu, H.; Hayes, M.; Weiss, A.; Hu, Q. An Evaluation of the Standardized Precipitation Index, the China-Z Index and the Statistical Z-Score. Int. J. Clim. 2001, 21, 745–758. [Google Scholar] [CrossRef]
- Dikici, M. Drought Analysis for the Seyhan Basin with Vegetation Indices and Comparison with Meteorological Different Indices. Sustainability 2022, 14, 4464. [Google Scholar] [CrossRef]
- Zare, M.; Azam, S.; Sauchyn, D.; Basu, S. Assessment of Meteorological and Agricultural Drought Indices under Climate Change Scenarios in the South Saskatchewan River Basin, Canada. Sustainability 2023, 15, 5907. [Google Scholar] [CrossRef]
- Sidiqi, M.; Kasiviswanathan, K.S.; Scheytt, T.; Devaraj, S. Assessment of Meteorological Drought under the Climate Change in the Kabul River Basin, Afghanistan. Atmosphere 2023, 14, 570. [Google Scholar] [CrossRef]
- Jain, V.K.; Pandey, R.P.; Jain, M.K.; Byun, H.R. Comparison of Drought Indices for Appraisal of Drought Characteristics in the Ken River Basin. Weather Clim. Extrem. 2015, 8, 1–11. [Google Scholar] [CrossRef]
- Zarei, A.; Asadi, E.; Ebrahimi, A.; Jafary, M.; Malekian, A.; Tahmoures, M.; Alizadeh, E. Comparison of Meteorological Indices for Spatio-Temporal Analysis of Drought in Chahrmahal-Bakhtiyari Province in Iran. Hrvat. Meteoroloski Cas. 2017, 52, 13–26. [Google Scholar]
- Khan, M.I.; Liu, D.; Fu, Q.; Faiz, M.A. Detecting the Persistence of Drying Trends under Changing Climate Conditions Using Four Meteorological Drought Indices. Meteorol. Appl. 2018, 25, 184–194. [Google Scholar] [CrossRef]
- Eman Ahmed Hassan El-Sayed Generation of Rainfall Intensity Duration Frequency Curves For Ungauged Sites. Nile Basin Water Sci. Eng. J. 2011, 4, 112–124.
- Payab, A.H.; Türker, U. Comparison of Standardized Meteorological Indices for Drought Monitoring at Northern Part of Cyprus. Environ. Earth Sci. 2019, 78, 309. [Google Scholar] [CrossRef]
- Şener, E.; Şener, Ş. SPI ve CZI Kuraklık İndislerinin CBS Tabanlı Zamansal ve Konumsal Karşılaştırması: Burdur Gölü Havzası Örneği. Doğal Afetler Ve Çevre Derg. 2021, 90, 41–58. [Google Scholar] [CrossRef]
- Yuce, M.I.; Esit, M. Drought Monitoring in Ceyhan Basin, Turkey. J. Appl. Water Eng. Res. 2021, 9, 293–314. [Google Scholar] [CrossRef]
- Alami, M.M.; Tayfur, G. Meteorological Drought Analysis for Helmand River Basin, Afghanistan. Tek. Dergi Tech. J. Turk. Chamb. Civ. Eng. 2022, 33, 12223–12242. [Google Scholar] [CrossRef]
- Khalil, B.; Awadallah, A.G.; Adamowski, J.; Elsayed, A. A Novel Record-Extension Technique for Water Quality Variables Based on L-Moments. Water. Air. Soil Pollut. 2016, 227, 179. [Google Scholar] [CrossRef]
- Alley, W.M.; Burns, A.W. Mixed-Station Extension of Monthly Streamflow Records. J. Hydraul. Eng. 1983, 109, 1272–1284. [Google Scholar] [CrossRef]
- Hosking, J.R.M. L-Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics. J. R. Stat. Soc. Ser. B 1990, 52, 105–124. [Google Scholar] [CrossRef]
- Hosking, J.R.M.; Wallis, J.R. The Value of Historical Data in Flood Frequency Analysis. Water Resour. Res. 1986, 22, 1606–1612. [Google Scholar] [CrossRef]
- Kaluba, P.; Verbist, K.M.J.; Cornelis, W.M.; Van Ranst, E. Spatial Mapping of Drought in Zambia Using Regional Frequency Analysis. Hydrol. Sci. J. 2017, 62, 1825–1839. [Google Scholar] [CrossRef]
