Dynamic Hazard Assessment of Rainfall-Induced Landslides Using Gradient Boosting Decision Tree with Google Earth Engine in Three Gorges Reservoir Area, China
Abstract
:1. Introduction
2. Study Area and Dataset
2.1. Study Area
2.2. Datasets
2.3. Influencing Factors of Landslides
2.3.1. Topographic Factors
2.3.2. Geological Factors
2.3.3. Land Cover Type
2.3.4. Influence Intensity of River Systems
2.3.5. Normalized Difference Vegetation Index (NDVI)
2.3.6. Average Annual Precipitation
2.3.7. Soil Moisture Index
3. Methodology
3.1. Basic Landslide Interpretation Method
3.2. Gradient Boosting Decision Tree Model
3.3. Rainfall Intensity–Duration Indicator
3.4. Dynamic Hazard Assessment System of Landslide Based on GEE (DHAS)
4. Results
4.1. Susceptibility Mapping of Rainfall-Induced Landslides
4.2. Dynamic Hazard Assessment of Rainfall-Induced Landslides
4.2.1. Temporal Rainfall Accumulation Grading
4.2.2. Dynamic Hazard Assessment of Rainfall-Induced Landslides
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keqiang, H.; Shangqing, W.; Wen, D.; Sijing, W. Dynamic Features and Effects of Rainfall on Landslides in the Three Gorges Reservoir Region, China: Using the Xintan Landslide and the Large Huangya Landslide as the Examples. Environ. Earth Sci. 2010, 59, 1267–1274. [Google Scholar] [CrossRef]
- XIA, M.; REN, G.M.; MA, X.L. Deformation and Mechanism of Landslide Influenced by the Effects of Reservoir Water and Rainfall, Three Gorges, China. Nat. Hazards 2013, 68, 467–482. [Google Scholar] [CrossRef]
- Dahal, R.K.; Hasegawa, S. Representative Rainfall Thresholds for Landslides in the Nepal Himalaya. Geomorphology 2008, 100, 429–443. [Google Scholar] [CrossRef]
- Rosi, A.; Peternel, T.; Jemec-Auflič, M.; Komac, M.; Segoni, S.; Casagli, N. Rainfall Thresholds for Rainfall-Induced Landslides in Slovenia. Landslides 2016, 13, 1571–1577. [Google Scholar] [CrossRef]
- Zhou, C.; Ai, D.; Huang, W.; Xu, H.; Ma, L.; Chen, L.; Wang, L. Emergency Survey and Stability Analysis of a Rainfall-Induced Soil-Rock Mixture Landslide at Chongqing City, China. Front. Earth Sci. 2021, 9, 774200. [Google Scholar] [CrossRef]
- Hu, M.; Wang, R.; Shen, J. Rainfall, Landslide and Debris Flow Intergrowth Relationship in Jiangjia Ravine. J. Mt. Sci. 2011, 8, 603–610. [Google Scholar] [CrossRef]
- Guzzetti, F.; Cardinali, M.; Reichenbach, P.; Cipolla, F.; Sebastiani, C.; Galli, M.; Salvati, P. Landslides Triggered by the 23 November 2000 Rainfall Event in the Imperia Province, Western Liguria, Italy. Eng. Geol. 2004, 73, 229–245. [Google Scholar] [CrossRef]
- Lee, C.-T. Statistical Seismic Landslide Hazard Analysis: An Example from Taiwan. Eng. Geol. 2014, 182, 201–212. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, D.; Guo, Q.; Wang, D. Regional Landslide Hazard Assessment through Integrating Susceptibility Index and Rainfall Process. Nat. Hazards 2020, 104, 2153–2173. [Google Scholar] [CrossRef]
- Golovko, D.; Roessner, S.; Behling, R.; Wetzel, H.-U.; Kleinschmit, B. Evaluation of Remote-Sensing-Based Landslide Inventories for Hazard Assessment in Southern Kyrgyzstan. Remote Sens. 2017, 9, 943. [Google Scholar] [CrossRef]
- Samia, J.; Temme, A.; Bregt, A.; Wallinga, J.; Guzzetti, F.; Ardizzone, F.; Rossi, M. Do Landslides Follow Landslides? Insights in Path Dependency from a Multi-Temporal Landslide Inventory. Landslides 2017, 14, 547–558. [Google Scholar] [CrossRef]
- Qiu, D.D.; Niu, R.Q.; Zhao, Y.N. Landslide Susceptibility Zonation Based on the Analytic Hierarchy Process and Information Method. Appl. Mech. Mater. 2014, 580–583, 2658–2662. [Google Scholar] [CrossRef]
