Editor's Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to authors, or important in this field. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

Article
Covalently Functionalized Carbon Nano-Onions Integrated Gelatin Methacryloyl Nanocomposite Hydrogel Containing γ-Cyclodextrin as Drug Carrier for High-Performance pH-Triggered Drug Release
Pharmaceuticals 2021, 14(4), 291; https://doi.org/10.3390/ph14040291 - 25 Mar 2021
Cited by 23
Abstract
Herein, poly (n-(4-aminophenyl) methacrylamide)) carbon nano-onions (PAPMA-CNOs = f-CNOs) and γ-cyclodextrin/DOX-complex (CD) reinforced gelatin methacryloyl (GelMA)/f-CNOs/CD supramolecular hydrogel interfaces were fabricated using the photo-crosslinking technique. The physicochemical properties, morphology, biodegradation, and swelling properties of hydrogels were investigated. The composite hydrogels demonstrated [...] Read more.
Herein, poly (n-(4-aminophenyl) methacrylamide)) carbon nano-onions (PAPMA-CNOs = f-CNOs) and γ-cyclodextrin/DOX-complex (CD) reinforced gelatin methacryloyl (GelMA)/f-CNOs/CD supramolecular hydrogel interfaces were fabricated using the photo-crosslinking technique. The physicochemical properties, morphology, biodegradation, and swelling properties of hydrogels were investigated. The composite hydrogels demonstrated enriched drug release under the acidic conditions (pH 4.5 = 99%, and pH 6.0 = 82%) over 18 days. Owing to the f-CNOs inclusion, GelMA/f-CNOs/CD supramolecular hydrogels presented augmented tensile strength (σult = 356.1 ± 3.4 MPa), toughness (K = 51.5 ± 0.24 Jg−1), and Young’s modulus (E = 41.8 ± 1.4 GPa). The strengthening of GelMA/f-CNOs/CD hydrogel systems indicates its good dispersion and the degree of polymer enveloping of f-CNOs within GelMA matrixes. Furthermore, the obtained hydrogels showed improved cell viability with human fibroblast cells. Nevertheless, the primed supramolecular hydrogels would pave the way for the controlled delivery systems for future drug delivery. Full article
(This article belongs to the Special Issue New Frontiers in Cyclodextrin Technologies)
Show Figures

Graphical abstract

Article
Repurposing of Some Natural Product Isolates as SARS-COV-2 Main Protease Inhibitors via In Vitro Cell Free and Cell-Based Antiviral Assessments and Molecular Modeling Approaches
Pharmaceuticals 2021, 14(3), 213; https://doi.org/10.3390/ph14030213 - 04 Mar 2021
Cited by 19
Abstract
The emergence of the SARS-CoV-2 pandemic has prompted scientists to search for an efficient antiviral medicine to overcome the rapid spread and the marked increase in the number of patients worldwide. In this regard natural products could be a potential source of substances [...] Read more.
The emergence of the SARS-CoV-2 pandemic has prompted scientists to search for an efficient antiviral medicine to overcome the rapid spread and the marked increase in the number of patients worldwide. In this regard natural products could be a potential source of substances active against coronavirus infections. A systematic computer-aided virtual screening approach was carried out using commercially available natural products found on the Zinc Database in addition to an in-house compound library to identify potential natural product inhibitors of SARS-CoV-2 main protease (MPRO). The top eighteen hits from the screening were selected for in vitro evaluation on the viral protease (SARS-CoV-2 MPRO). Five compounds (naringenin, 2,3′,4,5′,6-pentahydroxybenzophenone, apigenin-7-O-glucoside, sennoside B, and acetoside) displayed high activity against the viral protein. Acteoside showed similar activity to the positive control GC376. The most potent compounds were tested in vitro on SARS-CoV-2 Egyptian strain where only naringenin showed moderate anti-SARS-CoV-2 activity at non-cytotoxic micromolar concentrations in vitro with a significant selectivity index (CC50/IC50 = 178.748/28.347 = 6.3). Moreover; a common feature pharmacophore model was generated to explain the requirements for enzyme inhibition by this diverse group of active ligands. These results pave a path for future repurposing and development of natural products to aid in the battle against COVID-19. Full article
Show Figures

Figure 1

Article
Photophysical Properties of Protoporphyrin IX, Pyropheophorbide-a, and Photofrin® in Different Conditions
Pharmaceuticals 2021, 14(2), 138; https://doi.org/10.3390/ph14020138 - 09 Feb 2021
Cited by 10
Abstract
Photodynamic therapy (PDT) is an innovative treatment of malignant or diseased tissues. The effectiveness of PDT depends on light dosimetry, oxygen availability, and properties of the photosensitizer (PS). Depending on the medium, photophysical properties of the PS can change leading to increase or [...] Read more.
Photodynamic therapy (PDT) is an innovative treatment of malignant or diseased tissues. The effectiveness of PDT depends on light dosimetry, oxygen availability, and properties of the photosensitizer (PS). Depending on the medium, photophysical properties of the PS can change leading to increase or decrease in fluorescence emission and formation of reactive oxygen species (ROS) especially singlet oxygen (1O2). In this study, the influence of solvent polarity, viscosity, concentration, temperature, and pH medium on the photophysical properties of protoporphyrin IX, pyropheophorbide-a, and Photofrin® were investigated by UV-visible absorption, fluorescence emission, singlet oxygen emission, and time-resolved fluorescence spectroscopies. Full article
(This article belongs to the Special Issue Photodynamic Therapy 2021)
Show Figures