- Hosking, J.R.M.; Wallis, J.R. Regional Frequency Analysis; Cambridge University Press: Cambridge, UK, 1997; ISBN 9780521430456. [Google Scholar]
- Vogel, R.M.; Thomas, W.O.; McMahon, T.A. Flood-Flow Frequency Model Selection in Southwestern United States. J. Water Resour. Plan. Manag. 1993, 119, 353–366. [Google Scholar] [CrossRef]
- Hosking, J.R.M.; Wallis, J.R. Some Statistics Useful in Regional Frequency Analysis. Water Resour. Res. 1993, 29, 271–281. [Google Scholar] [CrossRef]
- Mengistu, T.D.; Feyissa, T.A.; Chung, I.-M.; Chang, S.W.; Yesuf, M.B.; Alemayehu, E. Regional Flood Frequency Analysis for Sustainable Water Resources Management of Genale–Dawa River Basin, Ethiopia. Water 2022, 14, 637. [Google Scholar] [CrossRef]
- Chang, C.-H.; Rahmad, R.; Wu, S.-J.; Hsu, C.-T. Spatial Frequency Analysis by Adopting Regional Analysis with Radar Rainfall in Taiwan. Water 2022, 14, 2710. [Google Scholar] [CrossRef]
- Li, M.; Liu, M.; Cao, F.; Wang, G.; Chai, X.; Zhang, L. Application of L-Moment Method for Regional Frequency Analysis of Meteorological Drought across the Loess Plateau, China. PLoS ONE 2022, 17, e0273975. [Google Scholar] [CrossRef]
- Lee, S.H.; Maeng, S.J. Estimation of Drought Rainfall Using L-Moments. Irrig. Drain. 2005, 54, 279–294. [Google Scholar] [CrossRef]
- Núñez, J.H.; Verbist, K.; Wallis, J.R.; Schaefer, M.G.; Morales, L.; Cornelis, W.M. Regional Frequency Analysis for Mapping Drought Events in North-Central Chile. J. Hydrol. 2011, 405, 352–366. [Google Scholar] [CrossRef]
- Zhang, Q.; Qi, T.; Singh, V.P.; Chen, Y.D.; Xiao, M. Regional Frequency Analysis of Droughts in China: A Multivariate Perspective. Water Resour. Manag. 2015, 29, 1767–1787. [Google Scholar] [CrossRef]
- Topçu, E.; Seçkin, N. Drought Analysis of the Seyhan Basin by Using Standardized Precipitation Index (Spı) and l-Moments. Tarım Bilim. Derg. 2016, 22, 196–215. [Google Scholar] [CrossRef]
- Ghadami, M.; Raziei, T.; Amini, M.; Modarres, R. Regionalization of Drought Severity–Duration Index across Iran. Nat. Hazards 2020, 103, 2813–2827. [Google Scholar] [CrossRef]
- Alam, N.M.; Sharma, G.C.; Moreira, E.; Jana, C.; Mishra, P.K.; Sharma, N.K.; Mandal, D. Evaluation of Drought Using SPEI Drought Class Transitions and Log-Linear Models for Different Agro-Ecological Regions of India. Phys. Chem. Earth 2017, 100, 31–43. [Google Scholar] [CrossRef]
- Sönmez, F.K.; Kömüscü, A.Ü.; Erkan, A.; Turgu, E. An Analysis of Spatial and Temporal Dimension of Drought Vulnerability in Turkey Using the Standardized Precipitation Index. Nat. Hazards 2005, 35, 243–264. [Google Scholar] [CrossRef]
- Yildiz, O. Spatiotemporal Analysis of Historical Droughts in the Central Anatolia, Turkey. Gazi Univ. J. Sci. 2014, 27, 1177–1184. [Google Scholar]
- Mckee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Aktürk, G.; Yıldız, O. Investigating the Effect of Precipitation Deficits on Hydrological Systems in Dam Basins with Different Geographical Characteristics in the Marmara Region Using the SPI Method. In Proceedings of the 13th International Congress on Advances in Civil Engineering, Izmir, Turkey, 12–14 September 2018; pp. 1–11. [Google Scholar]
- Hayes, M.J.; Svoboda, M.D.; Wilhite, D.A.; Vanyarkho, O.V. Monitoring the 1996 Drought Using the Standardized Precipitation Index. Bull. Am. Meteorol. Soc. 1999, 80, 429–438. [Google Scholar] [CrossRef]
