Potential Natural Blend Hydrosol TGLON Suppresses the Proliferation of Five Cancer Cell Lines and Also Ameliorates Idiopathic Pulmonary Fibrosis in a Mouse Model
Abstract
:1. Introduction
2. Results
2.1. GC-MS Analysis of TGLON
2.2. Viability of TGLON in MRC-5 Normal Lung Cells
2.3. Viability of TGLON in A-549 Lung Cancer Cells
2.4. Viability of TGLON in HepG2 Liver Cancer Cells
2.5. Viability of TGLON in MCF-7 Breast Cancer Cells
2.6. Viability of TGLON in MKN-45 Stomach Cancer Cells
2.7. Viability of TGLON in MOLT-4 Acute Lymphoblastic Leukemia Cells
2.8. Acute Toxicity Assay of TGLON in Rats
2.9. Investigation of TGLON in Treating IPF in Mice
3. Discussion
4. Materials and Methods
4.1. Preparation of Blend Hydrosol and Chemicals
4.2. Gas Chromatography–Mass Spectrometry (GC-MS)
4.3. In Vitro Cytotoxicity Assay
4.4. In Vivo Acute Oral Toxicity Study
4.5. In Vivo Idiopathic Pulmonary Fibrosis (IPF) Study
4.6. Statistical Analysis
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AC | Acacia confusa |
ANOVA | Analysis of Variance |
ASR | Age-standardized Incidence Rate |
BCRC | Bioresource Collection and Research Center |
CC | Cinnamomum camphora |
CDSD | CD Sprague Dawley |
CFA | Calocedrus formosana |
CFS | Chamaecyparis formosensis |
CJ | Cryptomeria japonica |
CL | Cunninghamia lanceolata |
CM | Cinnamomum micranthum |
CN | Cymbopogon nardus |
COX-2 | Cyclooxygenase-2 |
CZ | Cinnamomum zeylanicum |
DMEM | Dulbecco’s Modified Eagle Medium |
ECM | Extracellular Matrix |
EI | Electron-impact Ionization |
ERS | Eucalyptus robusta |
FBS | Fetal Bovine Serum |
GC-MS | Gas Chromatography–Mass Spectrometry |
H&E | Hematoxylin and Eosin |
IACUC | Institutional Animal Care and Use Committee |
IL | Interleukin |
IPF | Idiopathic Pulmonary Fibrosis |
KI | Kovats indices |
LC | Litsea cubeba |
LD50 | Lethal Dose 50% |
LPS | Lipopolysaccharide |
MA | Melaleuca alternifolia |
MDA | Malondialdehyde |
MEM | Minimum Essential Medium |
MMP | Mitochondrial Membrane Potential |
MTP | Mitochondrial Transmembrane Potential |
NIST | National Institute of Standards and Technology |
NO | Nitric Oxide |
PBS | Phosphate-buffered saline |
PG-E2 | Prostaglandin E2 |
PI3K | Phosphatidylinositol 3′-Kinase |
RPMI-1640 | Roswell Park Memorial Institute 1640 medium |
SD | Standard Deviation |
SE | Standard Error |
SPSS | Statistical Package for the Social Sciences |
TGF-β | Transforming Growth Factor-Beta |
TGLON | The Greatest Love of Nature |
TNF-α | Tumor Necrosis Factor-Alpha |
WFI | Water for injection |
α-SMA | Alpha-smooth Muscle Actin |
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [PubMed]
- Moss, B.J.; Ryter, S.W.; Rosas, I.O. Pathogenic Mechanisms Underlying Idiopathic Pulmonary Fibrosis. Annu. Rev. Pathol. 2022, 17, 515–546. [Google Scholar] [CrossRef] [PubMed]