Figure 1

Article
FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2
Pharmaceuticals 2020, 13(12), 443; https://doi.org/10.3390/ph13120443 - 04 Dec 2020
Cited by 42
Abstract
(1) Background: Drug repositioning is an unconventional drug discovery approach to explore new therapeutic benefits of existing drugs. Currently, it emerges as a rapid avenue to alleviate the COVID-19 pandemic disease. (2) Methods: Herein, we tested the antiviral activity of anti-microbial and anti-inflammatory [...] Read more.
(1) Background: Drug repositioning is an unconventional drug discovery approach to explore new therapeutic benefits of existing drugs. Currently, it emerges as a rapid avenue to alleviate the COVID-19 pandemic disease. (2) Methods: Herein, we tested the antiviral activity of anti-microbial and anti-inflammatory Food and Drug Administration (FDA)-approved drugs, commonly prescribed to relieve respiratory symptoms, against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the viral causative agent of the COVID-19 pandemic. (3) Results: Of these FDA-approved antimicrobial drugs, Azithromycin, Niclosamide, and Nitazoxanide showed a promising ability to hinder the replication of a SARS-CoV-2 isolate, with IC50 of 0.32, 0.16, and 1.29 µM, respectively. We provided evidence that several antihistamine and anti-inflammatory drugs could partially reduce SARS-CoV-2 replication in vitro. Furthermore, this study showed that Azithromycin can selectively impair SARS-CoV-2 replication, but not the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). A virtual screening study illustrated that Azithromycin, Niclosamide, and Nitazoxanide bind to the main protease of SARS-CoV-2 (Protein data bank (PDB) ID: 6lu7) in binding mode similar to the reported co-crystalized ligand. Also, Niclosamide displayed hydrogen bond (HB) interaction with the key peptide moiety GLN: 493A of the spike glycoprotein active site. (4) Conclusions: The results suggest that Piroxicam should be prescribed in combination with Azithromycin for COVID-19 patients. Full article
(This article belongs to the Special Issue COVID-19 in Pharmaceuticals)
Show Figures

Figure 1

Article
Topical Administration of Cannabidiol: Influence of Vehicle-Related Aspects on Skin Permeation Process
Pharmaceuticals 2020, 13(11), 337; https://doi.org/10.3390/ph13110337 - 23 Oct 2020
Cited by 16
Abstract
Cannabidiol (CBD) is a non-psychoactive cannabinoid isolated from Cannabis sativa which, given its claimed beneficial properties and therapeutic potential, has lately aroused considerable attention from the scientific community. Starting from the little literature evidence, the main purpose of this study was to investigate [...] Read more.
Cannabidiol (CBD) is a non-psychoactive cannabinoid isolated from Cannabis sativa which, given its claimed beneficial properties and therapeutic potential, has lately aroused considerable attention from the scientific community. Starting from the little literature evidence, the main purpose of this study was to investigate the topical administration of CBD, with particular focus on the influence of vehicle-related aspects on the skin permeation process. This could provide useful information for the design of suitable drug delivery systems which could be used in developing topical medicines and cosmetics. In vitro human skin permeation studies were conducted using modified Franz diffusion cells to compare the performance of four solutions and two semisolid formulations. The Hildebrand solubility parameter was used to better understand the thermodynamic aspects implied in the partitioning process of the cannabinoid compound into the skin. It was interestingly found that a hydrophilic gel, mostly consisting of propylene glycol (79%, w/w), can be an optimal choice for the topical administration of CBD. Moreover, the feasibility of the preparation of CBD-loaded (trans)dermal patches, made with new printing technology, was also demonstrated. Full article
Show Figures

Graphical abstract

Article
Silencing of Exosomal miR-181a Reverses Pediatric Acute Lymphocytic Leukemia Cell Proliferation
Pharmaceuticals 2020, 13(9), 241; https://doi.org/10.3390/ph13090241 - 11 Sep 2020
Cited by 12
Abstract
Exosomes are cell-generated nano-vesicles found in most biological fluids. Major components of their cargo are lipids, proteins, RNA, DNA, and non-coding RNAs. The miRNAs carried within exosomes reveal real-time information regarding disease status in leukemia and other cancers, and therefore exosomes have been [...] Read more.
Exosomes are cell-generated nano-vesicles found in most biological fluids. Major components of their cargo are lipids, proteins, RNA, DNA, and non-coding RNAs. The miRNAs carried within exosomes reveal real-time information regarding disease status in leukemia and other cancers, and therefore exosomes have been studied as novel biomarkers for cancer. We investigated the impact of exosomes on cell proliferation in pediatric acute lymphocytic leukemia (PALL) and its reversal by silencing of exo-miR-181a. We isolated exosomes from the serum of PALL patients (Exo-PALL) and conditioned medium of leukemic cell lines (Exo-CM). We found that Exo-PALL promotes cell proliferation in leukemic B cell lines by gene regulation. This exosome-induced cell proliferation is a precise event with the up-regulation of proliferative (PCNA, Ki-67) and pro-survival genes (MCL-1, and BCL2) and suppression of pro-apoptotic genes (BAD, BAX). Exo-PALL and Exo-CM both show over expression of miR-181a compared to healthy donor control exosomes (Exo-HD). Specific silencing of exosomal miR-181a using a miR-181a inhibitor confirms that miR-181a inhibitor treatment reverses Exo-PALL/Exo-CM-induced leukemic cell proliferation in vitro. Altogether, this study suggests that exosomal miR-181a inhibition can be a novel target for growth suppression in pediatric lymphatic leukemia. Full article
(This article belongs to the Special Issue MiRNA-Based Therapeutics in Cancer)
Show Figures