- Çetin, B.; Kumanlioğlu, A. Meteorological and Hydrological Drought Analysis Of Medar Basin. Dokuz Eylül Univ. Fac. Eng. J. Sci. Eng. 2023, 25, 167–180. [Google Scholar] [CrossRef]
- Salehnia, N.; Alizadeh, A.; Sanaeinejad, H.; Bannayan, M.; Zarrin, A.; Hoogenboom, G. Estimation of Meteorological Drought Indices Based on AgMERRA Precipitation Data and Station-Observed Precipitation Data. J. Arid. Land 2017, 9, 797–809. [Google Scholar] [CrossRef]
- Kumanlioglu, A.; Fıstıkoğlu, O. Meteorological Drought Analysis of Upper Gediz Basin Precipitations. Dokuz Eylül Univ. Fac. Eng. J. Sci. Eng. 2019, 21, 509–523. [Google Scholar] [CrossRef]
- Katipoğlu, O.M.; Acar, R.; Şengül, S. Comparison of Meteorological Indices for Drought Monitoring and Evaluating: A Case Study from Euphrates Basin, Turkey. J. Water Clim. Chang. 2020, 11, 29–43. [Google Scholar] [CrossRef]
- Wilson, E.B.; Hilferty, M.M. The Distribution of Chi-Square. Proc. Natl. Acad. Sci. USA 1931, 17, 684–688. [Google Scholar] [CrossRef] [PubMed]
- Singh, U.; Agarwal, P.; Sharma, P.K. Meteorological Drought Analysis with Different Indices for the Betwa River Basin, India. Theor. Appl. Climatol. 2022, 148, 1741–1754. [Google Scholar] [CrossRef]
- Dodangeh, S.; Sattari, M.T.; Seçkin, N. Regional Frequency Analysis of Minimum Flow by L-Moments Method. Tarim Bilim. Derg. 2011, 17, 43–58. [Google Scholar] [CrossRef]
- Şorman, Ü. Bölgesel Frekans Analizindeki Son Gelişmeler ve Batı. İMO Tek. Dergi 2004, 212, 3155–3169. [Google Scholar]
- Hosking, J.R.M.; Wallis, J.R. Regional Frequency Analysis: An Approach Based on L-Moments; Cambridge University Press: New York, NY, USA, 1997; ISBN 9780521019408. [Google Scholar]
- Hosking, J.R.M. The Theory of Probability Weighted Moments; IBM Research Division: New York, NY, USA, 1986. [Google Scholar]
- Greenwood, J.A.; Landwehr, J.M.; Matalas, N.C.; Wallis, J.R. Probability Weighted Moments: Definition and Relation to Parameters of Several Distributions Expressable in Inverse Form. Water Resour. Res. 1979, 15, 1049–1054. [Google Scholar] [CrossRef]
- Çıtakoğlu, H.; Demir, V.; Haktanir, T. Regional Frequency Analysis Of Annual Flood Peaks Of Natural Streams Discharging To The Black Sea By The L-Moments Method. Ömer Halisdemir Üniversitesi Mühendislik Bilim. Derg. 2017, 6, 571–580. [Google Scholar] [CrossRef]
- Dalrymple, T. Flood-Frequency Analyses, Manual of Hydrology: Part 3; Water Supply Paper 1543-A; U.S. Geological Survey: Washington, DC, USA, 1960. [Google Scholar]
- Çıtakoğlu, H.; Güney, M. Regionalization of Open Surface Evaporation Values of Turkey by L-Moments Method. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilim. Derg. 2017, 6, 546–559. [Google Scholar] [CrossRef]
- Yürekli, K.; Erdoğan, M.; Demir, S. Regional Frequency Analysis of 6 Hours Maximum Rainfall over the Upper Euphrates–Tigris Basins, Turkey. J. Agric. Fac. Gaziosmanpasa Univ. 2019, 36, 236–242. [Google Scholar] [CrossRef]
- Çıtakoğlu, H.; Gemici, B.; Demir, A. Regionalization and Mapping of Dissolved Oxygen Concentration of Sakarya Basin By L-Moments Method. J. Eng. Sci. Des. 2021, 9, 495–510. [Google Scholar] [CrossRef]
- L-Moments URL. Available online: http://lib.stat.cmu.edu/general/lmoments (accessed on 7 June 2023).
- Lmom Cran-Lmom. Available online: https://cran.r-project.org/web/packages/lmom/lmom.pdf (accessed on 7 June 2023).
