Recent Advances in the Discovery and Development of Drugs for Civilization Diseases

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Medicinal Chemistry".

Deadline for manuscript submissions: 25 January 2025 | Viewed by 18662

Special Issue Editors


E-Mail
Guest Editor
Department of Toxicology and Bromatology, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, A. Jurasza 2 Street, 85089 Bydgoszcz, Poland
Interests: molecular modeling; oxidative stress; geriatric patients; drug design; QSAR

E-Mail Website
Guest Editor
Department of Medical Biology and Biochemistry, Collegium Medicum, Nicolaus Copernicus University, 85-092 Bydgoszcz, Poland
Interests: biochemistry; metabolic diseases; melatonin; adipokines; inflammation; antioxidants; oxidative stress; cancer; parasites; skin ion transport
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Organic Chemistry, Faculty of Pharmacy, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, A. Jurasza 2 Street, 85089 Bydgoszcz, Poland
Interests: metabolic diseases; organic synthesis; antitumor activity; civilization diseases; bioactive compounds

Special Issue Information

Dear Colleagues,

In the 21st century, the century that makes all dreams come true, medicine will allow us to forget about pain, old age, and diseases. Nothing could be more wrong. Civilization diseases, otherwise known as lifestyle diseases, social diseases, or diseases of the 21st century include non-communicable diseases that spread around the world due to the development of civilization. This phenomenon is accompanied by industrialization, economic development, and, unfortunately, also environmental pollution. We live faster and faster and under more and more stress, we eat incorrectly because we eat on the run, we do not have time to prepare wholesome meals, and we do not have proper eating habits. We do not have enough physical exercise and we smoke cigarettes and abuse alcohol. It turns out that lifestyle diseases are responsible for over 80% of all deaths worldwide. They are responsible for not only shortening the length of life but also the deterioration of its quality. That is why it is so important to counteract them. In order to be able to fight civilization diseases more effectively, proper prevention is needed, with new treatments and drugs. In this Special Issue, we invite potential authors to submit manuscripts in the form of research articles, reviews, or communications that contribute to every aspect of medicinal chemistry, the discovery of new drugs for broadly understood civilization diseases, their synthesis, mechanisms of action, biological activity, and advances in drug dosage forms. This Special Issue will welcome original, high-quality scientific articles, reviews, and communications in the field of computational methods for drug design, i.e., in silico research, as well as synthetic and biochemical approaches in this topic.

Dr. Marcin Gackowski
Dr. Karolina Szewczyk-Golec
Dr. Renata Studzińska
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • anticancer drugs
  • anticancer treatment
  • anticoagulants
  • atherosclerosis
  • cardiovascular disease
  • civilization diseases
  • diabetes mellitus
  • drug development
  • in silico research
  • medication form/drug dosage form
  • molecular descriptors
  • molecular docking
  • molecular dynamics
  • molecular modeling
  • neoplastic disease
  • obesity
  • QSAR
  • radiopharmaceuticals
  • synthesis of bioactive compounds
  • type 2 diabetes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