- Maharaj, R.J. Landslide Processes and Landslide Susceptibility Analysis from an Upland Watershed: A Case Study from St. Andrew, Jamaica, West Indies. Eng. Geol. 1993, 34, 53–79. [Google Scholar] [CrossRef]
- Lee, S.; Min, K. Statistical Analysis of Landslide Susceptibility at Yongin, Korea. Environ. Geol. 2001, 40, 1095–1113. [Google Scholar] [CrossRef]
- Ayalew, L.; Yamagishi, H. The Application of GIS-Based Logistic Regression for Landslide Susceptibility Mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [Google Scholar] [CrossRef]
- Zhao, L.; Wu, X.; Niu, R.; Wang, Y.; Zhang, K. Using the Rotation and Random Forest Models of Ensemble Learning to Predict Landslide Susceptibility. Geomat. Nat. Hazards Risk 2020, 11, 1542–1564. [Google Scholar] [CrossRef]
- Song, Y.; Niu, R.; Xu, S.; Ye, R.; Peng, L.; Guo, T.; Li, S.; Chen, T. Landslide Susceptibility Mapping Based on Weighted Gradient Boosting Decision Tree in Wanzhou Section of the Three Gorges Reservoir Area (China). ISPRS Int. J. Geo-Inf. 2018, 8, 4. [Google Scholar] [CrossRef]
- Zhou, C.; Yin, K.; Cao, Y.; Ahmed, B.; Li, Y.; Catani, F.; Pourghasemi, H.R. Landslide Susceptibility Modeling Applying Machine Learning Methods: A Case Study from Longju in the Three Gorges Reservoir Area, China. Comput. Geosci. 2018, 112, 23–37. [Google Scholar] [CrossRef]
- Xu, S.; Niu, R. Displacement Prediction of Baijiabao Landslide Based on Empirical Mode Decomposition and Long Short-Term Memory Neural Network in Three Gorges Area, China. Comput. Geosci. 2018, 111, 87–96. [Google Scholar] [CrossRef]
- Rong, G.; Alu, S.; Li, K.; Su, Y.; Zhang, J.; Zhang, Y.; Li, T. Rainfall Induced Landslide Susceptibility Mapping Based on Bayesian Optimized Random Forest and Gradient Boosting Decision Tree Models—A Case Study of Shuicheng County, China. Water 2020, 12, 3066. [Google Scholar] [CrossRef]
- Bogaard, T.; Greco, R. Invited Perspectives: Hydrological Perspectives on Precipitation Intensity-Duration Thresholds for Landslide Initiation: Proposing Hydro-Meteorological Thresholds. Nat. Hazards Earth Syst. Sci. 2018, 18, 31–39. [Google Scholar] [CrossRef]
- Saito, H.; Korup, O.; Uchida, T.; Hayashi, S.; Oguchi, T. Rainfall Conditions, Typhoon Frequency, and Contemporary Landslide Erosion in Japan. Geology 2014, 42, 999–1002. [Google Scholar] [CrossRef]
- Abraham, M.T.; Satyam, N.; Rosi, A.; Pradhan, B.; Segoni, S. The Selection of Rain Gauges and Rainfall Parameters in Estimating Intensity-Duration Thresholds for Landslide Occurrence: Case Study from Wayanad (India). Water 2020, 12, 1000. [Google Scholar] [CrossRef]
- Cannon, S.H.; Boldt, E.M.; Laber, J.L.; Kean, J.W.; Staley, D.M. Rainfall Intensity–Duration Thresholds for Postfire Debris-Flow Emergency-Response Planning. Nat. Hazards 2011, 59, 209–236. [Google Scholar] [CrossRef]
- Peruccacci, S.; Brunetti, M.T.; Luciani, S.; Vennari, C.; Guzzetti, F. Lithological and Seasonal Control on Rainfall Thresholds for the Possible Initiation of Landslides in Central Italy. Geomorphology 2012, 139–140, 79–90. [Google Scholar] [CrossRef]
- Ke, Q.; Tian, X.; Bricker, J.; Tian, Z.; Guan, G.; Cai, H.; Huang, X.; Yang, H.; Liu, J. Urban Pluvial Flooding Prediction by Machine Learning Approaches—A Case Study of Shenzhen City, China. Adv. Water Resour. 2020, 145, 103719. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, W.; Tang, Z.; Ling, Z.; Wu, Z. Long-Term Changes of Open-Surface Water Bodies in the Yangtze River Basin Based on the Google Earth Engine Cloud Platform. Remote Sens. 2019, 11, 2213. [Google Scholar] [CrossRef]