- Samareh Fekri, M.; Mandegary, A.; Sharififar, F.; Poursalehi, H.R.; Nematollahi, M.H.; Izadi, A.; Mehdipour, M.; Asadi, A.; Samareh Fekri, M. Protective effect of standardized extract of Myrtus communis L. (myrtle) on experimentally bleomycin-induced pulmonary fibrosis: Biochemical and histopathological study. Drug Chem. Toxicol. 2018, 41, 408–414. [Google Scholar] [CrossRef]
- Tavares, L.A.; Rezende, A.A.; Santos, J.L.; Estevam, C.S.; Silva, A.M.O.; Schneider, J.K.; Cunha, J.L.S.; Droppa-Almeida, D.; Correia-Neto, I.J.; Cardoso, J.C.; et al. Cymbopogon winterianus Essential Oil Attenuates Bleomycin-Induced Pulmonary Fibrosis in a Murine Model. Pharmaceutics 2021, 13, 679. [Google Scholar] [CrossRef]
- Bayala, B.; Coulibaly, A.Y.; Djigma, F.W.; Nagalo, B.M.; Baron, S.; Figueredo, G.; Lobaccaro, J.-M.A.; Simpore, J. Chemical composition, antioxidant, anti-inflammatory and antiproliferative activities of the essential oil of Cymbopogon nardus, a plant used in traditional medicine. Biomol. Concepts 2020, 11, 86–96. [Google Scholar] [CrossRef]
- Ho, C.-L.; Jie-Ping, O.; Liu, Y.-C.; Hung, C.-P.; Tsai, M.-C.; Liao, P.-C.; Wang, E.I.C.; Chen, Y.-L.; Su, Y.-C. Compositions and in vitro Anticancer activities of the Leaf and Fruit Oils of Litsea cubeba from Taiwan. Nat. Prod. Commun. 2010, 5, 1934578X1000500425. [Google Scholar] [CrossRef]
- Dalimunthe, A.; Hasibuan, P.A.Z.; Satria, D. Cell cycle arrest activity of Litsea cubeba lour: Heartwood and fruit extracts against T47D breast cancer cells. Asian J. Pharm. Clin. Res. 2017, 10, 404–406. [Google Scholar] [CrossRef]
- Chen, T.-H.; Liau, B.-C.; Wang, S.-Y.; Jong, T.-T. Isolation and cytotoxicity of the lignanoids from Chamaecyparis formosensis. Planta Med. 2008, 74, 1806–1811. [Google Scholar] [CrossRef]
- Yuan, S.-Y.; Lin, C.-C.; Hsu, S.-L.; Cheng, Y.-W.; Wu, J.-H.; Cheng, C.-L.; Yang, C.-R. Leaf Extracts of Calocedrus formosana (Florin) Induce G2/M Cell Cycle Arrest and Apoptosis in Human Bladder Cancer Cells. Evid.-Based Complement. Altern. Med. 2011, 2011, 380923. [Google Scholar] [CrossRef]
- Ho, S.-T.; Lin, C.-C.; Wu, T.-L.; Tung, Y.-T.; Wu, J.-H. Antitumor agent yatein from Calocedrus formosana Florin leaf induces apoptosis in non-small-cell lung cancer cells. J. Wood Sci. 2019, 65, 59. [Google Scholar] [CrossRef]
- Gun He, N.; Kyung Jo, J.; Ye Seul, P.; Hye Won, K.; Ji Hyang, W.; Ju Hwan, K.; Ji Hun, K.; Young Min, K. Anti-cancer effect of Cinnamomum camphora ethanol extract by double induction of apoptotic and autophagic cell death in HCT 116 and HT-29 human colon cancer cell through the mTOR signaling pathway. KSBB J. 2019, 34, 114–119. [Google Scholar] [CrossRef]
- Vuong, Q.V.; Hirun, S.; Chuen, T.L.K.; Goldsmith, C.D.; Munro, B.; Bowyer, M.C.; Chalmers, A.C.; Sakoff, J.A.; Phillips, P.A.; Scarlett, C.J. Physicochemical, antioxidant and anti-cancer activity of a Eucalyptus robusta (Sm.) leaf aqueous extract. Ind. Crops Prod. 2015, 64, 167–174. [Google Scholar] [CrossRef]
- Abd Wahab, W.; Adzmi, A.N. The Investigation Of Cytotoxic Effect Of Cinnamomum Zeylanicum Extracts On Human Breast Cancer Cell Line (Mcf-7). Sci. Herit. J. 2017, 1, 23–28. [Google Scholar] [CrossRef]