- Yılmaz, C.B.; Bodu, H.; Yüce, E.S.; Demir, V.; Sevimli, M.F. Estimation of Turkey’s Long-Term Average Temperature (°C) with Three Different Interpolation Methods. Geomatik 2021, 8, 9–17. [Google Scholar] [CrossRef]
- Yılmaz, M.; Kuru, B. The Comparison of the Interpolation Methods for Local Geoid Determination at Macro and Micro Scale. Geomatik 2019, 4, 41–48. [Google Scholar] [CrossRef]
- Hastaoğlu, K.Ö.; Göğsu, S.; Gül, Y. Determining the Relationship between the Slope and Directional Distribution of the UAV Point Cloud and the Accuracy of Various IDW Interpolation. Int. J. Eng. Geosci. 2021, 7, 161–173. [Google Scholar] [CrossRef]
- Shepard, D. A Two-Dimensional Interpolation Function for Irregularly-Spaced Data. In Proceedings of the 1968 23rd ACM National Conference, New York, NY, USA, 27–29 August 1968; ACM Press: New York, NY, USA, 1968; pp. 517–524. [Google Scholar]
- Yenipınar, E.; Kayhan, M.M.; Çubukçu, E.A.; Demir, V.; Sevimli, M.F. Turkey’s Long-Term Estimating Precipitation with IDW and Kriging Methods. Turk. J. Remote Sens. 2021, 3, 47–52. [Google Scholar] [CrossRef]
- Yıldırım, M.; Aktürk, G. Investigation of Area Distribution of Precipitation Values In Central Anatolia Region and Estimation with Different Interpolation Methods. In Proceedings of the Isarc, 1st International Engineering and Architecture Congress Istanbul, İstanbul, Türkiye, 16–17 January 2021; pp. 247–258. [Google Scholar]
- Choi, K.; Chong, K. Modified Inverse Distance Weighting Interpolation for Particulate Matter Estimation and Mapping. Atmosphere 2022, 13, 846. [Google Scholar] [CrossRef]
- Tayyab, M.; Aslam, R.A.; Farooq, U.; Ali, S.; Khan, S.N.; Iqbal, M.; Khan, M.I.; Saddique, N. Comparative Study of Geospatial Techniques for Interpolating Groundwater Quality Data in Agricultural Areas of Punjab, Pakistan. Water 2023, 16, 139. [Google Scholar] [CrossRef]
- Jalili Pirani, F.; Modarres, R. Geostatistical and Deterministic Methods for Rainfall Interpolation in the Zayandeh Rud Basin, Iran. Hydrol. Sci. J. 2020, 65, 2678–2692. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, B.; Cheng, B.; Hu, X. Interpolation Parameters in Inverse Distance-Weighted Interpolation Algorithm on DEM Interpolation Error. J. Sens. 2021, 2021, 9842439. [Google Scholar] [CrossRef]
- Khouni, I.; Louhichi, G.; Ghrabi, A. Use of GIS Based Inverse Distance Weighted Interpolation to Assess Surface Water Quality: Case of Wadi El Bey, Tunisia. Environ. Technol. Innov. 2021, 24, 101892. [Google Scholar] [CrossRef]
- Munyati, C.; Sinthumule, N.I. Comparative Suitability of Ordinary Kriging and Inverse Distance Weighted Interpolation for Indicating Intactness Gradients on Threatened Savannah Woodland and Forest Stands. Environ. Sustain. Indic. 2021, 12, 100151. [Google Scholar] [CrossRef]
- Ohlert, P.L.; Bach, M.; Breuer, L. Accuracy Assessment of Inverse Distance Weighting Interpolation of Groundwater Nitrate Concentrations in Bavaria (Germany). Environ. Sci. Pollut. Res. 2022, 30, 9445–9455. [Google Scholar] [CrossRef] [PubMed]
- Achite, M.; Katipoğlu, O.M.; Javari, M.; Caloiero, T. Hybrid Interpolation Approach for Estimating the Spatial Variation of Annual Precipitation in the Macta Basin, Algeria. Theor. Appl. Climatol. 2024, 155, 1139–1166. [Google Scholar] [CrossRef]
- Ministry Türkiye’s Climate According to Köppen Climate Classification. Available online: https://www.mgm.gov.tr/FILES/iklim/iklim_siniflandirmalari/koppen.pdf (accessed on 15 July 2024).