21 pages, 5705 KiB  
Article
Pyroptosis in Endothelial Cells and Extracellular Vesicle Release in Atherosclerosis via NF-κB-Caspase-4/5-GSDM-D Pathway
by Salman Shamas, Razia Rashid Rahil, Laveena Kaushal, Vinod Kumar Sharma, Nissar Ahmad Wani, Shabir H. Qureshi, Sheikh F. Ahmad, Sabry M. Attia, Mohammad Afzal Zargar, Abid Hamid and Owais Mohmad Bhat
Pharmaceuticals 2024, 17(12), 1568; https://doi.org/10.3390/ph17121568 - 22 Nov 2024
Viewed by 490
Abstract
Background: Pyroptosis, an inflammatory cell death, is involved in the progression of atherosclerosis. Pyroptosis in endothelial cells (ECs) and its underlying mechanisms in atherosclerosis are poorly understood. Here, we investigated the role of a caspase-4/5-NF-κB pathway in pyroptosis in palmitic acid (PA)-stimulated [...] Read more.
Background: Pyroptosis, an inflammatory cell death, is involved in the progression of atherosclerosis. Pyroptosis in endothelial cells (ECs) and its underlying mechanisms in atherosclerosis are poorly understood. Here, we investigated the role of a caspase-4/5-NF-κB pathway in pyroptosis in palmitic acid (PA)-stimulated ECs and EVs as players in pyroptosis. Methods: Human umbilical vein endothelial cells (HUVECs) were cultured in an endothelial cell medium, treated with Ox-LDL, PA, caspase-4/5 inhibitor, NF-κB inhibitor, and sEV release inhibitor for 24 h, respectively. The cytotoxicity of PA was determined using an MTT assay, cell migration using a scratch-wound-healing assay, cell morphology using bright field microscopy, and lipid deposition using oil red O staining. The mRNA and protein expression of GSDM-D, CASP4, CASP5, NF-κB, NLRP3, IL-1β, and IL-18 were determined with RT-PCR and Western blot. Immunofluorescence was used to determine NLRP3 and ICAM-1 expressions. Extracellular vesicles (EVs) were isolated using an exosome isolation kit and were characterized by Western blot and scanning electron microscopy. Results: PA stimulation significantly changed the morphology of the HUVECs characterized by cell swelling, plasma membrane rupture, and increased LDH release, which are features of pyroptosis. PA significantly increased lipid accumulation and reduced cell migration. PA also triggered inflammation and endothelial dysfunction, as evidenced by NLRP3 activation, upregulation of ICAM-1 (endothelial activation marker), and pyroptotic markers (NLRP3, GSDM-D, IL-1β, IL-18). Inhibition of caspase-4/5 (Ac-FLTD-CMK) and NF-κB (trifluoroacetate salt (TFA)) resulted in a significant reduction in LDH release and expression of caspase-4/5, NF-κB, and gasdermin D (GSDM-D) in PA-treated HUVECs. Furthermore, GW4869, an exosome release inhibitor, markedly reduced LDH release in PA-stimulated HUVECs. EVs derived from PA-treated HUVECs exacerbated pyroptosis, as indicated by significantly increased LDH release and augmented expression of GSDM-D, NF-κB. Conclusions: The present study revealed that inflammatory, non-canonical caspase-4/5-NF-κB signaling may be one of the crucial mechanistic pathways associated with pyroptosis in ECs, and pyroptotic EVs facilitated pyroptosis in normal ECs during atherosclerosis. Full article
Show Figures

Graphical abstract

42 pages, 16821 KiB  
Article
Butterfly Effect in Cytarabine: Combined NMR-NQR Experiment, Solid-State Computational Modeling, Quantitative Structure-Property Relationships and Molecular Docking Study
by Jolanta Natalia Latosińska, Magdalena Latosińska, Janez Seliger, Veselko Žagar and Tomaž Apih
Pharmaceuticals 2024, 17(4), 445; https://doi.org/10.3390/ph17040445 - 29 Mar 2024
Cited by 2 | Viewed by 4634
Abstract
Cytarabine (Ara-C) is a synthetic isomer of cytidine that differs from cytidine and deoxycytidine only in the sugar. The use of arabinose instead of deoxyribose hinders the formation of phosphodiester linkages between pentoses, preventing the DNA chain from elongation and interrupting the DNA [...] Read more.
Cytarabine (Ara-C) is a synthetic isomer of cytidine that differs from cytidine and deoxycytidine only in the sugar. The use of arabinose instead of deoxyribose hinders the formation of phosphodiester linkages between pentoses, preventing the DNA chain from elongation and interrupting the DNA synthesis. The minor structural alteration (the inversion of hydroxyl at the 2′ positions of the sugar) leads to change of the biological activity from anti-depressant and DNA/RNA block builder to powerful anti-cancer. Our study aimed to determine the molecular nature of this phenomenon. Three 1H-14N NMR-NQR experimental techniques, followed by solid-state computational modelling (Quantum Theory of Atoms in Molecules, Reduced Density Gradient and 3D Hirshfeld surfaces), Quantitative Structure–Property Relationships, Spackman’s Hirshfeld surfaces and Molecular Docking were used. Multifaceted analysis—combining experiments, computational modeling and molecular docking—provides deep insight into three-dimensional packing at the atomic and molecular levels, but is challenging. A spectrum with nine lines indicating the existence of three chemically inequivalent nitrogen sites in the Ara-C molecule was recorded, and the lines were assigned to them. The influence of the structural alteration on the NQR parameters was modeled in the solid (GGA/RPBE). For the comprehensive description of the nature of these interactions several factors were considered, including relative reactivity and the involvement of heavy atoms in various non-covalent interactions. The binding modes in the solid state and complex with dCK were investigated using the novel approaches: radial plots, heatmaps and root-mean-square deviation of the binding mode. We identified the intramolecular OH···O hydrogen bond as the key factor responsible for forcing the glycone conformation and strengthening NH···O bonds with Gln97, Asp133 and Ara128, and stacking with Phe137. The titular butterfly effect is associated with both the inversion and the presence of this intramolecular hydrogen bond. Our study elucidates the differences in the binding modes of Ara-C and cytidine, which should guide the design of more potent anti-cancer and anti-viral analogues. Full article
Show Figures