- Varalakshmi, B.; Anand, A.V.; Karpagam, T.; Bai, J.S.; Manikandan, R. In vitro antimicrobial and anticancer activity of Cinnamomum zeylanicum Linn bark extracts. Int. J. Pharm. Pharm. Sci. 2014, 6, 12–18. [Google Scholar]
- Su, Y.-C.; Hsu, K.-P.; Wang, E.I.-C.; Ho, C.-L. Composition, anticancer, and antimicrobial activities in vitro of the heartwood essential oil of Cunninghamia lanceolata var. konishii from Taiwan. Nat. Prod. Commun. 2012, 7, 1934578X1200700938. [Google Scholar] [CrossRef]
- Liu, X.; Zu, Y.; Fu, Y.; Yao, L.; Gu, C.; Wang, W.; Efferth, T. Antimicrobial activity and cytotoxicity towards cancer cells of Melaleuca alternifolia (tea tree) oil. Eur. Food Res. Technol. 2009, 229, 247–253. [Google Scholar] [CrossRef]
- Chen, C.H.; Yang, S.W.; Shen, Y.C. New steroid acids from Antrodia cinnamomea, a fungal parasite of Cinnamomum micranthum. J. Nat. Prod. 1995, 58, 1655–1661. [Google Scholar] [CrossRef]
- Cha, J.-D.; Kim, J.-Y. Essential Oil from Cryptomeria japonica Induces Apoptosis in Human Oral Epidermoid Carcinoma Cells via Mitochondrial Stress and Activation of Caspases. Molecules 2012, 17, 3890–3901. [Google Scholar] [CrossRef]
- Ho, S.-T.; Tung, Y.-T.; Kuo, Y.-H.; Lin, C.-C.; Wu, J.-H. Ferruginol inhibits non–small cell lung cancer growth by inducing caspase-associated apoptosis. Integr. Cancer Ther. 2015, 14, 86–97. [Google Scholar] [CrossRef]
- Lam, S.K.; Ng, T.B. A dimeric high-molecular-weight chymotrypsin inhibitor with antitumor and HIV-1 reverse transcriptase inhibitory activities from seeds of Acacia confusa. Phytomedicine 2010, 17, 621–625. [Google Scholar] [CrossRef]
- Nikolić, M.M.; Jovanović, K.K.; Marković, T.L.; Marković, D.L.; Gligorijević, N.N.; Radulović, S.S.; Kostić, M.; Glamočlija, J.M.; Soković, M.D. Antimicrobial synergism and cytotoxic properties of Citrus limon L., Piper nigrum L. and Melaleuca alternifolia (Maiden and Betche) Cheel essential oils. J. Pharm. Pharmacol. 2017, 69, 1606–1614. [Google Scholar] [CrossRef] [PubMed]
- Brochot, A.; Guilbot, A.; Haddioui, L.; Roques, C. Antibacterial, antifungal, and antiviral effects of three essential oil blends. MicrobiologyOpen 2017, 6, e00459. [Google Scholar] [CrossRef] [PubMed]
- Tian, Q.; Piao, X. Essential oil blend could decrease diarrhea prevalence by improving antioxidative capability for weaned pigs. Animals 2019, 9, 847. [Google Scholar] [CrossRef] [PubMed]
- Ben Ammar, R.; Mohamed, M.E.; Alfwuaires, M.; Abdulaziz Alamer, S.; Bani Ismail, M.; Veeraraghavan, V.P.; Sekar, A.K.; Ksouri, R.; Rajendran, P. Anti-Inflammatory Activity of Geraniol Isolated from Lemon Grass on Ox-LDL-Stimulated Endothelial Cells by Upregulation of Heme Oxygenase-1 via PI3K/Akt and Nrf-2 Signaling Pathways. Nutrients 2022, 14, 4817. [Google Scholar] [CrossRef]