Figure 1

Article
Curcumin, a Natural Antimicrobial Agent with Strain-Specific Activity
Pharmaceuticals 2020, 13(7), 153; https://doi.org/10.3390/ph13070153 - 16 Jul 2020
Cited by 43
Abstract
Curcumin, a principal bioactive substance of turmeric (Curcuma longa L.), is reported as a strong antioxidant, anti-inflammatory, antibacterial, antifungal, and antiviral agent. However, its antimicrobial properties require further detailed investigations into clinical and multidrug-resistant (MDR) isolates. In this work, we tested curcumin’s [...] Read more.
Curcumin, a principal bioactive substance of turmeric (Curcuma longa L.), is reported as a strong antioxidant, anti-inflammatory, antibacterial, antifungal, and antiviral agent. However, its antimicrobial properties require further detailed investigations into clinical and multidrug-resistant (MDR) isolates. In this work, we tested curcumin’s efficacy against over 100 strains of pathogens belonging to 19 species. This activity was determined by the broth microdilution method and by calculating the minimum inhibitory concentration (MIC). Our findings confirmed a much greater sensitivity of Gram-positive than Gram-negative bacteria. This study exhibited a significantly larger variation in the curcumin activity than previous works and suggested that numerous clinical strains of widespread pathogens have a poor sensitivity to curcumin. Similarly, the MICs of the MDR types of Staphylococcus aureus, S. haemolyticus, Escherichia coli, and Proteus mirabilis were high (≥2000 µg/mL). However, curcumin was effective against some species and strains: Streptococcus pyogenes (median MIC = 31.25 µg/mL), methicillin-sensitive S. aureus (250 µg/mL), Acinetobacter lwoffii (250 µg/mL), and individual strains of Enterococcus faecalis and Pseudomonas aeruginosa (62.5 µg/mL). The sensitivity of species was not associated with its affiliation to the genus, and it could differ a lot (e.g., S. pyogenes, S. agalactiae and A. lwoffii, A. baumannii). Hence, curcumin can be considered as a promising antibacterial agent, but with a very selective activity. Full article
Show Figures

Graphical abstract

Article
Formulation and Evaluation of Loperamide HCl Oro Dispersible Tablets
Pharmaceuticals 2020, 13(5), 100; https://doi.org/10.3390/ph13050100 - 18 May 2020
Cited by 4
Abstract
This work proposes the design of novel oral disintegrating tablets (ODTs) of loperamide HCl with special emphasis on disintegration and dissolution studies. The main goal was augmenting the adherence to treatment of diseases which happen with diarrhea in soldiers who are exposed to [...] Read more.
This work proposes the design of novel oral disintegrating tablets (ODTs) of loperamide HCl with special emphasis on disintegration and dissolution studies. The main goal was augmenting the adherence to treatment of diseases which happen with diarrhea in soldiers who are exposed to diverse kinds of hostile environments. Optimized orally disintegrating tablets were prepared by the direct compression method from galenic development to the industrial scale technique, thanks to strategic and support actions between the Spanish Army Force Lab and the Department of Biomedical Sciences (UAH). The results show that loperamide HCl ODT offers a rapid beginning of action and improvement in the bioavailability of poorly absorbed drugs. The manufactured ODTs complied with the pharmacopeia guidelines regarding hardness, weight variation, thickness, friability, drug content, wetting time, percentage of water absorption, disintegration time, and in vitro dissolution profile. Drug compatibility with excipients was checked by DSC, FTIR, and SEM studies. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

Article
Upregulated Connexin 43 Induced by Loss-of-Functional S284L-Mutant α4 Subunit of Nicotinic ACh Receptor Contributes to Pathomechanisms of Autosomal Dominant Sleep-Related Hypermotor Epilepsy
Pharmaceuticals 2020, 13(4), 58; https://doi.org/10.3390/ph13040058 - 29 Mar 2020
Cited by 22
Abstract
To study the pathomechanism and pathophysiology of autosomal dominant sleep-related hypermotor epilepsy (ADSHE), this study determined functional abnormalities of glutamatergic transmission in the thalamocortical motor pathway, from the reticular thalamic nucleus (RTN), motor thalamic nuclei (MoTN) tosecondary motor cortex (M2C) associated with the [...] Read more.
To study the pathomechanism and pathophysiology of autosomal dominant sleep-related hypermotor epilepsy (ADSHE), this study determined functional abnormalities of glutamatergic transmission in the thalamocortical motor pathway, from the reticular thalamic nucleus (RTN), motor thalamic nuclei (MoTN) tosecondary motor cortex (M2C) associated with the S286L-mutant α4β2-nicotinic acetylcholine receptor (nAChR) and the connexin43 (Cx43) hemichannel of transgenic rats bearing the rat S286L-mutant Chrna4 gene (S286L-TG), which corresponds to the human S284L-mutant CHRNA4 gene using multiprobe microdialysis, primary cultured astrocytes and a Simple Western system. Expression of Cx43 in the M2C plasma membrane fraction of S286L-TG was upregulated compared with wild-type rats. Subchronic nicotine administration decreased Cx43 expression of wild-type, but did not affect that of S286L-TG; however, zonisamide (ZNS) decreased Cx43 in both wild-type and S286L-TG. Primary cultured astrocytes of wild-type were not affected by subchronic administration of nicotine but was decreased by ZNS. Upregulated Cx43 enhanced glutamatergic transmission during both resting and hyperexcitable stages in S286L-TG. Furthermore, activation of glutamatergic transmission associated with upregulated Cx43 reinforced the prolonged Cx43 hemichannel activation. Subchronic administration of therapeutic-relevant doses of ZNS compensated the upregulation of Cx43 and prolonged reinforced activation of Cx43 hemichannel induced by physiological hyperexcitability during the non-rapid eye movement phase of sleep. The present results support the primary pathomechanisms and secondary pathophysiology of ADSHE seizures of patients with S284L-mutation. Full article
(This article belongs to the Special Issue Therapeutic Agents for Neurological Disorders)
Show Figures