Graphical abstract

17 pages, 7284 KiB  
Article
Novel Thiourea and Oxime Ether Isosteviol-Based Anticoagulants: MD Simulation and ADMET Prediction
by Marcin Gackowski, Mateusz Jędrzejewski, Sri Satya Medicharla, Rajesh Kondabala, Burhanuddin Madriwala, Katarzyna Mądra-Gackowska and Renata Studzińska
Pharmaceuticals 2024, 17(2), 163; https://doi.org/10.3390/ph17020163 - 28 Jan 2024
Viewed by 1661
Abstract
Activated blood coagulation factor X (FXa) plays a critical initiation step of the blood-coagulation pathway and is considered a desirable target for anticoagulant drug development. It is reversibly inhibited by nonvitamin K antagonist oral anticoagulants (NOACs) such as apixaban, betrixaban, edoxaban, and rivaroxaban. [...] Read more.
Activated blood coagulation factor X (FXa) plays a critical initiation step of the blood-coagulation pathway and is considered a desirable target for anticoagulant drug development. It is reversibly inhibited by nonvitamin K antagonist oral anticoagulants (NOACs) such as apixaban, betrixaban, edoxaban, and rivaroxaban. Thrombosis is extremely common and is one of the leading causes of death in developed countries. In previous studies, novel thiourea and oxime ether isosteviol derivatives as FXa inhibitors were designed through a combination of QSAR studies and molecular docking. In the present contribution, molecular dynamics (MD) simulations were performed for 100 ns to assess binding structures previously predicted by docking and furnish additional information. Moreover, three thiourea- and six oxime ether-designed isosteviol analogs were then examined for their drug-like and ADMET properties. MD simulations demonstrated that four out of the nine investigated isosteviol derivatives, i.e., one thiourea and three oxime ether ISV analogs, form stable complexes with FXa. These derivatives interact with FXa in a manner similar to Food and Drug Administration (FDA)-approved drugs like edoxaban and betrixaban, indicating their potential to inhibit factor Xa activity. One of these derivatives, E24, displays favorable pharmacokinetic properties, positioning it as the most promising drug candidate. This, along with the other three derivatives, can undergo further chemical synthesis and bioassessment. Full article
Show Figures

Figure 1

17 pages, 4377 KiB  
Article
The Tandem of Liquid Chromatography and Network Pharmacology for the Chemical Profiling of Pule’an Tablets and the Prediction of Mechanism of Action in Treating Prostatitis
by Hui Zhuge, Zhiwei Ge, Jiaojiao Wang, Jianbiao Yao, Jiayu He, Yi Wang, Yingchao Wang and Yu Tang
Pharmaceuticals 2024, 17(1), 56; https://doi.org/10.3390/ph17010056 - 28 Dec 2023
Cited by 1 | Viewed by 1999
Abstract
Prostatitis, a prevalent urinary tract disorder in males, has a complex etiology that leads to severe clinical discomfort. Pule’an Tablets, a classic single-component formulation primarily based on rapeseed pollen, have been clinically proven to have a beneficial therapeutic effect on both prostatitis and [...] Read more.
Prostatitis, a prevalent urinary tract disorder in males, has a complex etiology that leads to severe clinical discomfort. Pule’an Tablets, a classic single-component formulation primarily based on rapeseed pollen, have been clinically proven to have a beneficial therapeutic effect on both prostatitis and benign prostatic hyperplasia. However, there is currently a lack of research on the chemical composition and mechanisms of action of Pule’an Tablets in treating prostatitis. In this study, using liquid chromatography–mass spectrometry (LC-MS), a total of 53 compounds in Pule’an Tablets were identified, including flavonoids, phenylpropionamides, lipids, glucosinolates, and nucleic acids. Subsequently, through a network pharmacology analysis, potential target genes and their mechanisms of action were predicted accordingly. The results suggested that genes such as LPAR5, LPAR6, LPAR4, LPAR3, LPAR2, LPAR1, F2, ENPP2, MMP9, and TNF, along with pathways like prostate cancer, endocrine resistance, bladder cancer, and the IL-17 signaling pathway, may represent potential pathways involved in the therapeutic effects of Pule’an Tablets. This study represents the first systematic investigation into the chemical composition of Pule’an Tablets, shedding light on the potential mechanisms underlying their efficacy in treating prostatitis. These findings could serve as a valuable reference for future pharmacological research on Pule’an Tablets. Full article
Show Figures

