Crop Water Use and a Gravity Model Exploration of Virtual Water Trade in Ghana’s Cereal Agriculture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Selected Crops
2.3. Data
2.3.1. Cereal VWC Data
2.3.2. Distance, Production, Import, Export, GDP per Capita, and Population Data
2.4. VWC Determination
2.5. CWU Determination
2.6. EVW, IVW, and NVW Determination
2.7. Factors Influencing EVW and IVW
2.8. The Gravity Model
3. Results
3.1. CWU Trend of Cereals
3.2. EVW, IVW, and NVW Trend of Cereals
3.3. Partner Contributions to Ghana’s NVW (1992–2021)
3.4. Gravity Model Analysis
4. Discussion
4.1. Ghana’s Cereal Water Use, Import, and Export
4.2. Factors Influencing Ghana’s Cereal VWT
4.3. Model Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giraldo, P.; Benavente, E.; Manzano-Agugliaro, F.; Gimenez, E. Worldwide Research Trends on Wheat and Barley: A Bibliometric Comparative Analysis. Agronomy 2019, 9, 352. [Google Scholar] [CrossRef]
- Grigg, D. The Starchy Staples in World Food Consumption. Ann. Assoc. Am. Geogr. 1996, 86, 412–431. [Google Scholar] [CrossRef]
- Poutanen, K.S.; Kårlund, A.O.; Gómez-Gallego, C.; Johansson, D.P.; Scheers, N.M.; Marklinder, I.M.; Eriksen, A.K.; Silventoinen, P.C.; Nordlund, E.; Sozer, N.; et al. Grains—A Major Source of Sustainable Protein for Health. Nutr. Rev. 2022, 80, 1648–1663. [Google Scholar] [CrossRef] [PubMed]
- World Bank. World Bank Open Data. Available online: https://data.worldbank.org/ (accessed on 25 January 2024).
- Dai, Z.; Peng, L.; Qin, S. Experimental and Numerical Investigation on the Mechanism of Ground Collapse Induced by Underground Drainage Pipe Leakage. Environ. Earth Sci. 2024, 83, 32. [Google Scholar] [CrossRef]
- Bhattarai, K.; Budd, D. Effects of Rapid Urbanization on the Quality of Life. In Multidimensional Approach to Quality of Life Issues: A Spatial Analysis; Springer: Singapore, 2019; pp. 327–341. [Google Scholar] [CrossRef]
- Twumasi, G.B.; Junaid, A.M.; Shin, Y.; Choi, K.S. Prediction of Corn Yield Based on Different Climate Scenarios Using Aquacrop Model in Dangme East District of Ghana. J. Korean Soc. Agric. Eng. 2017, 59, 71–79. [Google Scholar] [CrossRef]
- Yamba, E.I.; Aryee, J.N.A.; Quansah, E.; Davies, P.; Wemegah, C.S.; Osei, M.A.; Ahiataku, M.A.; Amekudzi, L.K. Revisiting the Agro-Climatic Zones of Ghana: A Re-Classification in Conformity with Climate Change and Variability. PLoS Clim. 2023, 2, e0000023. [Google Scholar] [CrossRef]
- Hu, Q.; Zhao, Y.; Hu, X.; Qi, J.; Suo, L.; Pan, Y.; Song, B.; Chen, X. Effect of Saline Land Reclamation by Constructing the “Raised Field -Shallow Trench” Pattern on Agroecosystems in Yellow River Delta. Agric. Water Manag. 2022, 261, 107345. [Google Scholar] [CrossRef]
- Evans, J.R.; Lawson, T. From Green to Gold: Agricultural Revolution for Food Security. J. Exp. Bot. 2020, 71, 2211–2215. [Google Scholar] [CrossRef] [PubMed]
- Raheem, D.; Dayoub, M.; Birech, R.; Nakiyemba, A. The Contribution of Cereal Grains to Food Security and Sustainability in Africa: Potential Application of UAV in Ghana, Nigeria, Uganda, and Namibia. Urban Sci. 2021, 5, 8. [Google Scholar] [CrossRef]
- Odey, G.; Adelodun, B.; Lee, S.; Adeyemi, K.A.; Cho, G.; Choi, K.S. Environmental and Socioeconomic Determinants of Virtual Water Trade of Grain Products: An Empirical Analysis of South Korea Using Decomposition and Decoupling Model. Agronomy 2022, 12, 3105. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Hung, P.Q. Virtual Water Trade: A Quantification of Virtual Water Flows between Nations in Relation to International Crop Trade, International Institute for Infrastructural Hydraulic and Environmental Engineering (IHE Delft), Netherlands. 2002. Available online: https://www.waterfootprint.org/resources/Report11.pdf (accessed on 15 November 2023).