- Nogueira, M.N.; Aquino, S.G.; Rossa Junior, C.; Spolidorio, D.M. Terpinen-4-ol and alpha-terpineol (tea tree oil components) inhibit the production of IL-1β, IL-6 and IL-10 on human macrophages. Inflamm. Res. 2014, 63, 769–778. [Google Scholar] [CrossRef]
- Tajima, S.; Hayashi, A.; Suzuki, T. Elastin expression is up-regulated by retinoic acid but not by retinol in chick embryonic skin fibroblasts. J. Dermatol. Sci. 1997, 15, 166–172. [Google Scholar] [CrossRef]
- Lephart, E.D.; Andrus, M.B. Human skin gene expression: Natural (trans) resveratrol versus five resveratrol analogs for dermal applications. Exp. Biol. Med. 2017, 242, 1482–1489. [Google Scholar] [CrossRef]
- El Hachlafi, N.; Elbouzidi, A.; Batbat, A.; Taibi, M.; Jeddi, M.; Addi, M.; Naceiri Mrabti, H.; Fikri-Benbrahim, K. Chemical Composition and Assessment of the Anti-Inflammatory, Antioxidant, Cytotoxic and Skin Enzyme Inhibitory Activities of Citrus sinensis (L.) Osbeck Essential Oil and Its Major Compound Limonene. Pharmaceuticals 2024, 17, 1652. [Google Scholar] [CrossRef]
- Fan, W.; Long, S.; Meiqi, G.; Wu, J. Study on the coupling enrichment process mechanism of volatile oil of Alpinia officinarum rhizoma from oil-bearing water. J. Essent. Oil-Bear. Plants 2024, 27, 1319–1333. [Google Scholar] [CrossRef]
- Wu, C.-S.; Chen, Y.-J.; Chen, J.J.W.; Shieh, J.-J.; Huang, C.-H.; Lin, P.-S.; Chang, G.-C.; Chang, J.-T.; Lin, C.-C. Terpinen-4-ol induces apoptosis in human non-small cell lung cancer in vitro and in vivo. Evid.-Based Complement. Altern. Med. 2012, 2012, 818261. [Google Scholar] [CrossRef]
- Wu, Z.-L.; Du, Y.-H.; Guo, Z.-F.; Lei, K.-J.; Jia, Y.-M.; Xie, M.; Kang, X.; Wei, Q.; He, L.; Wang, Y.; et al. Essential oil and its major compounds from oil camphor inhibit human lung and breast cancer cell growth by cell-cycle arresting. Int. J. Clin. Exp. Med. 2016, 9, 12852–12861. [Google Scholar]
- Hui, L.M.; Zhao, G.D.; Zhao, J.J. δ-Cadinene inhibits the growth of ovarian cancer cells via caspase-dependent apoptosis and cell cycle arrest. Int. J. Clin. Exp. Pathol. 2015, 8, 6046–6056. [Google Scholar] [PubMed]
- Gutiérrez, Y.; Montes, R.; Scull, R.; Sánchez, A.; Cos, P.; Monzote, L.; Setzer, W.N. Chemodiversity Associated with Cytotoxicity and Antimicrobial Activity of Piper aduncum var. ossanum. Chem. Biodivers. 2016, 13, 1715–1719. [Google Scholar] [CrossRef] [PubMed]
- Tittikpina, N.K.; Kirsch, G.; Duval, R.E.; Chaimbault, P.; Jacob, C. Daniellia oliveri (Rolfe) Hutch. and Dalziel: Antimicrobial activities, cytotoxicity evaluation, and phytochemical identification by GC-MS. Antibiotics 2022, 11, 1699. [Google Scholar] [CrossRef]
- Hart, P.H.; Brand, C.; Carson, C.F.; Riley, T.V.; Prager, R.H.; Finlay-Jones, J.J. Terpinen-4-ol, the main component of the essential oil of Melaleuca alternifolia (tea tree oil), suppresses inflammatory mediator production by activated human monocytes. Inflamm. Res. 2000, 49, 619–626. [Google Scholar] [CrossRef]