Figure 1

Article
Unveiling Pharmacological Responses and Potential Targets Insights of Identified Bioactive Constituents of Cuscuta reflexa Roxb. Leaves through In Vivo and In Silico Approaches
Pharmaceuticals 2020, 13(3), 50; https://doi.org/10.3390/ph13030050 - 20 Mar 2020
Cited by 15
Abstract
Cuscuta reflexa Roxb. is traditionally used by the indigenous communities of Bangladesh to treat different diseases, such as pain, edema, tumor, jaundice, and skin infections. This study tested neuro-pharmacological, anti-nociceptive, and antidiarrheal activities by in vivo and in silico experiments for the metabolites [...] Read more.
Cuscuta reflexa Roxb. is traditionally used by the indigenous communities of Bangladesh to treat different diseases, such as pain, edema, tumor, jaundice, and skin infections. This study tested neuro-pharmacological, anti-nociceptive, and antidiarrheal activities by in vivo and in silico experiments for the metabolites extracted (methanol) from the leaves of Cuscuta reflexa (MECR). During the anxiolytic evaluation analyzed by elevated plus maze and hole board tests, MECR (200 and 400 mg/kg) exhibited a significant dose-dependent reduction of anxiety-like behavior in mice. Similarly, mice treated with MECR demonstrated a dose-dependent decrease in the time of immobility in both forced swimming and tail suspension tests. In addition, anti-nociceptive activity was assessed by the chemical-induced (acetic acid and formalin) pain models. In both cases, 400 mg/kg was found to be most effective and significantly (p < 0.001) inhibited acetic acid stimulated writhing and formalin-induced licking (pain response) in mice. Furthermore, antidiarrheal efficacy determined by the castor-oil induced diarrheal model manifested an evident inhibition of diarrheal stool frequency. In parallel, previously isolated bioactive compounds were documented based on the biological activities and subjected to in silico studies to correlate with the current pharmacological outcomes. The selected isolated compounds (15) displayed favorable binding affinities to potassium channels, human serotonin receptor, COX-1, COX-2, M3 muscarinic acetylcholine receptor, and 5-HT3 receptor proteins. Additionally, the ADME/T and toxicological properties were justified to unveil their drug-like properties and toxicity level. Overall, Cuscuta reflexa is bioactive and could be a potential source for the development of alternative medicine. Full article
(This article belongs to the Special Issue Medicinal Plants 2020)
Show Figures

Figure 1

Review

Review
Atypical Antipsychotics and Metabolic Syndrome: From Molecular Mechanisms to Clinical Differences
Pharmaceuticals 2021, 14(3), 238; https://doi.org/10.3390/ph14030238 - 08 Mar 2021
Cited by 18
Abstract
Atypical antipsychotics (AAPs) are commonly prescribed medications to treat schizophrenia, bipolar disorders and other psychotic disorders. However, they might cause metabolic syndrome (MetS) in terms of weight gain, dyslipidemia, type 2 diabetes (T2D), and high blood pressure, which are responsible for reduced life [...] Read more.
Atypical antipsychotics (AAPs) are commonly prescribed medications to treat schizophrenia, bipolar disorders and other psychotic disorders. However, they might cause metabolic syndrome (MetS) in terms of weight gain, dyslipidemia, type 2 diabetes (T2D), and high blood pressure, which are responsible for reduced life expectancy and poor adherence. Importantly, there is clear evidence that early metabolic disturbances can precede weight gain, even if the latter still remains the hallmark of AAPs use. In fact, AAPs interfere profoundly with glucose and lipid homeostasis acting mostly on hypothalamus, liver, pancreatic β-cells, adipose tissue, and skeletal muscle. Their actions on hypothalamic centers via dopamine, serotonin, acetylcholine, and histamine receptors affect neuropeptides and 5′AMP-activated protein kinase (AMPK) activity, thus producing a supraphysiological sympathetic outflow augmenting levels of glucagon and hepatic glucose production. In addition, altered insulin secretion, dyslipidemia, fat deposition in the liver and adipose tissues, and insulin resistance become aggravating factors for MetS. In clinical practice, among AAPs, olanzapine and clozapine are associated with the highest risk of MetS, whereas quetiapine, risperidone, asenapine and amisulpride cause moderate alterations. The new AAPs such as ziprasidone, lurasidone and the partial agonist aripiprazole seem more tolerable on the metabolic profile. However, these aspects must be considered together with the differences among AAPs in terms of their efficacy, where clozapine still remains the most effective. Intriguingly, there seems to be a correlation between AAP’s higher clinical efficacy and increase risk of metabolic alterations. Finally, a multidisciplinary approach combining psychoeducation and therapeutic drug monitoring (TDM) is proposed as a first-line strategy to avoid the MetS. In addition, pharmacological treatments are discussed as well. Full article
(This article belongs to the Special Issue Molecular and Cellular Targets of Old and New Atypical Antipsychotics)
Show Figures

Graphical abstract

Review
2020 FDA TIDES (Peptides and Oligonucleotides) Harvest
Pharmaceuticals 2021, 14(2), 145; https://doi.org/10.3390/ph14020145 - 11 Feb 2021
Cited by 18
Abstract
2020 has been an extremely difficult and challenging year as a result of the coronavirus disease 2019 (COVID-19) pandemic and one in which most efforts have been channeled into tackling the global health crisis. The US Food and Drug Administration (FDA) has approved [...] Read more.
2020 has been an extremely difficult and challenging year as a result of the coronavirus disease 2019 (COVID-19) pandemic and one in which most efforts have been channeled into tackling the global health crisis. The US Food and Drug Administration (FDA) has approved 53 new drug entities, six of which fall in the peptides and oligonucleotides (TIDES) category. The number of authorizations for these kinds of drugs has been similar to that of previous years, thereby reflecting the consolidation of the TIDES market. Here, the TIDES approved in 2020 are analyzed in terms of chemical structure, medical target, mode of action, and adverse effects. Full article
(This article belongs to the Special Issue The Story of Successful Drugs and Recent FDA-Approved Molecules)
Show Figures