- Odey, G.; Adelodun, B.; Adeyi, Q.; Hammed, A.A.; Abiodun, S.R.; Choi, K.S. Quantifying Resource Nexus: Virtual Water Flows, Water Stress Indices, and Unsustainable Import Fraction in South Korea’s Grain Trade Landscape. Sustainability 2024, 16, 2419. [Google Scholar] [CrossRef]
- Sikka, A.K.; Alam, M.F.; Mandave, V. Agricultural Water Management Practices to Improve the Climate Resilience of Irrigated Agriculture in India. Irrig. Drain. 2022, 71, 7–26. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Li, Y.; Peñuelas, J.; Zhao, Y.; Sardans, J.; Tetzlaff, D.; Liu, J.; Liu, X.; Yuan, H.; et al. Soil Ecological Stoichiometry Synchronously Regulates Stream Nitrogen and Phosphorus Concentrations and Ratios. Catena 2023, 231, 107357. [Google Scholar] [CrossRef]
- Chen, J.; Wang, H.; Yin, W.; Wang, Y.; Lv, J.; Wang, A.J. Deciphering Carbon Emissions in Urban Sewer Networks: Bridging Urban Sewer Networks with City-Wide Environmental Dynamics. Water Res. 2024, 256, 121576. [Google Scholar] [CrossRef]
- Lafta, N.; Al-Bazi, A. Modelling Influential Factor Relationships Using System Dynamics Methodology (Fibre Cement Buildings as a Case Study). 2013. pp. 3–5. Available online: https://core.ac.uk/download/pdf/228143206.pdf (accessed on 19 July 2024).
- Krisztin, T.; Fischer, M.M. The Gravity Model for International Trade: Specification and Estimation Issues. Spat. Econ. Anal. 2015, 10, 451–470. [Google Scholar] [CrossRef]
- Shivaswamy, G.P.; Kallega, H.K.; Anuja, A.R.; Singh, K.N. An Assessment of India’s Virtual Water Trade in Major Food Products. Agric. Econ. Res. Rev. 2021, 34, 133–141. [Google Scholar] [CrossRef]
- Odey, G.; Adelodun, B.; Kim, S.H.; Choi, K.S. Conflicting Drivers of Virtual Water Trade: A Review Based on the “Virtual Water Concept”. Water Econ. Policy 2021, 7, 2150011. [Google Scholar] [CrossRef]
- Hu, C.; Dong, B.; Shao, H.; Zhang, J.; Wang, Y. Toward Purifying Defect Feature for Multilabel Sewer Defect Classification. IEEE Trans. Instrum. Meas. 2023, 72, 1–11. [Google Scholar] [CrossRef]
- Majnooni, S.; Fooladi, M.; Nikoo, M.R.; Al-Rawas, G.; Haghighi, A.T.; Nazari, R.; Al-Wardy, M.; Gandomi, A.H. Smarter Water Quality Monitoring in Reservoirs Using Interpretable Deep Learning Models and Feature Importance Analysis. J. Water Process Eng. 2024, 60, 105187. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Y.; Yu, Z.; Yang, T.; Xu, J.; Chao, L.; Ni, J.; Wang, L.; Gao, Y.; Hu, Y.; et al. Xin’anjiang Nested Experimental Watershed (XAJ-NEW) for Understanding Multiscale Water Cycle: Scientific Objectives and Experimental Design. Engineering 2022, 18, 207–217. [Google Scholar] [CrossRef]
- Bawa, A.; Senay, G.B.; Kumar, S. Regional Crop Water Use Assessment Using Landsat-Derived Evapotranspiration. Hydrol. Process. 2021, 35, e14015. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, J.; Zuo, R.; Sun, C.; Zhai, Y.; Tian, L.; Dai, W.; Wang, S.; Shang, Z.; Liu, Y.; et al. The Transmission of Isotopic Signals from Precipitation to Groundwater and Its Controls: An Experimental Study with Soil Cylinders of Various Soil Textures and Burial Depths in a Monsoon Region. J. Hydrol. 2024, 631, 130746. [Google Scholar] [CrossRef]
- Odey, G.; Adelodun, B.; Lee, S.; Adeyi, Q.; Choi, K.S. Assessment of the Factors Shaping the Public’s Perception of Physical and Virtual Water: A Case Study of Korean Households. Environ. Sci. Policy 2024, 151, 103629. [Google Scholar] [CrossRef]
- Bessah, E.; Amponsah, W.; Ansah, S.O.; Afrifa, A.; Yahaya, B.; Wemegah, C.S.; Tanu, M.; Amekudzi, L.K.; Agyare, W.A. Climatic Zoning of Ghana Using Selected Meteorological Variables for the Period 1976–2018. Meteorol. Appl. 2022, 29, e2049. [Google Scholar] [CrossRef]
- Ghana Statistical Service (GSS). Ghana Factsheet. Available online: https://statsghana.gov.gh/ghfactsheet.php (accessed on 26 January 2024).