- Akturk, G.; Zeybekoglu, U.; Yildiz, O. Assessment of Meteorological Drought Analysis in the Kizilirmak River Basin, Turkey. Arab. J. Geosci. 2022, 15, 850. [Google Scholar] [CrossRef]
- Türkeş, M. Spatial and Temporal Analysis of Annual Rainfall Variations in Turkey. Int. J. Climatol. 1996, 16, 1057–1076. [Google Scholar] [CrossRef]
- Türkeş, M. Türkiye’de Gözlenen ve Öngörülen Iklim Değişikliği, Kuraklık ve Çölleşme. Ank. Üniversitesi Çevrebilimleri Derg. 2012, 4, 1–32. [Google Scholar] [CrossRef]
- Aktürk, G.; Yıldız, O. The Effect Of Precipitation Deficits On Hydrological Systems In The Çatalan Dam Basin, Turkey. Uluslararası Muhendis. Arastirma ve Gelistirme Derg. 2018, 10, 10–28. [Google Scholar] [CrossRef]
- Sağdıç, M.; Koç, H. Climate of the Upper Kızılırmak Basin. Turk. J. Geogr. 2012, 1–20. [Google Scholar]
- Bayer-Altın, T.; Türkeş, M.; Altın, B.N. Evolution of Drought Climatology and Variability in the Central Anatolia Region, Turkey, for the Period 1970–2020. Pure Appl. Geophys. 2023, 180, 3105–3129. [Google Scholar] [CrossRef]
- Peel, M.C.; Wang, Q.J.; Vogel, R.M.; Mcmahon, T.A. The Utility of L-Moment Ratio Diagrams for Selecting a Regional Probability Distribution. Hydrol. Sci. J. 2001, 46, 147–155. [Google Scholar] [CrossRef]
- Schaefer, M.G.; Barker, B.L.; Taylor, G.H.; Wallis, J.R.; Schaefer, M.G.; Barker, B.L.; Taylor, G.H.; Wallis, J.R. Regional Precipitation-Frequency Analysis and Spatial Mapping of 24-Hour Precipitation for Oregon; Report and data files (No. OR-RD-FHWA-08-05); Oregon Department of Transportation, Research Unit: Salem, OR, USA, 2008. [Google Scholar]
- Vogel, R.M.; Fennessey, N.M. L Moment Diagrams Should Replace Product Moment Diagrams. Water Resour. Res. 1993, 29, 1745–1752. [Google Scholar] [CrossRef]
- Haktanir, T.; Citakoglu, H.; Seckin, N. Regional Frequency Analyses of Successive-Duration Annual Maximum Rainfalls by L-Moments Method. Hydrol. Sci. J. 2016, 61, 647–668. [Google Scholar] [CrossRef]
- Duvan, A.; Aktürk, G.; Yıldız, O. Meteorolojik Kuraklığın Zamansal ve Alansal Özelliklerine İklim Değişikliğinin Etkisi, Sakarya Havzası Örneği. Mühendislik Bilim. Ve Araştırmaları Derg. 2021, 3, 207–217. [Google Scholar] [CrossRef]
- Mahmoudi, P.; Rigi, A.; Miri Kamak, M. A Comparative Study of Precipitation-Based Drought Indices with the Aim of Selecting the Best Index for Drought Monitoring in Iran. Theor. Appl. Climatol. 2019, 137, 3123–3138. [Google Scholar] [CrossRef]
- Strnad, F.; Moravec, V.; Markonis, Y.; Máca, P.; Masner, J.; Stoces, M.; Hanel, M. An Index-Flood Statistical Model for Hydrological Drought Assessment. Water 2020, 12, 1213. [Google Scholar] [CrossRef]
- Saf, B. Assessment of the Effects of Discordant Sites on Regional Flood Frequency Analysis. J. Hydrol. 2010, 380, 362–375. [Google Scholar] [CrossRef]
- Ghiaei, F.; Kankal, M.; Anilan, T.; Yuksek, O. Regional Intensity–Duration–Frequency Analysis in the Eastern Black Sea Basin, Turkey, by Using L-Moments and Regression Analysis. Theor. Appl. Climatol. 2018, 131, 245–257. [Google Scholar] [CrossRef]