- Xiao, S.; Yu, H.; Xie, Y.; Guo, Y.; Fan, J.; Yao, W. The anti-inflammatory potential of Cinnamomum camphora (L.) J.Presl essential oil in vitro and in vivo. J. Ethnopharmacol. 2021, 267, 113516. [Google Scholar] [CrossRef]
- Vidal, M.; Roldán, T. Penetration capacity and local anti-inflammatory effect of a methyl salicylate gel with turpentine essence, camphor, and menthol for the symptomatic local treatment of muscular and joint pains. Farm. Comunitarios 2024, 16, 5–11. [Google Scholar] [CrossRef]
- Menichini, F.; Conforti, F.; Rigano, D.; Formisano, C.; Piozzi, F.; Senatore, F. Phytochemical composition, anti-inflammatory and antitumour activities of four Teucrium essential oils from Greece. Int. J. Cancer 2009, 115, 679–686. [Google Scholar] [CrossRef]
- Pan, Q.; Shi, Y.; YE, X.; HU, S.; Yan, J.; Zhou, Y.; Wan, D. Effect of Terpinen-4-ol on the proliferation of lung adenocarcinoma A-549 cells in vitro and in vivo. Ju Jie Shou Shu Xue Za Zhi 2014, 6, 481–485. [Google Scholar]
- Coté, H.; Boucher, M.-A.; Pichette, A.; Legault, J. Anti-Inflammatory, Antioxidant, Antibiotic, and Cytotoxic Activities of Tanacetum vulgare L. Essential Oil and Its Constituents. Medicines 2017, 4, 34. [Google Scholar] [CrossRef]
- Zhang, S.-Y.; Li, X.-B.; Hou, S.-G.; Sun, Y.; Shi, Y.-R.; Lin, S.-S. Cedrol induces autophagy and apoptotic cell death in A549 non-small cell lung carcinoma cells through the P13K/Akt signaling pathway, the loss of mitochondrial transmembrane potential and the generation of ROS. Int. J. Mol. Med. 2016, 38, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Döll-Boscardin, P.M.; Sartoratto, A.; Sales Maia, B.H.L.d.N.; Padilha de Paula, J.; Nakashima, T.; Farago, P.V.; Kanunfre, C.C. In Vitro Cytotoxic Potential of Essential Oils of Eucalyptus benthamii and Its Related Terpenes on Tumor Cell Lines. Evid.-Based Complement. Altern. Med. 2012, 2012, 342652. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, H.M.; Ezzat, S.M. Effect of the Method of Preparation on the Composition and Cytotoxic Activity of the Essential Oil of Pituranthos tortuosus. Z Naturforsch C 2011, 66, 143–148. [Google Scholar] [CrossRef]
- Candrasari, D.S.; Mubarika, S.; Wahyuningsih, M.S.H. The effect of a-terpineol on cell cycle, apoptosis and Bcl-2 family protein expression of breast cancer cell line MCF-7. Berk. Ilmu Kedokt. 2015, 47, 59–67. [Google Scholar] [CrossRef]
- Singh, H.; Kumar, R.; Mazumder, A.; Yadav, R.K.; Chauhan, B.; Abdulah, M. Camphor and menthol as anticancer agents: Synthesis, structure-activity relationship and interaction with cancer cell lines. Anticancer Agents Med. Chem. 2023, 23, 614–623. [Google Scholar] [CrossRef]
- Assmann, C.E.; Cadoná, F.C.; Bonadiman, B.d.S.R.; Dornelles, E.B.; Trevisan, G.; Cruz, I.B.M.d. Tea tree oil presents in vitro antitumor activity on breast cancer cells without cytotoxic effects on fibroblasts and on peripheral blood mononuclear cells. Biomed. Pharmacother. 2018, 103, 1253–1261. [Google Scholar] [CrossRef]