Graphical abstract

14 pages, 4167 KiB  
Article
Compensative Resistance to Erastin-Induced Ferroptosis in GPX4 Knock-Out Mutants in HCT116 Cell Lines
by Malgorzata Adamiec-Organisciok, Magdalena Wegrzyn, Lukasz Cienciala, Damian Sojka, Joanna Nackiewicz and Magdalena Skonieczna
Pharmaceuticals 2023, 16(12), 1710; https://doi.org/10.3390/ph16121710 - 10 Dec 2023
Cited by 1 | Viewed by 2601
Abstract
Ferroptosis results from the accumulation of oxidized and damaged lipids which then leads to programmed cell death. This programmed process is iron-dependent, and as a fundamental biological process, plays a crucial role in tissue homeostasis. The ferroptosis molecular pathway depends on self-regulatory genes: [...] Read more.
Ferroptosis results from the accumulation of oxidized and damaged lipids which then leads to programmed cell death. This programmed process is iron-dependent, and as a fundamental biological process, plays a crucial role in tissue homeostasis. The ferroptosis molecular pathway depends on self-regulatory genes: GPX4; TFRC; ACSL4; FSP1; SLC7A11, and PROM2. Some of them were considered here as ferro-sensitive or ferro-resistance markers. We examined the impact of GPX4 gene knock-out, using the CRISPR/Cas-9 technique, on ferroptosis induction in the HCT116 colorectal cancer cell line. The results confirmed that cells lacking the GPX4 gene (GPX4 KO) should be more susceptible to ferroptosis after erastin treatment. However, the decrease in cell viability was not as significant as we initially assumed. Based on the lipid peroxidation markers profile and RT-qPCR gene expression analysis, we revealed the activation of an alternative antioxidant system supporting GPX4 KO cells, mostly for cellular ferroptotic death avoidance. Increased expression of FSP1 and PRDX1 genes in knock-out mutants was associated with their function—recognized here as ferroptosis suppressors. For such reasons, studies on the role of GPX4 and other crucial genes from the ferroptotic pathway should be explored. Despite promising prospects, the utilization of ferroptosis mechanisms in cancer therapy remains at the stage of experimental and in vitro preclinical studies. Full article
Show Figures

Graphical abstract

24 pages, 8851 KiB  
Article
Searching for Natural Aurora a Kinase Inhibitors from Peppers Using Molecular Docking and Molecular Dynamics
by Paweł Siudem, Łukasz Szeleszczuk and Katarzyna Paradowska
Pharmaceuticals 2023, 16(11), 1539; https://doi.org/10.3390/ph16111539 - 31 Oct 2023
Cited by 3 | Viewed by 1456
Abstract
Natural products are the precursors of many medicinal substances. Peppers (Piper, Capsicum, Pimienta) are a rich source of compounds with potential multidirectional biological activity. One of the studied directions is antitumor activity. Little research has been carried out so far [...] Read more.
Natural products are the precursors of many medicinal substances. Peppers (Piper, Capsicum, Pimienta) are a rich source of compounds with potential multidirectional biological activity. One of the studied directions is antitumor activity. Little research has been carried out so far on the ability of the compounds contained in peppers to inhibit the activity of Aurora A kinase, the overexpression of which is characteristic of cancer development. In this study, molecular docking methods, as well as molecular dynamics, were used, looking for compounds that could inhibit the activity of Aurora A kinase and trying to determine whether there is a relationship between the stimulation of the TRPV1 receptor and the inhibition of Aurora A kinase. We compared our results with anticancer activity studied earlier on MCF-7 cell lines (breast cancer cells). Our research indicates that the compounds contained in peppers can inhibit Aurora A. Further in vitro research is planned to confirm the obtained results. Full article
Show Figures