- Anilan, T.; Satilmis, U.; Kankal, M.; Yuksek, O. Application of Artificial Neural Networks and Regression Analysis to L-Moments Based Regional Frequency Analysis in the Eastern Black Sea Basin, Turkey. KSCE J. Civ. Eng. 2016, 20, 2082–2092. [Google Scholar] [CrossRef]
- Sajjadi, S.A.; Zolfaghari, G.; Adab, H.; Allahabadi, A.; Delsouz, M. Measurement and Modeling of Particulate Matter Concentrations: Applying Spatial Analysis and Regression Techniques to Assess Air Quality. MethodsX 2017, 4, 372–390. [Google Scholar] [CrossRef]
- Wicher-Dysarz, J.; Dysarz, T.; Jaskuła, J. Uncertainty in Determination of Meteorological Drought Zones Based on Standardized Precipitation Index in the Territory of Poland. Int. J. Environ. Res. Public Health 2022, 19, 15797. [Google Scholar] [CrossRef]
- Azhdari, Z.; Bazrafshan, O.; Shekari, M.; Zamani, H. Three-Dimensional Risk Analysis of Hydro-Meteorological Drought Using Multivariate Nonlinear Index. Theor. Appl. Climatol. 2020, 142, 1311–1327. [Google Scholar] [CrossRef]
- Bazrafshan, O.; Zamani, H.; Shekari, M. A Copula-Based Index for Drought Analysis in Arid and Semi-Arid Regions of Iran. Nat. Resour. Model. 2020, 33, e12237. [Google Scholar] [CrossRef]
- Pabaghi, Z.; Bazrafshan, O.; Zamani, H.; Shekari, M.; Singh, V.P. Bivariate Analysis of Extreme Precipitation Using Copula Functions in Arid and Semi-Arid Regions. Atmosphere 2023, 14, 275. [Google Scholar] [CrossRef]
SPI/ZSI/CZI/MCZI Values | Drought Category |
---|---|
≥2 | Extreme Wet |
1.5 to 1.99 | Severe Wet |
1.0 to 1.49 | Moderate Wet |
0.99 to −0.99 | Near Normal |
−1.0 to −1.49 | Moderate Drought |
−1.5 to −1.99 | Severe Drought |
≤−2.0 | Extreme Drought |
Number of Stations | Critical Value | Number of Stations | Critical Value |
---|---|---|---|
5 | 1.333 | 11 | 2.632 |
6 | 1.648 | 12 | 2.757 |
7 | 1.917 | 13 | 2.869 |
8 | 2.140 | 14 | 2.971 |
9 | 2.329 | ≥15 | 3 |
10 | 2.491 |
Station Name (Altitude, m) | Period | Latitude (°N) | Longitude (°E) | Köppen Climate Type * | Range | Mean | SD | Kurtosis | Skewness | Coefficient of Variation |
---|---|---|---|---|---|---|---|---|---|---|
(0-mm) | (mm) | (mm) | (mm) | (mm) | (%) | |||||
Bafra (103) | 1960–2020 | 41.55 | 35.92 | Csa | 343.90 | 63.29 | 44.98 | 3.33 | 1.40 | 71.07 |
Boğazlıyan (1070) | 1960–2020 | 39.19 | 35.25 | Csb | 159.90 | 30.29 | 25.46 | 1.61 | 1.12 | 84.03 |
Boyabat (350) | 1960–2020 | 41.46 | 34.79 | Cfb | 241.50 | 34.48 | 28.44 | 6.47 | 1.91 | 82.48 |
Çankırı (755) | 1960–2020 | 40.61 | 33.61 | Cfa | 149.80 | 34.63 | 27.48 | 1.31 | 1.13 | 79.34 |
Çiçekdağı (900) | 1972–2020 | 39.61 | 34.42 | BSk | 171.10 | 28.51 | 23.79 | 2.46 | 1.19 | 83.47 |
Develi (1204) | 1960–2020 | 38.37 | 35.47 | Csa | 159.60 | 30.23 | 26.28 | 1.10 | 1.02 | 86.95 |
Gemerek (1182) | 1960–2020 | 39.19 | 36.08 | Csb | 160.00 | 32.98 | 27.06 | 1.50 | 1.07 | 82.04 |
Ilgaz (885) | 1960–2020 | 40.92 | 33.63 | Cfb | 216.60 | 40.00 | 31.22 | 3.06 | 1.34 | 78.06 |
Kaman (1075) | 1960–2020 | 39.37 | 33.71 | Csb | 246.20 | 38.51 | 33.43 | 2.80 | 1.25 | 86.80 |
Kastamonu (800) | 1960–2020 | 41.37 | 33.78 | Cfb | 278.70 | 41.77 | 32.57 | 5.62 | 1.80 | 77.99 |
Kayseri (1094) | 1960–2020 | 38.69 | 35.50 | Csa | 164.70 | 32.45 | 25.82 | 0.93 | 0.92 | 79.58 |