- Ghavam, M. In vitro biological potential of the essential oil of some aromatic species used in Iranian traditional medicine. Inflammopharmacology 2022, 30, 855–874. [Google Scholar] [CrossRef]
- Khaw-on, P.; Banjerdpongchai, R. Induction of intrinsic and extrinsic apoptosis pathways in the human leukemic MOLT-4 cell line by terpinen-4-ol. Asian Pac. J. Cancer Prev. 2012, 13, 3073–3076. [Google Scholar] [CrossRef]
- Abe, M.; Asada, N.; Kimura, M.; Fukui, C.; Yamada, D.; Wang, Z.; Miyake, M.; Takarada, T.; Ono, M.; Aoe, M.; et al. Antitumor activity of α-pinene in T-cell tumors. Cancer Sci. 2024, 115, 1317–1332. [Google Scholar] [CrossRef]
- Unknown. Fragrance raw materials monographs. Food Chem. Toxicol. 1982, 20, 637–852. [Google Scholar] [CrossRef]
- Unknown. Camphor USP. Food Cosmet. Toxicol. 1978, 16, 665–671. [Google Scholar] [CrossRef]
- Bonella, F.; Spagnolo, P.; Ryerson, C. Current and Future Treatment Landscape for Idiopathic Pulmonary Fibrosis. Drugs 2023, 83, 1581–1593. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.Y.; Budinger, G.R.S.; Dematte, J.E. Advances in the management of idiopathic pulmonary fibrosis and progressive pulmonary fibrosis. Br. Med. J. 2022, 377, e066354. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy; Allured Publishing Corporation: Carol Stream, IL, USA, 2017; p. 804. [Google Scholar]
- Kovats, E. Gas chromatographic characterization of organic substances in the retention index system. Adv. Chromatogr. 1965, 1, 229–247. [Google Scholar]
- Alley, M.C.; Scudiero, D.A.; Monks, A.; Hursey, M.L.; Czerwinski, M.J.; Fine, D.L.; Abbott, B.J.; Mayo, J.G.; Shoemaker, R.H.; Boyd, M.R. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 1988, 48, 589–601. [Google Scholar]
- Chatatikun, M.; Yamauchi, T.; Yamasaki, K.; Aiba, S.; Chiabchalard, A. Anti melanogenic effect of Croton roxburghii and Croton sublyratus leaves in α-MSH stimulated B16F10 cells. J. Tradit. Complement. Med. 2019, 9, 66–72. [Google Scholar] [CrossRef]
- Limjunyawong, N.; Mitzner, W.; Horton, M.R. A mouse model of chronic idiopathic pulmonary fibrosis. Physiol. Rep. 2014, 2, e00249. [Google Scholar] [CrossRef]
- Gilhodes, J.-C.; Julé, Y.; Kreuz, S.; Stierstorfer, B.; Stiller, D.; Wollin, L. Quantification of pulmonary fibrosis in a bleomycin mouse model using automated histological image analysis. PLoS ONE 2017, 12, e0170561. [Google Scholar] [CrossRef]
No. | R. Time | Constituent | Analog Type | Mol. Form | % Area |
---|---|---|---|---|---|
1 | 9.606 | α-Pinene | monoterpene | C10H16 | 2.46 |
2 | 12.221 | α-Terpinene | monoterpene | C10H16 | 1.54 |
3 | 12.455 | para-Cymene | monoterpene | C10H14 | 1.42 |
4 | 12.603 | D-Limonene | monoterpene | C10H16 | 1.93 |
5 | 12.669 | 1,8-Cineole | aother oxide | C10H18O | 6.08 |
6 | 13.552 | γ-Terpinene | monoterpene | C10H16 | 3.17 |
7 | 16.174 | Camphor | ketone | C10H16O | 8.73 |
8 | 16.412 | β-Citronellal | aldehyde | C10H18O | 1.11 |
9 | 16.83 | Borneol | monoterpenol | C10H18O | 1.12 |