Figure 1

Review

Jump to: Research

25 pages, 3634 KiB  
Review
Photodynamic Therapy in the Treatment of Cancer—The Selection of Synthetic Photosensitizers
by David Aebisher, Iga Serafin, Katarzyna Batóg-Szczęch, Klaudia Dynarowicz, Ewa Chodurek, Aleksandra Kawczyk-Krupka and Dorota Bartusik-Aebisher
Pharmaceuticals 2024, 17(7), 932; https://doi.org/10.3390/ph17070932 - 11 Jul 2024
Cited by 1 | Viewed by 2387
Abstract
Photodynamic therapy (PDT) is a promising cancer treatment method that uses photosensitizing (PS) compounds to selectively destroy tumor cells using laser light. This review discusses the main advantages of PDT, such as its low invasiveness, minimal systemic toxicity and low risk of complications. [...] Read more.
Photodynamic therapy (PDT) is a promising cancer treatment method that uses photosensitizing (PS) compounds to selectively destroy tumor cells using laser light. This review discusses the main advantages of PDT, such as its low invasiveness, minimal systemic toxicity and low risk of complications. Special attention is paid to photosensitizers obtained by chemical synthesis. Three generations of photosensitizers are presented, starting with the first, based on porphyrins, through the second generation, including modified porphyrins, chlorins, 5-aminolevulinic acid (ALA) and its derivative hexyl aminolevulinate (HAL), to the third generation, which is based on the use of nanotechnology to increase the selectivity of therapy. In addition, current research trends are highlighted, including the search for new photosensitizers that can overcome the limitations of existing therapies, such as heavy-atom-free nonporphyrinoid photosensitizers, antibody–drug conjugates (ADCs) or photosensitizers with a near-infrared (NIR) absorption peak. Finally, the prospects for the development of PDTs are presented, taking into account advances in nanotechnology and biomedical engineering. The references include both older and newer works. In many cases, when writing about a given group of first- or second-generation photosensitizers, older publications are used because the properties of the compounds described therein have not changed over the years. Moreover, older articles provide information that serves as an introduction to a given group of drugs. Full article
Show Figures

Figure 1

14 pages, 2105 KiB  
Review
Network Medicine: A Potential Approach for Virtual Drug Screening
by Mingxuan Ma, Mei Huang, Yinting He, Jiansong Fang, Jiachao Li, Xiaohan Li, Mengchen Liu, Mei Zhou, Guozhen Cui and Qing Fan
Pharmaceuticals 2024, 17(7), 899; https://doi.org/10.3390/ph17070899 - 6 Jul 2024
Cited by 1 | Viewed by 1638
Abstract
Traditional drug screening methods typically focus on a single protein target and exhibit limited efficiency due to the multifactorial nature of most diseases, which result from disturbances within complex networks of protein–protein interactions rather than single gene abnormalities. Addressing this limitation requires a [...] Read more.
Traditional drug screening methods typically focus on a single protein target and exhibit limited efficiency due to the multifactorial nature of most diseases, which result from disturbances within complex networks of protein–protein interactions rather than single gene abnormalities. Addressing this limitation requires a comprehensive drug screening strategy. Network medicine is rooted in systems biology and provides a comprehensive framework for understanding disease mechanisms, prevention, and therapeutic innovations. This approach not only explores the associations between various diseases but also quantifies the relationships between disease genes and drug targets within interactome networks, thus facilitating the prediction of drug–disease relationships and enabling the screening of therapeutic drugs for specific complex diseases. An increasing body of research supports the efficiency and utility of network-based strategies in drug screening. This review highlights the transformative potential of network medicine in virtual therapeutic screening for complex diseases, offering novel insights and a robust foundation for future drug discovery endeavors. Full article
Show Figures

Figure 1

Back to TopTop