Keskin (1140) | 1960–2020 | 39.67 | 33.61 | Csb | 145.90 | 33.68 | 27.49 | 0.80 | 1.02 | 81.61 |
Kırıkkale (751) | 1960–2020 | 39.84 | 33.52 | BSk | 172.70 | 31.95 | 27.37 | 1.68 | 1.16 | 85.65 |
Kırşehir (1007) | 1960–2020 | 39.16 | 34.16 | Csa | 161.40 | 31.94 | 26.83 | 1.18 | 1.03 | 84.01 |
Nevşehir (1260) | 1960–2020 | 38.62 | 34.70 | Csb | 148.80 | 34.54 | 27.73 | 0.43 | 0.82 | 80.28 |
Osmancık (419) | 1976–2020 | 40.98 | 34.80 | BSk | 139.00 | 33.04 | 25.00 | 0.78 | 0.98 | 75.65 |
Sivas (1294) | 1960–2020 | 39.74 | 37.00 | Dsb | 154.80 | 36.49 | 28.15 | 0.61 | 0.84 | 77.13 |
Tosya (870) | 1960–2020 | 41.01 | 34.04 | Cfb | 157.20 | 39.17 | 28.40 | 1.04 | 0.99 | 72.49 |
Ürgüp (1068) | 1964–2020 | 38.62 | 34.91 | Csb | 138.30 | 30.19 | 25.26 | 1.01 | 0.99 | 83.68 |
Vezirköprü (378) | 1960–2020 | 41.14 | 35.45 | Cfb | 172.00 | 47.81 | 30.03 | 0.73 | 0.77 | 62.81 |
Yozgat (1301) | 1960–2020 | 39.82 | 34.82 | Csb | 192.30 | 48.74 | 38.64 | 0.44 | 0.86 | 79.27 |
Zara (1338) | 1960–2020 | 39.89 | 37.75 | Dsb | 171.40 | 43.35 | 33.65 | 0.63 | 0.90 | 77.64 |
Station Name | Maximum Drought Severity (for SPI) | Maximum Drought Severity (for MCZI) | Maximum Drought Severity (for CZI) | Maximum Drought Severity (for ZSI) | ||||
---|---|---|---|---|---|---|---|---|
Severity | Time | Severity | Time | Severity | Time | Severity | Time | |
(Year/Month) | (Year/Month) | (Year/Month) | (Year/Month) | |||||
Bafra | −3.46 | 2014/8 | −3.49 | 2014/5 | −2.83 | 2014/3 | −2.83 | 2014/8 |
Boğazlıyan | −3.37 | 2017/5 | −3.72 | 2017/6 | −3.7 | 2017/5 | −2.58 | 2017/5 |
Boyabat | −2.67 | 2017/9 | −6.87 | 2017/9 | −7.92 | 2017/9 | −2.03 | 2017/9 |
Çankırı | −3.07 | 2007/10 | −6.5 | 1986/8 | −2.75 | 1986/8 | −2.5 | 2007/10 |
Çiçekdağı | −2.6 | 2014/1 | −3.23 | 2012/7 | −2.46 | 2014/2 | −2.22 | 2014/1 |
Develi | −4.41 | 2014/4 | −2.86 | 2014/5 | −2.91 | 2014/5 | −3.36 | 2014/4 |
Gemerek | −2.47 | 2001/10 | −4.44 | 2001/10 | −3.52 | 2001/10 | −2.17 | 1995/3 |
Ilgaz | −2.22 | 1962/7 | −4.73 | 1962/7 | −5.69 | 1962/8 | −1.68 | 1962/7 |
Kaman | −2.69 | 2020/12 | −5.98 | 2005/1 | −2.92 | 2005/1 | −2.3 | 2020/12 |
Kastamonu | −2.4 | 1994/9 | −5.8 | 1994/8 | −2.49 | 1964/5 | −2.07 | 1994/9 |
Kayseri | −2.87 | 2016/11 | −7.2 | 2016/6 | −3.15 | 2016/6 | −2.36 | 2016/11 |
Keskin | −2.93 | 2017/5 | −8.55 | 2017/3 | −3.14 | 2017/3 | −2.46 | 2017/9 |
Kırıkkale | −3.02 | 2007/10 | −2.8 | 2008/6 | −2.43 | 2007/10 | −2.52 | 2007/10 |
Kırşehir | −2.51 | 1974/8 | −2.59 | 1995/2 | −2.33 | 1995/2 | −2.19 | 1974/8 |
Osmancık | −2.7 | 2014/2 | −3.88 | 2014/3 | −2.74 | 2014/3 | −2.23 | 2014/2 |
Sivas | −2.76 | 1973/10 | −2.84 | 2014/5 | −2.38 | 2014/5 | −2.42 | 1973/10 |
Tosya | −2.83 | 2020/12 | −2.57 | 2020/12 | −2.7 | 2020/12 | −2.41 | 2020/12 |
Ürgüp | −3.33 | 2012/9 | −2.95 | 2014/5 | −2.88 | 2014/5 | −2.71 | 2012/9 |
Vezirköprü | −3.89 | 2014/4 | −2.83 | 2014/5 | −2.7 | 2014/4 | −3.18 | 2014/4 |
Yozgat | −3.24 | 2001/10 | −2.87 | 1974/6 | −2.47 | 1974/6 | −2.79 | 2001/10 |
Zara | −3.68 | 2014/5 | −4.17 | 2012/11 | −3.23 | 2012/11 | −3.02 | 2014/5 |
Indices | Discordant Stations | D Statistics | H1 | H2 | H3 |
---|---|---|---|---|---|
SPI | 17648 Ilgaz | 3.27 | −1.35 | −1.50 | −0.96 |