10 | 17.177 | Terpinen-4-ol | monoterpenol | C10H18O | 10.72 |
11 | 17.555 | α-Terpineol | monoterpenol | C10H18O | 6.93 |
12 | 17.734 | (−)-Myrtenol | monoterpenol | C10H16O | 3.94 |
13 | 19.559 | cis-Myrtanol | monoterpenol | C10H18O | 4.22 |
14 | 20.361 | Safrole | aother oxide | C10H10O2 | 6.87 |
15 | 23.258 | β-Elemene | sesquiterpene | C15H24 | 0.94 |
16 | 23.86 | α-Cedrene | sesquiterpene | C15H24 | 2.47 |
17 | 26.013 | γ-Muurolene | sesquiterpene | C15H24 | 2.15 |
18 | 26.373 | α-Muurolene | sesquiterpene | C15H24 | 2.9 |
19 | 26.569 | δ-Cadinene | sesquiterpene | C15H24 | 7.58 |
20 | 27.173 | α-Elemol | sesquiterpenol | C15H26O | 1.45 |
21 | 28.519 | α-Cedrol | sesquiterpenol | C15H26O | 2.16 |
22 | 29.365 | tau-Cadinol | sesquiterpenol | C15H26O | 2.82 |
23 | 29.663 | tau-Muurolol | sesquiterpenol | C15H26O | 2.46 |
Sesquiterpenes | 16.04 | ||||
Monoterpenes | 10.52 | ||||
Monoterpenols | 26.93 | ||||
Sesquiterpenols | 8.89 | ||||
Ketones | 8.73 | ||||
Aldehydes | 1.11 | ||||
Other oxides | 12.95 |
Gender | Male | Female | ||
---|---|---|---|---|
Group | 1 a | 2 b | 1 a | 2 b |
Mortality | 0/5 | 0/5 | 0/5 | 0/5 |
Treatment-related Clinical Signs | 0/5 | 0/5 | 0/5 | 0/5 |
Treatment-related Gross Necropsy Lesion | 0/5 | 0/5 | 0/5 | 0/5 |
Body Weights | ||||
---|---|---|---|---|
Gender | Male | Female | ||
Group | 1 a | 2 b | 1 a | 2 b |
Day 1 | 287.5 ± 13.8 | 286.9 ± 14.1 | 208.6 ± 10.0 | 205.6 ± 10.0 |
Day 8 | 317.6 ± 19.5 | 320.2 ± 21.7 | 225.6 ± 10.0 | 227.9 ± 16.3 |
Day 15 | 341.3 ± 24.3 | 336.5 ± 26.6 | 239.6 ± 8.1 | 238.6 ± 17.8 |
Final Gain | 53.8 ± 16.0 | 49.6 ± 18.6 | 31.0 ± 8.6 | 33.0 ± 11.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.-H.; Chang, M.-L.; Lin, C.-C.; Wang, C.-P.; Tsai, F.-J.; Lin, C.-C. Potential Natural Blend Hydrosol TGLON Suppresses the Proliferation of Five Cancer Cell Lines and Also Ameliorates Idiopathic Pulmonary Fibrosis in a Mouse Model. Pharmaceuticals 2025, 18, 872. https://doi.org/10.3390/ph18060872
Huang W-H, Chang M-L, Lin C-C, Wang C-P, Tsai F-J, Lin C-C. Potential Natural Blend Hydrosol TGLON Suppresses the Proliferation of Five Cancer Cell Lines and Also Ameliorates Idiopathic Pulmonary Fibrosis in a Mouse Model. Pharmaceuticals. 2025; 18(6):872. https://doi.org/10.3390/ph18060872
Chicago/Turabian StyleHuang, Wei-Hsiang, Mei-Lin Chang, Ching-Che Lin, Chih-Peng Wang, Feng-Jie Tsai, and Chih-Chien Lin. 2025. "Potential Natural Blend Hydrosol TGLON Suppresses the Proliferation of Five Cancer Cell Lines and Also Ameliorates Idiopathic Pulmonary Fibrosis in a Mouse Model" Pharmaceuticals 18, no. 6: 872. https://doi.org/10.3390/ph18060872
APA StyleHuang, W.-H., Chang, M.-L., Lin, C.-C., Wang, C.-P., Tsai, F.-J., & Lin, C.-C. (2025). Potential Natural Blend Hydrosol TGLON Suppresses the Proliferation of Five Cancer Cell Lines and Also Ameliorates Idiopathic Pulmonary Fibrosis in a Mouse Model. Pharmaceuticals, 18(6), 872. https://doi.org/10.3390/ph18060872