- FAOSTAT. Data—Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/faostat/en/#data (accessed on 9 January 2024).
- CCKP. Ghana—Climatology. Climate Change Knowledge Portal—World Bank Group. Available online: https://climateknowledgeportal.worldbank.org/country/ghana/climate-data-historical#:~:text=The northern part of the,minor from September to November (accessed on 26 January 2024).
- Darfour, B.; Rosentrater, K.A. Grain Cultivation and Its Associated Problems: Overview of Ghana. In 2016 American Society of Agricultural and Biological Engineers Annual International Meeting, ASABE 2016; American Society of Agricultural and Biological Engineers (ASABE): St. Joseph, MI, USA, 2016. [Google Scholar] [CrossRef]
- Chapagain, A.K.; Hoekstra, A.Y. Water Footprints of Nations: Volume 1—Main Report; UNESCO-IHE: Delft, The Netherlands, 2004; Available online: https://www.waterfootprint.org/resources/Report16Vol1.pdf (accessed on 15 November 2023).
- Mekonnen, M.M.; Hoekstra, A.Y. The Green, Blue and Grey Water Footprint of Crops and Derived Crop Products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef]
- Tamea, S.; Carr, J.A.; Laio, F.; Ridolfi, L. Drivers of the Virtual Water Trade. Water Resour. Res. 2014, 50, 17–28. [Google Scholar] [CrossRef]
- Akoto-Danso, E.K.; Karg, H.; Drechsel, P.; Nyarko, G.; Buerkert, A. Virtual Water Flow in Food Trade Systems of Two West African Cities. Agric. Water Manag. 2019, 213, 760–772. [Google Scholar] [CrossRef]
- Ramirez-Vallejo, J.; Rogers, P. Virtual Water Flows and Trade Liberalization. Water Sci. Technol. 2004, 49, 25–32. [Google Scholar] [CrossRef]
- Liu, J.; Wu, P.; Wang, Y.; Zhao, X.; Sun, S.; Cao, X. Virtual Water Flows Related to Grain Crop Trade and Their Influencing Factors in Hetao Irrigation District, China. J. Agric. Sci. Technol. 2015, 17, 201–211. [Google Scholar]
- Duarte, R.; Pinilla, V.; Serrano, A. Understanding Agricultural Virtual Water Flows in the World from an Economic Perspective: A Long Term Study. Ecol. Indic. 2016, 61, 980–990. [Google Scholar] [CrossRef]
- Duarte, R.; Pinilla, V.; Serrano, A. Long Term Drivers of Global Virtual Water Trade: A Trade Gravity Approach for 1965–2010. Ecol. Econ. 2019, 156, 318–326. [Google Scholar] [CrossRef]
- Garcia, S.; Mejia, A. Characterizing and Modeling Subnational Virtual Water Networks of US Agricultural and Industrial Commodity Flows. Adv. Water Resour. 2019, 130, 314–324. [Google Scholar] [CrossRef]
- Schwarz, J.; Mathijs, E.; Maertens, M. A Dynamic View on Agricultural Trade Patterns and Virtual Water Flows in Peru. Sci. Total Environ. 2019, 683, 719–728. [Google Scholar] [CrossRef]
- Zhao, D.; Hubacek, K.; Feng, K.; Sun, L.; Liu, J. Explaining Virtual Water Trade: A Spatial-Temporal Analysis of the Comparative Advantage of Land, Labor and Water in China. Water Res. 2019, 153, 304–314. [Google Scholar] [CrossRef]
- Qian, Y.; Tian, X.; Geng, Y.; Zhong, S.; Cui, X.; Zhang, X.; Moss, D.A.; Bleischwitz, R. Driving Factors of Agricultural Virtual Water Trade between China and the Belt and Road Countries. Environ. Sci. Technol. 2019, 53, 5877–5886. [Google Scholar] [CrossRef]
- Wang, J.; Qin, L.; He, H. Assessing Temporal and Spatial Inequality of Water Footprint Based on Socioeconomic and Environmental Factors in Jilin Province, China. Water 2019, 11, 521. [Google Scholar] [CrossRef]
- Kembhavi, A.; Khare, P. Gravity: The Force That Governs the Universe. In Gravitational Waves; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- WFN. Water Footprint Assessment Tool—Water Footprint Network. Available online: https://www.waterfootprintassessmenttool.org/ (accessed on 15 May 2024).