Figure 1

Review
Monofunctional Platinum(II) Anticancer Agents
Pharmaceuticals 2021, 14(2), 133; https://doi.org/10.3390/ph14020133 - 07 Feb 2021
Cited by 14
Abstract
Platinum-based anticancer drugs represented by cisplatin play important roles in the treatment of various solid tumors. However, their applications are largely compromised by drug resistance and side effects. Much effort has been made to circumvent the drug resistance and general toxicity of these [...] Read more.
Platinum-based anticancer drugs represented by cisplatin play important roles in the treatment of various solid tumors. However, their applications are largely compromised by drug resistance and side effects. Much effort has been made to circumvent the drug resistance and general toxicity of these drugs. Among multifarious designs, monofunctional platinum(II) complexes with a general formula of [Pt(3A)Cl]+ (A: Ammonia or amine) stand out as a class of “non-traditional” anticancer agents hopeful to overcome the defects of current platinum drugs. This review aims to summarize the development of monofunctional platinum(II) complexes in recent years. They are classified into four categories: fluorescent complexes, photoactive complexes, targeted complexes, and miscellaneous complexes. The intention behind the designs is either to visualize the cellular distribution, or to reduce the side effects, or to improve the tumor selectivity, or inhibit the cancer cells through non-DNA targets. The information provided by this review may inspire researchers to conceive more innovative complexes with potent efficacy to shake off the drawbacks of platinum anticancer drugs. Full article
(This article belongs to the Special Issue Applications of Medicinal Bioinorganic Chemistry)
Show Figures

Figure 1

Review
The Current and Potential Therapeutic Use of Metformin—The Good Old Drug
Pharmaceuticals 2021, 14(2), 122; https://doi.org/10.3390/ph14020122 - 05 Feb 2021
Cited by 19
Abstract
Metformin, one of the oldest oral antidiabetic agents and still recommended by almost all current guidelines as the first-line treatment for type 2 diabetes mellitus (T2DM), has become the medication with steadily increasing potential therapeutic indications. A broad spectrum of experimental and clinical [...] Read more.
Metformin, one of the oldest oral antidiabetic agents and still recommended by almost all current guidelines as the first-line treatment for type 2 diabetes mellitus (T2DM), has become the medication with steadily increasing potential therapeutic indications. A broad spectrum of experimental and clinical studies showed that metformin has a pleiotropic activity and favorable effect in different pathological conditions, including prediabetes, type 1 diabetes mellitus (T1DM) and gestational diabetes mellitus (GDM). Moreover, there are numerous studies, meta-analyses and population studies indicating that metformin is safe and well tolerated and may be associated with cardioprotective and nephroprotective effect. Recently, it has also been reported in some studies, but not all, that metformin, besides improvement of glucose homeostasis, may possibly reduce the risk of cancer development, inhibit the incidence of neurodegenerative disease and prolong the lifespan. This paper presents some arguments supporting the initiation of metformin in patients with newly diagnosed T2DM, especially those without cardiovascular risk factors or without established cardiovascular disease or advanced kidney insufficiency at the time of new guidelines favoring new drugs with pleotropic effects complimentary to glucose control. Moreover, it focuses on the potential beneficial effects of metformin in patients with T2DM and coexisting chronic diseases. Full article
(This article belongs to the Special Issue Metformin: Mechanism and Application 2022)
Show Figures

Figure 1

Review
Informing Patients about Biosimilar Medicines: The Role of European Patient Associations
Pharmaceuticals 2021, 14(2), 117; https://doi.org/10.3390/ph14020117 - 04 Feb 2021
Cited by 13
Abstract
Biosimilar medicines support the sustainability of national healthcare systems, by reducing costs of biological therapies through increased competition. However, their adoption into clinical practice largely depends on the acceptance of healthcare providers and patients. Patients are different from health care professionals (HCPs), who [...] Read more.
Biosimilar medicines support the sustainability of national healthcare systems, by reducing costs of biological therapies through increased competition. However, their adoption into clinical practice largely depends on the acceptance of healthcare providers and patients. Patients are different from health care professionals (HCPs), who are informing themselves professionally. For patients, the biosimilar debate only becomes actual when they are confronted with disease and drug choices. This paper provides a literature review on how patients are and should be informed about biosimilars, searching in scientific databases (i.e., Medline, Embase). Several large surveys have shown a lack of knowledge and trust in biosimilars among European patients in recent years. This review identified five main strategies to inform patients about biosimilars: (1) provide understandable information, (2) in a positive and transparent way, (3) tailored to the individual’s needs, (4) with one voice, and (5) supported by audiovisual material. Moreover, the importance of a multistakeholder approach was underlined by describing the role of each stakeholder. Patients are a large and diffuse target group to be reached by educational programs. Therefore, patient associations have become increasingly important in correctly informing patients about biosimilar medicines. This has led to widespread biosimilar information for patients among European patient associations. Therefore, a web-based screening of European Patients’ Forum (EPF) and International Alliance of Patients’ Organizations (IAPO) member organizations on publicly available information about biosimilars was performed. We found that the level of detail, correctness, and the tone of the provided information varied. In conclusion, it is paramount to set up a close collaboration between all stakeholders to communicate, develop, and disseminate factual information about biosimilars for patients. Full article
(This article belongs to the Special Issue Biosimilars in Europe)
Show Figures

Figure 1

Review
Tauvid™: The First FDA-Approved PET Tracer for Imaging Tau Pathology in Alzheimer’s Disease
Pharmaceuticals 2021, 14(2), 110; https://doi.org/10.3390/ph14020110 - 30 Jan 2021
Cited by 10
Abstract
Tauvid has been approved by the U.S. Food and Drug Administration (FDA) in 2020 for positron emission tomography (PET) imaging of adult patients with cognitive impairments undergoing evaluation for Alzheimer’s disease (AD) based on tau pathology. Abnormal aggregation of tau proteins is one [...] Read more.
Tauvid has been approved by the U.S. Food and Drug Administration (FDA) in 2020 for positron emission tomography (PET) imaging of adult patients with cognitive impairments undergoing evaluation for Alzheimer’s disease (AD) based on tau pathology. Abnormal aggregation of tau proteins is one of the main pathologies present in AD and is receiving increasing attention as a diagnostic and therapeutic target. In this review, we summarised the production and quality control of Tauvid, its clinical application, pharmacology and pharmacokinetics, as well as its limitation due to off-target binding. Moreover, a brief overview on the second-generation of Tau PET tracers is provided. The approval of Tauvid marks a step forward in the field of AD research and opens up opportunities for second-generation tau tracers to advance tau PET imaging in the clinic. Full article
Show Figures