- Salcedo-Sanz, S.; Ghamisi, P.; Piles, M.; Werner, M.; Cuadra, L.; Moreno-Martínez, A.; Izquierdo-Verdiguier, E.; Muñoz-Marí, J.; Mosavi, A.; Camps-Valls, G. Machine Learning Information Fusion in Earth Observation: A Comprehensive Review of Methods, Applications and Data Sources. Inf. Fusion 2020, 63, 256–272. [Google Scholar] [CrossRef]
- Sun, Z.; Sandoval, L.; Crystal-Ornelas, R.; Mousavi, S.M.; Wang, J.; Lin, C.; Cristea, N.; Tong, D.; Carande, W.H.; Ma, X.; et al. A Review of Earth Artificial Intelligence. Comput. Geosci. 2022, 159, 105034. [Google Scholar] [CrossRef]
- Hu, Q.; Zhou, Y.; Wang, S.; Wang, F. Machine Learning and Fractal Theory Models for Landslide Susceptibility Mapping: Case Study from the Jinsha River Basin. Geomorphology 2020, 351, 106975. [Google Scholar] [CrossRef]
- Farahmand, A.; AghaKouchak, A. A Satellite-Based Global Landslide Model. Nat. Hazards Earth Syst. Sci. 2013, 13, 1259–1267. [Google Scholar] [CrossRef]
- Hong, Y.; Adler, R.; Huffman, G. Evaluation of the Potential of NASA Multi-Satellite Precipitation Analysis in Global Landslide Hazard Assessment. Geophys. Res. Lett. 2006, 33, L22402. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, Q.; Singh, V.P.; Wang, G.; Zhao, J.; Shen, Z.; Sun, S. A Data-Driven Model on Google Earth Engine for Landslide Susceptibility Assessment in the Hengduan Mountains, the Qinghai–Tibetan Plateau. Remote Sens. 2022, 14, 4662. [Google Scholar] [CrossRef]
- Singh, P.; Maurya, V.; Dwivedi, R. Pixel based landslide identification using Landsat 8 and GEE. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, XLIII-B3-2021, 721–726. [Google Scholar] [CrossRef]
- Tang, H.; Wasowski, J.; Juang, C.H. Geohazards in the Three Gorges Reservoir Area, China—Lessons Learned from Decades of Research. Eng. Geol. 2019, 261, 105267. [Google Scholar] [CrossRef]
- Tang, H.; Li, C.; Hu, X.; Wang, L.; Criss, R.; Su, A.; Wu, Y.; Xiong, C. Deformation Response of the Huangtupo Landslide to Rainfall and the Changing Levels of the Three Gorges Reservoir. Bull. Eng. Geol. Environ. 2015, 74, 933–942. [Google Scholar] [CrossRef]
- Fang, Z.; Hang, D.; Xinyi, Z. Rainfall Regime in Three Gorges Area in China and the Control Factors. Int. J. Climatol. 2010, 30, 1396–1406. [Google Scholar] [CrossRef]
- Wang, J.; Sheng, Y.; Tong, T.S.D. Monitoring Decadal Lake Dynamics across the Yangtze Basin Downstream of Three Gorges Dam. Remote Sens. Environ. 2014, 152, 251–269. [Google Scholar] [CrossRef]
- Xiao, Y.; Xiao, Q.; Xiong, Q.; Yang, Z. Effects of Ecological Restoration Measures on Soil Erosion Risk in the Three Gorges Reservoir Area Since the 1980s. GeoHealth 2020, 4, e2020GH000274. [Google Scholar] [CrossRef]
- Huang, C.; Huang, X.; Peng, C.; Zhou, Z.; Teng, M.; Wang, P. Land Use/Cover Change in the Three Gorges Reservoir Area, China: Reconciling the Land Use Conflicts between Development and Protection. CATENA 2019, 175, 388–399. [Google Scholar] [CrossRef]
- Huang, D.; Gu, D.M.; Song, Y.X.; Cen, D.F.; Zeng, B. Towards a Complete Understanding of the Triggering Mechanism of a Large Reactivated Landslide in the Three Gorges Reservoir. Eng. Geol. 2018, 238, 36–51. [Google Scholar] [CrossRef]
- DZ/T 0261-2014; Landslide, Collapse, and Debris Flow Hazard Investigation Standard (1:50,000). China Geological Environment Monitoring Institute, Ministry of Land and Resources of the People’s Republic of China: Beijing, China, 2014.