- Addai, K.N.; Ng’ombe, J.N.; Kaitibie, S. A Dose–Response Analysis of Rice Yield to Agrochemical Use in Ghana. Agriculture 2022, 12, 1527. [Google Scholar] [CrossRef]
- Kudadjie, C.Y.; Struik, P.C.; Richards, P.; Offel, S.K. Assessing Production Constraints, Management and Use of Sorghum Diversity in North-East Ghana: A Diagnostic Study. NJAS Wagening. J. Life Sci. 2004, 52, 371–391. [Google Scholar] [CrossRef]
- Abdulai, S.; Nkegbe, P.K.; Donkor, S.A. Assessing the Economic Efficiency of Maize Production in Northern Ghana. Ghana J. Dev. Stud. 2017, 14, 123–145. [Google Scholar] [CrossRef]
- GYGA. Ghana: Agriculture in Ghana. Global Yield Gap Atlas (GYGA): University of Nebraska-Lincoln, Wagnigen University & Research. Available online: https://www.yieldgap.org/Ghana#:~:text=There are six agro-ecological,southwest corner of the country (accessed on 25 January 2024).
- Boullouz, M.; Bindraban, P.S.; Kissiedu, I.N.; Kouame, A.K.K.; Devkota, K.P.; Atakora, W.K. An Integrative Approach Based on Crop Modeling and Geospatial and Statistical Analysis to Quantify and Explain the Maize (Zea Mays) Yield Gap in Ghana. Front. Soil Sci. 2022, 2, 1037222. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.Y.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Earthscan: London, UK; Washington, DC, USA, 2011; Available online: https://waterfootprint.org/resources/TheWaterFootprintAssessmentManual_English.pdf (accessed on 15 November 2023).
- Sinha, J.; Sharma, A.; Marshal, L. Hyrodrological Sustainablity of International Virtual Water Trade. Environ. Res. Lett. 2023, 18, 124037. [Google Scholar] [CrossRef]
- Agodzo, S.K.; Bessah, E.; Nyatuame, M. A Review of the Water Resources of Ghana in a Changing Climate and Anthropogenic Stresses. Front. Water 2023, 4, 973825. [Google Scholar] [CrossRef]
- Owusu, P.A.; Asumadu-Sarkodie, S.; Ameyo, P. A Review of Ghana’s Water Resource Management and the Future Prospect. Cogent Eng. 2016, 3, 1164275. [Google Scholar] [CrossRef]
- Dwumfour, E.Y.; Li, W. A Review of International Trade and Ghana’s Economic Growth Amidst the COVID-19 Pandemic. Int. J. Acad. Res. Bus. Soc. Sci. 2020, 10, 651–659. [Google Scholar] [CrossRef]
- Osei, E. The Impact of Manufacturing Industries on Ghana’s Economy. Int. J. Res. Stud. Manag. 2017, 6, 73–94. [Google Scholar] [CrossRef]
- Barch, D.M. The Dangers of Small Samples and Insufficient Methodological Detail. Schizophr. Bull. 2023, 49, 5–6. [Google Scholar] [CrossRef]
Referenced Study | Study Period | Model Used | Findings |
---|---|---|---|
Ramirez-Vallejo & Rojers (2004) [37] | 2000–2001 | Multiple Regression | Average income, population, irrigated land, value-added agriculture, and export of goods and services were significant influences of IVW |
Tamea et al. (2014) [35] | 1986–2010 | Gravity | Population, GDP, and geographical distance of both exporter and importer countries were fundamental controlling factors of VWF |
Liu et al. (2015) [38] | 1981–2010 | Multiple Regression | Cultivated area per capita and total population were major factors for EVW; consumption and retail price index influenced IVW |
Duarte et al. (2016) [39] | 1965–2010 | Structural Decomposition Analysis | Availability of natural resources as water and land and level of economic development have influence on VWT |