Figure 1

Review
Repurposing Clinical Agents for Chemical Exchange Saturation Transfer Magnetic Resonance Imaging: Current Status and Future Perspectives
Pharmaceuticals 2021, 14(1), 11; https://doi.org/10.3390/ph14010011 - 24 Dec 2020
Cited by 5
Abstract
Molecular imaging is becoming an indispensable tool to pursue precision medicine. However, quickly translating newly developed magnetic resonance imaging (MRI) agents into clinical use remains a formidable challenge. Recently, Chemical Exchange Saturation Transfer (CEST) MRI is emerging as an attractive approach with the [...] Read more.
Molecular imaging is becoming an indispensable tool to pursue precision medicine. However, quickly translating newly developed magnetic resonance imaging (MRI) agents into clinical use remains a formidable challenge. Recently, Chemical Exchange Saturation Transfer (CEST) MRI is emerging as an attractive approach with the capability of directly using low concentration, exchangeable protons-containing agents for generating quantitative MRI contrast. The ability to utilize diamagnetic compounds has been extensively exploited to detect many clinical compounds, such as FDA approved drugs, X-ray/CT contrast agents, nutrients, supplements, and biopolymers. The ability to directly off-label use clinical compounds permits CEST MRI to be rapidly translated to clinical settings. In this review, the current status of CEST MRI based on clinically available compounds will be briefly introduced. The advancements and limitations of these studies are reviewed in the context of their pre-clinical or clinical applications. Finally, future directions will be briefly discussed. Full article
(This article belongs to the Special Issue Next Generation of MRI Agents)
Show Figures

Graphical abstract

Review
Treatment of Alzheimer’s Disease and Blood–Brain Barrier Drug Delivery
Pharmaceuticals 2020, 13(11), 394; https://doi.org/10.3390/ph13110394 - 16 Nov 2020
Cited by 29
Abstract
Despite the enormity of the societal and health burdens caused by Alzheimer’s disease (AD), there have been no FDA approvals for new therapeutics for AD since 2003. This profound lack of progress in treatment of AD is due to dual problems, both related [...] Read more.
Despite the enormity of the societal and health burdens caused by Alzheimer’s disease (AD), there have been no FDA approvals for new therapeutics for AD since 2003. This profound lack of progress in treatment of AD is due to dual problems, both related to the blood–brain barrier (BBB). First, 98% of small molecule drugs do not cross the BBB, and ~100% of biologic drugs do not cross the BBB, so BBB drug delivery technology is needed in AD drug development. Second, the pharmaceutical industry has not developed BBB drug delivery technology, which would enable industry to invent new therapeutics for AD that actually penetrate into brain parenchyma from blood. In 2020, less than 1% of all AD drug development projects use a BBB drug delivery technology. The pathogenesis of AD involves chronic neuro-inflammation, the progressive deposition of insoluble amyloid-beta or tau aggregates, and neural degeneration. New drugs that both attack these multiple sites in AD, and that have been coupled with BBB drug delivery technology, can lead to new and effective treatments of this serious disorder. Full article
(This article belongs to the Special Issue Treatment of Alzheimer Disease)
Show Figures

Figure 1

Review
Overcoming Barriers for siRNA Therapeutics: From Bench to Bedside
Pharmaceuticals 2020, 13(10), 294; https://doi.org/10.3390/ph13100294 - 07 Oct 2020
Cited by 37
Abstract
The RNA interference (RNAi) pathway possesses immense potential in silencing any gene in human cells. Small interfering RNA (siRNA) can efficiently trigger RNAi silencing of specific genes. FDA Approval of siRNA therapeutics in recent years garnered a new hope in siRNA therapeutics. However, [...] Read more.
The RNA interference (RNAi) pathway possesses immense potential in silencing any gene in human cells. Small interfering RNA (siRNA) can efficiently trigger RNAi silencing of specific genes. FDA Approval of siRNA therapeutics in recent years garnered a new hope in siRNA therapeutics. However, their therapeutic use is limited by several challenges. siRNAs, being negatively charged, are membrane-impermeable and highly unstable in the systemic circulation. In this review, we have comprehensively discussed the extracellular barriers, including enzymatic degradation of siRNAs by serum endonucleases and RNAases, rapid renal clearance, membrane impermeability, and activation of the immune system. Besides, we have thoroughly described the intracellular barriers such as endosomal trap and off-target effects of siRNAs. Moreover, we have reported most of the strategies and techniques in overcoming these barriers, followed by critical comments in translating these molecules from bench to bedside. Full article
Show Figures

Graphical abstract

Review
Current Insights on Antifungal Therapy: Novel Nanotechnology Approaches for Drug Delivery Systems and New Drugs from Natural Sources
Pharmaceuticals 2020, 13(9), 248; https://doi.org/10.3390/ph13090248 - 15 Sep 2020
Cited by 29
Abstract
The high incidence of fungal infections has become a worrisome public health issue, having been aggravated by an increase in host predisposition factors. Despite all the drugs available on the market to treat these diseases, their efficiency is questionable, and their side effects [...] Read more.
The high incidence of fungal infections has become a worrisome public health issue, having been aggravated by an increase in host predisposition factors. Despite all the drugs available on the market to treat these diseases, their efficiency is questionable, and their side effects cannot be neglected. Bearing that in mind, it is of upmost importance to synthetize new and innovative carriers for these medicines not only to fight emerging fungal infections but also to avert the increase in drug-resistant strains. Although it has revealed to be a difficult job, new nano-based drug delivery systems and even new cellular targets and compounds with antifungal potential are now being investigated. This article will provide a summary of the state-of-the-art strategies that have been studied in order to improve antifungal therapy and reduce adverse effects of conventional drugs. The bidirectional relationship between Mycology and Nanotechnology will be also explained. Furthermore, the article will focus on new compounds from the marine environment which have a proven antifungal potential and may act as platforms to discover drug-like characteristics, highlighting the challenges of the translation of these natural compounds into the clinical pipeline. Full article
Show Figures