- Fiorucci, F.; Cardinali, M.; Carlà, R.; Rossi, M.; Mondini, A.C.; Santurri, L.; Ardizzone, F.; Guzzetti, F. Seasonal Landslide Mapping and Estimation of Landslide Mobilization Rates Using Aerial and Satellite Images. Geomorphology 2011, 129, 59–70. [Google Scholar] [CrossRef]
- Nichol, J.E.; Shaker, A.; Wong, M.-S. Application of High-Resolution Stereo Satellite Images to Detailed Landslide Hazard Assessment. Geomorphology 2006, 76, 68–75. [Google Scholar] [CrossRef]
- Sato, H.P.; Hasegawa, H.; Fujiwara, S.; Tobita, M.; Koarai, M.; Une, H.; Iwahashi, J. Interpretation of Landslide Distribution Triggered by the 2005 Northern Pakistan Earthquake Using SPOT 5 Imagery. Landslides 2007, 4, 113–122. [Google Scholar] [CrossRef]
- Montrasio, L.; Valentino, R.; Losi, G.L. Towards a Real-Time Susceptibility Assessment of Rainfall-Induced Shallow Landslides on a Regional Scale. Nat. Hazards Earth Syst. Sci. 2011, 11, 1927–1947. [Google Scholar] [CrossRef]
- Gomi, T.; Sidle, R.C.; Miyata, S.; Kosugi, K.; Onda, Y. Dynamic Runoff Connectivity of Overland Flow on Steep Forested Hillslopes: Scale Effects and Runoff Transfer. Water Resour. Res. 2008, 44, 2007WR005894. [Google Scholar] [CrossRef]
- Kirschbaum, D.; Stanley, T. Satellite-Based Assessment of Rainfall-Triggered Landslide Hazard for Situational Awareness. Earth’s Future 2018, 6, 505–523. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Dong, Y.; Batunacun. An Automatic Approach for Land-Change Detection and Land Updates Based on Integrated NDVI Timing Analysis and the CVAPS Method with GEE Support. ISPRS J. Photogramm. Remote Sens. 2018, 146, 347–359. [Google Scholar] [CrossRef]
- Peng, Y.; He, G.; Wang, G.; Cao, H. Surface Water Changes in Dongting Lake from 1975 to 2019 Based on Multisource Remote-Sensing Images. Remote Sens. 2021, 13, 1827. [Google Scholar] [CrossRef]
- Padarian, J.; Minasny, B.; McBratney, A.B. Using Google’s Cloud-Based Platform for Digital Soil Mapping. Comput. Geosci. 2015, 83, 80–88. [Google Scholar] [CrossRef]
- Mohaghegh, A.; Farzin, S.; Anaraki, M.V. A New Framework for Missing Data Estimation and Reconstruction Based on the Geographical Input Information, Data Mining, and Multi-Criteria Decision-Making; Theory and Application in Missing Groundwater Data of Damghan Plain, Iran. Groundw. Sustain. Dev. 2022, 17, 100767. [Google Scholar] [CrossRef]
- Farrokhi, A.; Farzin, S.; Mousavi, S.-F. Meteorological Drought Analysis in Response to Climate Change Conditions, Based on Combined Four-Dimensional Vine Copulas and Data Mining (VC-DM). J. Hydrol. 2021, 603, 127135. [Google Scholar] [CrossRef]
- Achite, M.; Farzin, S.; Elshaboury, N.; Valikhan Anaraki, M.; Amamra, M.; Toubal, A.K. Modeling the Optimal Dosage of Coagulants in Water Treatment Plants Using Various Machine Learning Models. Environ. Dev. Sustain. 2022, 26, 3395–3421. [Google Scholar] [CrossRef]
Dataset | Description | Source | Period Covered | Resolution |
---|---|---|---|---|
Landslides | Quantity, scale, location, and occurrence time of recorded landslides | China Institute of Geo-Environment Monitoring | 8 July 1980–4 September 2012 | Event-based |
Rainfall | Spatial distribution of rainfall in millimeters | Global Precipitation Measurement (GPM) obtained from GEE | 2000–2020 | 1 km |