Duarte et al. (2019) [40] | 1965–2010 | Gravity | VWT was significantly influenced by the economic, institutional, geographical, as well as environmental factors |
Garcia & Mejia (2019) [41] | 2007 | Gravity | VWT is highly influenced by geographical distance, agricultural land, GDP, and population |
Schwarz et al. (2019) [42] | 1986–2013 | Index Decomposition Analysis | Increasing trade quantities are the main driver of increasing virtual water volumes |
Zhao et al. (2019) [43] | 1995–2015 | Multivariate Regression | Regional differences in land productivity between agricultural and non-agricultural sectors are the main forces shaping the pattern of VWFs |
Qian et al. (2019) [44] | 2000–2016 | Logarithmic Mean Divisia Index | VWT was significantly influenced by water intensity, trade structure, and production structure |
Wang et al. (2019) [45] | 2008–2015 | Gini Coefficient and Imbalance Index | Natural, socioeconomic, and environmental conditions influence virtual water trade |
Shivaswamy et al. (2021) [20] | 1990–2017 | Gravity | Distance is the primary driver of VWT. The availability of arable land and water used are essential factors in deciding the virtual water trade flows |
Odey et al. (2022) [12] | 1992–2017 | Logarithmic Mean Divisia Index | Water intensity and economic effects were major factors for the decrease and increase in NVWT, respectively. Population and product structure had minor positive influences on NVWT |
Current Study | 1992–2021 | Gravity Model | - |
Variable | Coefficient | p-Value |
---|---|---|
C | −55.856 | 0.0002 |
ln DGP | −0.748 | 0.0000 |
ln GG | 0.138 | 0.5440 |
ln PG | 0.008 | 0.9925 |
ln LG | 3.182 | 0.0212 |
ln WG | 1.468 | 0.0002 |
ln GP | −0.143 | 0.0049 |
ln PP | 0.187 | 0.0000 |
ln LP | 0.167 | 0.0002 |
ln WP | 0.027 | 0.0008 |
AGP | −0.110 | 0.6015 |
Model Summary | ||
Panel Observations | 2250 | |
Periods | 30 | |
Cross-sections | 75 | |
Adj R2 | 0.08 | |
F stat | 20.430 | |
p | 0.000 |
Variable | Coefficient | p-Value |
---|---|---|
C | −107.860 | 0.0000 |
ln DGP | −0.941 | 0.0000 |
ln GG | −0.785 | 0.0199 |
ln PG | 7.869 | 0.0000 |
ln LG | 0.447 | 0.8265 |
ln WG | −1.285 | 0.0478 |
ln GP | 0.445 | 0.0000 |
ln PP | 0.593 | 0.0000 |
ln LP | 0.221 | 0.0010 |
ln WP | −0.006 | 0.7011 |
AGP | 0.006 | 0.9846 |
Model Summary | ||
Panel Observations | 2250 | |
Periods | 30 | |
Cross-sections | 75 | |
Adj R2 | 0.14 | |
F stat | 37.064 | |
p | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tette, A.S.K.; Odey, G.; Ahmad, M.J.; Adelodun, B.; Choi, K.-S. Crop Water Use and a Gravity Model Exploration of Virtual Water Trade in Ghana’s Cereal Agriculture. Water 2024, 16, 2077. https://doi.org/10.3390/w16152077
Tette ASK, Odey G, Ahmad MJ, Adelodun B, Choi K-S. Crop Water Use and a Gravity Model Exploration of Virtual Water Trade in Ghana’s Cereal Agriculture. Water. 2024; 16(15):2077. https://doi.org/10.3390/w16152077
Chicago/Turabian StyleTette, Alexander Sessi Kosi, Golden Odey, Mirza Junaid Ahmad, Bashir Adelodun, and Kyung-Sook Choi. 2024. "Crop Water Use and a Gravity Model Exploration of Virtual Water Trade in Ghana’s Cereal Agriculture" Water 16, no. 15: 2077. https://doi.org/10.3390/w16152077
APA StyleTette, A. S. K., Odey, G., Ahmad, M. J., Adelodun, B., & Choi, K. -S. (2024). Crop Water Use and a Gravity Model Exploration of Virtual Water Trade in Ghana’s Cereal Agriculture. Water, 16(15), 2077. https://doi.org/10.3390/w16152077