Figure 1

Review
The Role of Adaptogens in Prophylaxis and Treatment of Viral Respiratory Infections
Pharmaceuticals 2020, 13(9), 236; https://doi.org/10.3390/ph13090236 - 08 Sep 2020
Cited by 19
Abstract
The aim of our review is to demonstrate the potential of herbal preparations, specifically adaptogens for prevention and treatment of respiratory infections, as well as convalescence, specifically through supporting a challenged immune system, increasing resistance to viral infection, inhibiting severe inflammatory progression, and [...] Read more.
The aim of our review is to demonstrate the potential of herbal preparations, specifically adaptogens for prevention and treatment of respiratory infections, as well as convalescence, specifically through supporting a challenged immune system, increasing resistance to viral infection, inhibiting severe inflammatory progression, and driving effective recovery. The evidence from pre-clinical and clinical studies with Andrographis paniculata, Eleutherococcus senticosus, Glycyrrhiza spp., Panax spp., Rhodiola rosea, Schisandra chinensis, Withania somnifera, their combination products and melatonin suggests that adaptogens can be useful in prophylaxis and treatment of viral infections at all stages of progression of inflammation as well as in aiding recovery of the organism by (i) modulating innate and adaptive immunity, (ii) anti-inflammatory activity, (iii) detoxification and repair of oxidative stress-induced damage in compromised cells, (iv) direct antiviral effects of inhibiting viral docking or replication, and (v) improving quality of life during convalescence. Full article
Show Figures

Graphical abstract

Review
Antibacterials in Aquatic Environment and Their Toxicity to Fish
Pharmaceuticals 2020, 13(8), 189; https://doi.org/10.3390/ph13080189 - 09 Aug 2020
Cited by 38
Abstract
Antibacterial agents are commonly present in aquatic environment at low concentrations. Terrestrial animal farms, human medicine and aquaculture are main sources of water contamination with antibacterials. Antibiotics were proved to be directly toxic to fish causing oxidative stress, general stress response, histopathological lesions, [...] Read more.
Antibacterial agents are commonly present in aquatic environment at low concentrations. Terrestrial animal farms, human medicine and aquaculture are main sources of water contamination with antibacterials. Antibiotics were proved to be directly toxic to fish causing oxidative stress, general stress response, histopathological lesions, hematological, metabolic, and reproductive disorders, as well as immunosuppressive and genotoxic effects. Environmentally realistic low concentrations of antibiotics also disturb aquatic bacterial communities causing alterations in fish symbiotic microbiota and induce emergence of antibiotic-resistant pathogenic bacteria by exerting selective pressure on spread of antibiotic-resistance genes. Full article
(This article belongs to the Section Pharmacology)
Review
Autophagy as a Potential Therapy for Malignant Glioma
Pharmaceuticals 2020, 13(7), 156; https://doi.org/10.3390/ph13070156 - 19 Jul 2020
Cited by 26
Abstract
Glioma is the most frequent and aggressive type of brain neoplasm, being anaplastic astrocytoma (AA) and glioblastoma multiforme (GBM), its most malignant forms. The survival rate in patients with these neoplasms is 15 months after diagnosis, despite a diversity of treatments, including surgery, [...] Read more.
Glioma is the most frequent and aggressive type of brain neoplasm, being anaplastic astrocytoma (AA) and glioblastoma multiforme (GBM), its most malignant forms. The survival rate in patients with these neoplasms is 15 months after diagnosis, despite a diversity of treatments, including surgery, radiation, chemotherapy, and immunotherapy. The resistance of GBM to various therapies is due to a highly mutated genome; these genetic changes induce a de-regulation of several signaling pathways and result in higher cell proliferation rates, angiogenesis, invasion, and a marked resistance to apoptosis; this latter trait is a hallmark of highly invasive tumor cells, such as glioma cells. Due to a defective apoptosis in gliomas, induced autophagic death can be an alternative to remove tumor cells. Paradoxically, however, autophagy in cancer can promote either a cell death or survival. Modulating the autophagic pathway as a death mechanism for cancer cells has prompted the use of both inhibitors and autophagy inducers. The autophagic process, either as a cancer suppressing or inducing mechanism in high-grade gliomas is discussed in this review, along with therapeutic approaches to inhibit or induce autophagy in pre-clinical and clinical studies, aiming to increase the efficiency of conventional treatments to remove glioma neoplastic cells. Full article
(This article belongs to the Special Issue Cancer Translational Biomarkers and Targeted Therapies)
Show Figures