DEM | Digital elevation model for calculating topographic factors | Shuttle Radar Topography Mission (SRTM) obtained from GEE | 2010 | 30 m |
Multispectral imagery | Used for calculating the type of land cover, the intensity of water influence, and the normalized difference vegetation index | Landsat 8 Operational Land Imager (OLI) obtained from GEE | 2014 | 30 m (9 bands) |
High-spatial-resolution imagery | Used for interpreting landslides caused by heavy rainfall events | UAV aerial images obtained from the Geological Disaster Management Department and Google Earth time-series images obtained from GEE | 2014 | 1~2 m (3 bands) |
Temporal Rainfall Accumulation Gradings | Susceptibility Classes | ||||
---|---|---|---|---|---|
Very High | High | Moderate | Low | Very Low | |
Large occurrence (>200 mm) | |||||
Group occurrence (170~200 mm) | |||||
Local occurrence (140~170 mm) | |||||
Accidental occurrence (100~140 mm) | |||||
No occurrence (<100 mm) |
Date | Classes of Landslide Hazard | ||||
---|---|---|---|---|---|
Very Low | Low | Moderate | High | Very High | |
29 August 2014 | 6.31% | 65.09% | 28.71% | 1.38% | 0.00% |
30 August 2014 | 1.25% | 41.28% | 55.65% | 3.31% | 0.00% |
31 August 2014 | 0.08% | 3.41% | 57.79% | 39.52% | 0.69% |
1 September 2014 | 0.00% | 1.76% | 34.06% | 57.57% | 8.10% |
2 September 2014 | 0.00% | 7.66% | 38.00% | 47.17% | 8.66% |
3 September 2014 | 0.00% | 7.54% | 37.45% | 47.77% | 8.73% |
No. | Position | Description | Slope | Remote Sensing Images |
---|---|---|---|---|
1 | Xinli Village, Jiangkou Town, Yunyang County | Location: E 108°47′37.74″ N 31°14′37.28″ Development stratigraphy: J2x Xintiangou Formation Type: nascent landslide | 24~36° | |
2 | Xiaoyakou Yuzhuan Town, Yunyang County | Location: E 108°50′35.62″ N 31°20′9.81″ Development stratigraphy: T3x Sujiahe Formation Type: nascent landslide | 36~41° | |
3 | Shashi Town, Yunyang County | Location: E 108°55′46.74″ N 31°18′27.40″ Development stratigraphy: T2b Badong Formation Type: old landslide revival | 31~40° | |
4 | Luojiapo, Shangdou Town, Wuxi County | Location: E 109°28′27.17″ N 31°16′32.79″ Development stratigraphy: J1z Pearl Rush Formation Type: nascent soil landslide | 29~43° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, K.; Niu, R.; Song, Y.; Dong, J.; Zhang, H.; Chen, J. Dynamic Hazard Assessment of Rainfall-Induced Landslides Using Gradient Boosting Decision Tree with Google Earth Engine in Three Gorges Reservoir Area, China. Water 2024, 16, 1638. https://doi.org/10.3390/w16121638
Yang K, Niu R, Song Y, Dong J, Zhang H, Chen J. Dynamic Hazard Assessment of Rainfall-Induced Landslides Using Gradient Boosting Decision Tree with Google Earth Engine in Three Gorges Reservoir Area, China. Water. 2024; 16(12):1638. https://doi.org/10.3390/w16121638
Chicago/Turabian StyleYang, Ke, Ruiqing Niu, Yingxu Song, Jiahui Dong, Huaidan Zhang, and Jie Chen. 2024. "Dynamic Hazard Assessment of Rainfall-Induced Landslides Using Gradient Boosting Decision Tree with Google Earth Engine in Three Gorges Reservoir Area, China" Water 16, no. 12: 1638. https://doi.org/10.3390/w16121638
APA StyleYang, K., Niu, R., Song, Y., Dong, J., Zhang, H., & Chen, J. (2024). Dynamic Hazard Assessment of Rainfall-Induced Landslides Using Gradient Boosting Decision Tree with Google Earth Engine in Three Gorges Reservoir Area, China. Water, 16(12), 1638. https://doi.org/10.3390/w16121638