MCZI | 17648 Ilgaz | 3.90 | 0.02 | 0.87 | 3.38 * |
CZI | 17648 Ilgaz, 17620 Boyabat | 4.73, 5.10 | −1.25 | −1.68 | −1.57 |
ZSI | 17648 Ilgaz, 1122 Vezirköprü | 3.49, 3.19 | −2.24 | −2.01 | −0.75 |
Indices | GLO | GEV | GNO | PE3 | GPA |
---|---|---|---|---|---|
SPI | 5.64 | −1.07 | 0.52 | 0.45 * | −13.35 |
MCZI | 1.63 * | −3.23 | −2.650 | −3.00 | −12.77 |
CZI | 6.00 | −0.77 * | 1.05 | 1.01 | −12.87 |
ZSI | 5.15 | −1.63 | 0.51 | 0.38 * | −13.31 |
Indices | GLO | GEV | GNO | PE3 | GPA | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Location | Scale | Shape | Location | Scale | Shape | Location | Scale | Shape | Location | Scale | Shape | Location | Scale | Shape | |
SPI | 0.98 | 0.625 | −0.019 | 0.594 | 1.084 | 0.249 | 0.978 | 1.108 | −0.04 | 1 | 1.109 | 0.119 | 0.978 | 1.108 | −0.04 |
MCZI | 0.907 | 0.674 | −0.084 | 0.421 | 0.96 | −0.026 | 0.897 | 1.193 | −0.171 | 1 | 1.218 | −0.512 | 0.897 | 1.193 | −0.171 |
CZI | 1.003 | 0.608 | 0.003 | 0.625 | 1.077 | 0.29 | 1.004 | 1.078 | 0.007 | 1 | 1.078 | −0.02 | 1.004 | 1.078 | 0.007 |
ZSI | 1.038 | 0.562 | 0.041 | 0.685 | 1.033 | 0.359 | 1.042 | 0.997 | 0.084 | 1 | 1.002 | −0.253 | 1.042 | 0.997 | 0.084 |
Indices | Return Periods (Years) | 5 | 10 | 25 | 50 | 100 | 200 | 500 | 1000 |
---|---|---|---|---|---|---|---|---|---|
SPI | PE3 | 1.926 | 2.434 | 2.986 | 3.348 | 3.676 | 3.98 | 4.352 | 4.616 |
MCZI | GLO | 1.897 | 2.532 | 3.36 | 4.006 | 4.682 | 5.393 | 6.396 | 7.205 |
CZI | GEV | 1.935 | 2.406 | 2.871 | 3.142 | 3.362 | 3.541 | 3.729 | 3.84 |
ZSI | PE3 | 1.853 | 2.254 | 2.664 | 2.919 | 3.143 | 3.343 | 3.578 | 3.739 |
Indices | Regression Coefficients | t Value of Coefficient | |
---|---|---|---|
SPI | a | −0.0388 | −75.46 |
b | −0.0477 | −105.98 | |
c | 9.7022 | −801.86 | |
MCZI | a | −0.0867 | −73.59 |
b | −0.0373 | −36.21 | |
c | 17.7712 | −641.75 | |
CZI | a | 0.0575 | −160.08 |
b | −0.1258 | −399.89 | |
c | 7.6086 | −899.95 | |
ZSI | a | −0.0143 | −15.99 |
b | 0.075 | −63.11 | |
c | −24.1560 | −79.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aktürk, G.; Çıtakoğlu, H.; Demir, V.; Beden, N. Meteorological Drought Analysis and Regional Frequency Analysis in the Kızılırmak Basin: Creating a Framework for Sustainable Water Resources Management. Water 2024, 16, 2124. https://doi.org/10.3390/w16152124
Aktürk G, Çıtakoğlu H, Demir V, Beden N. Meteorological Drought Analysis and Regional Frequency Analysis in the Kızılırmak Basin: Creating a Framework for Sustainable Water Resources Management. Water. 2024; 16(15):2124. https://doi.org/10.3390/w16152124
Chicago/Turabian StyleAktürk, Gaye, Hatice Çıtakoğlu, Vahdettin Demir, and Neslihan Beden. 2024. "Meteorological Drought Analysis and Regional Frequency Analysis in the Kızılırmak Basin: Creating a Framework for Sustainable Water Resources Management" Water 16, no. 15: 2124. https://doi.org/10.3390/w16152124
APA StyleAktürk, G., Çıtakoğlu, H., Demir, V., & Beden, N. (2024). Meteorological Drought Analysis and Regional Frequency Analysis in the Kızılırmak Basin: Creating a Framework for Sustainable Water Resources Management. Water, 16(15), 2124. https://doi.org/10.3390/w16152124