Graphical abstract

Review
Pharmacological Treatments for Patients with Treatment-Resistant Depression
Pharmaceuticals 2020, 13(6), 116; https://doi.org/10.3390/ph13060116 - 04 Jun 2020
Cited by 29
Abstract
Over a third of patients with major depressive disorder (MDD) do not have an adequate response to first-line antidepressant treatments, i.e., they have treatment-resistant depression (TRD). These patients tend to have a more severe course of illness and are at an increased risk [...] Read more.
Over a third of patients with major depressive disorder (MDD) do not have an adequate response to first-line antidepressant treatments, i.e., they have treatment-resistant depression (TRD). These patients tend to have a more severe course of illness and are at an increased risk of suicide. Next step treatment options for patients with TRD, include switching to a different antidepressant, combining more than one antidepressant, or augmenting an antidepressant with another (non-antidepressant) medication. It is unclear which of these treatment approaches should be applied to a given patient, and in what order. Due to this ambiguity, comparing antidepressants and augmentation agents on the basis of their efficacy, tolerability, and speed of symptom relief would be beneficial for clinicians. To accomplish this, a systematic search was conducted following PRISMA guidelines. Only randomized controlled trials were included in this qualitative synthesis, resulting in 66 articles. This review identified several effective pharmaco-therapeutic strategies that are currently available for patients with TRD. Ketamine and esketamine appear to be effective for the treatment of TRD. Augmentation with certain second generation antipsychotics, such as quetiapine or aripiprazole is likewise effective, and may be preferred over switching to antidepressant monotherapy. While the combination of olanzapine and fluoxetine was one of the first pharmacotherapy approved for TRD, and its use may be limited by metabolic side-effects. Other effective strategies include augmentation with lithium, liothyronine (T3), lamotrigine, or combination of antidepressants including bupropion, tricyclics, or mirtazapine. There is insufficient research to demonstrate the efficacy of ziprasidone or levothyroxine (T4). A shared decision-making approach is recommended to guide treatment selection to address each patient’s individual needs. Full article
(This article belongs to the Special Issue Antidepressants: Mechanistic Insights and Future Directions)
Show Figures

Figure 1

Review
2019 FDA TIDES (Peptides and Oligonucleotides) Harvest
Pharmaceuticals 2020, 13(3), 40; https://doi.org/10.3390/ph13030040 - 05 Mar 2020
Cited by 28
Abstract
2019 has been an excellent year in terms of peptides and oligonucleotides (TIDES) approved by the FDA. Despite the drop in the number of total drugs approved by the FDA in 2019 in comparison with 2018 (48 vs. 59), the total number of [...] Read more.
2019 has been an excellent year in terms of peptides and oligonucleotides (TIDES) approved by the FDA. Despite the drop in the number of total drugs approved by the FDA in 2019 in comparison with 2018 (48 vs. 59), the total number of TIDES authorized increased (seven vs. three). Year after year, TIDES are increasingly present in therapy, as imaging agents, theragnostic and constituent moieties of other complex drugs, such as antibody drug conjugates. This means a consolidation of these kinds of drugs in the pharmaceutical arena, paving the way in the coming years for the approval of others for diverse medical indications. Here the TIDES approved in 2019 are analyzed in terms of chemical structure, medical target, mode of action, and adverse effects. Full article
(This article belongs to the Special Issue The Story of Successful Drugs and Recent FDA-Approved Molecules)
Show Figures

Figure 1

Review
Ultrasound for Drug Synthesis: A Green Approach
Pharmaceuticals 2020, 13(2), 23; https://doi.org/10.3390/ph13020023 - 31 Jan 2020
Cited by 18
Abstract
This last century, the development of new medicinal molecules represents a real breakthrough in terms of humans and animal life expectancy and quality of life. However, this success is tainted by negative environmental consequences. Indeed, the synthesis of drug candidates requires the use [...] Read more.
This last century, the development of new medicinal molecules represents a real breakthrough in terms of humans and animal life expectancy and quality of life. However, this success is tainted by negative environmental consequences. Indeed, the synthesis of drug candidates requires the use of many chemicals, solvents, and processes that are very hazardous, toxic, energy consuming, expensive, and generates a large amount of waste. Many large pharmaceutical companies have thus moved to using green chemistry practices for drug discovery, development, and manufacturing. One of them is the use of energy-efficient activation techniques, such as ultrasound. This review summarizes the latest most representative works published on the use of ultrasound for sustainable bioactive molecules synthesis. Full article
(This article belongs to the Special Issue New Tools for Medicinal Chemists)
Show Figures

Figure 1

Review
Radiolabelled Peptides for Positron Emission Tomography and Endoradiotherapy in Oncology
Pharmaceuticals 2020, 13(2), 22; https://doi.org/10.3390/ph13020022 - 30 Jan 2020
Cited by 19
Abstract
This review deals with the development of peptide-based radiopharmaceuticals for the use with positron emission tomography and peptide receptor radiotherapy. It discusses the pros and cons of this class of radiopharmaceuticals as well as the different labelling strategies, and summarises approaches to optimise [...] Read more.
This review deals with the development of peptide-based radiopharmaceuticals for the use with positron emission tomography and peptide receptor radiotherapy. It discusses the pros and cons of this class of radiopharmaceuticals as well as the different labelling strategies, and summarises approaches to optimise metabolic stability. Additionally, it presents different target structures and addresses corresponding tracers, which are already used in clinical routine or are being investigated in clinical trials. Full article
Show Figures

Figure 1

Review
Colchicine-Binding Site Inhibitors from Chemistry to Clinic: A Review
Pharmaceuticals 2020, 13(1), 8; https://doi.org/10.3390/ph13010008 - 03 Jan 2020
Cited by 81
Abstract
It is over 50 years since the discovery of microtubules, and they have become one of the most important drug targets for anti-cancer therapies. Microtubules are predominantly composed of the protein tubulin, which contains a number of different binding sites for small-molecule drugs. [...] Read more.
It is over 50 years since the discovery of microtubules, and they have become one of the most important drug targets for anti-cancer therapies. Microtubules are predominantly composed of the protein tubulin, which contains a number of different binding sites for small-molecule drugs. There is continued interest in drug development for compounds targeting the colchicine-binding site of tubulin, termed colchicine-binding site inhibitors (CBSIs). This review highlights CBSIs discovered through diverse sources: from natural compounds, rational design, serendipitously and via high-throughput screening. We provide an update on CBSIs reported in the past three years and discuss the clinical status of CBSIs. It is likely that efforts will continue to develop CBSIs for a diverse set of cancers, and this review provides a timely update on recent developments. Full article
Show Figures

Figure 1

Back to TopTop