Effects of Encapsulation and In Vitro Digestion on Anthocyanin Composition and Antioxidant Activity of Raspberry Juice Powder
Abstract
1. Introduction
2. Materials and Methods
2.1. Raspberry Anthocyanin Extraction and Alginate Beads Preparation
2.2. Total Anthocyanin Content (TAC) and Encapsulation Efficiency (EE%)
2.3. Scanning Electron Microscopy (SEM)
2.4. Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction
2.5. In Vitro Digestion of Microbeads
2.6. Quantification of Cyanidin Compounds
2.7. Antioxidant Activities (FRAP & ABTS)
2.8. Statistical Analysis
3. Results
3.1. Encapsulation Efficiency, Retention of Anthocyanins in Microbeads
3.2. Scanning Electron Microscopy (SEM)
3.3. FTIR Spectra
3.4. X-Ray Diffraction
3.5. In Vitro Digestion, Total Anthocyanins and Cyanidin Compounds
3.6. Antioxidant Activity of Raspberry-Rich Microbeads
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koop, B.L.; da Silva, M.S.; da Silva, F.D.; Lima, K.T.D.; Soares, L.S.; de Andrade, C.J.; Valencia, G.A.; Monteiro, A.R. Flavonoids, anthocyanins, betalains, curcumin, and carotenoids: Sources, classification and enhanced stabilization by encapsulation and adsorption. Food Res. Int. 2022, 153, 110929. [Google Scholar] [CrossRef] [PubMed]
- Enaru, B.; Dretcanu, G.; Pop, T.D.; Stanila, A.; Diaconeasa, Z. Anthocyanins: Factors affecting their stability and degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef] [PubMed]
- Câmara, J.S.; Locatelli, M.; Pereira, J.A.; Oliveira, H.; Arlorio, M.; Fernandes, I.; Perestrelo, R.; Freitas, V.; Bordiga, M. Behind the scenes of anthocyanins—From the health benefits to potential applications in food, pharmaceutical and cosmetic fields. Nutrients 2022, 14, 5133. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Lin, Q.; Zhao, H.; Li, X.; Samg, S.; McClements, D.J.; Long, J.; Jin, Z.; Wang, J.; Qiu, C. Bioaccessibility and bioavailability of phytochemicals: Influencing factors, improvements, and evaluations. Food Hydrocoll. 2023, 135, 108165. [Google Scholar] [CrossRef]
- Calderón-Oliver, M.; Ponce-Alquicira, E. The role of microencapsulation in food application. Molecules 2022, 27, 1499. [Google Scholar] [CrossRef] [PubMed]
- Niamah, A.K.; Al-sahlany, S.T.G.; Ibrahim, S.A.; Verma, D.K.; Thakur, M.; Singh, S.; Patel, A.R.; Aguilar, C.N.; Utama, G.L. Electro-hydrodynamic processing for encapsulation of probiotics: A review on recent trends, technological development, challenges and future prospect. Food Biosci. 2021, 44, 101458. [Google Scholar] [CrossRef]
- Jang, Y.; Koh, E. Effect of encapsulation on stability of anthocyanins and chlorogenic acid isomers in aronia during in vitro digestion and their transformation in a model system. Food Chem. 2024, 434, 137443. [Google Scholar] [CrossRef] [PubMed]
- Seke, F.; Adiamo, O.Q.; Sultanbawa, Y.; Sivakumar, D. In vitro antioxidant activity, bioaccessibility, and thermal stability of encapsulated strawberry fruit (Fragaria x ananassa) polyphenols. Foods 2023, 12, 4045. [Google Scholar] [CrossRef] [PubMed]
- Rosales-murillo, S.S.; Sánchez-bodón, J.; Hernández Olmos, S.L.; Ibarra-Vázquez, M.F.; Guerrero-Ramírez, L.G.; Pérez-Álvarez, L.; Vilas-Vilela, J.L. Anthocyanin-loaded polymers as promising nature-based, responsive, and bioactive materials. Polymers 2024, 16, 163. [Google Scholar] [CrossRef] [PubMed]
- Milivojević, M.; Popović, A.; Pajić-Lijaković, I.; Šoštarić, I.; Kolašinac, S.; Stevanović, Z.D. Alginate gel-based carriers for encapsulation of carotenoids: On challenges and applications. Gels 2023, 9, 620. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Tian, Y.; Gao, S.; Zhang, X.; Gao, X.; He, J. Effects of environmental factors and fermentation on red raspberry anthocyanins stability. LWT-Food Sci. Technol. 2023, 173, 114252. [Google Scholar] [CrossRef]
- Wanasingha, N.; Dorishetty, P.; Dutta, N.K.; Choudhury, N.R. Polyelectrolyte gels: Fundamentals, fabrication and applications. Gels 2021, 7, 148. [Google Scholar] [CrossRef] [PubMed]
- Aguado, R.J.; Mazega, A.; Tarres, Q.; Delgado-Aguilar, M. The role of electrostatic interactions of anionic and cationic cellulose derivatives for industrial applications: A critical review. Ind. Crop. Prod. 2023, 201, 116898. [Google Scholar] [CrossRef]
- Otoni, C.G.; Queiros, M.V.A.; Sabadini, J.B.; Rojas, O.J.; Loh, W. Charge matters: Electrostatic complexation as a green approach to assemble advanced functional materials. ACS Omega 2020, 5, 1296–1304. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Zhou, F.; Chen, Y.; Shen, Q.; Feng, S.; Liang, L. Co-encapsulation of bioactive components using protein-based various assemblies: Necessary, assembling structure, location and partition. Food Hydrocoll. 2023, 148, 109492. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, Y. Biopolymer-based encapsulation of anthocyanins as reinforced natural colorants for food applications. J. Agric. Food Res. 2023, 11, 100488. [Google Scholar] [CrossRef]
- Fathordoobady, F.; Jarz Ebski, M.; Pratap-Singh, A.; Guo, Y.; Abd-Manap, Y. Encapsulation of betacyanins from the peel of red dragon fruit (Hylocereus polyrhizus L.) in alginate beads. Food Hydrocoll. 2021, 113, 106535. [Google Scholar] [CrossRef]
- Li, M.; Witt, M.T.; Xie, F.; Warren, F.J.; Halley, P.J.; Gilbert, R.G. Biodegradation of starch films: The roles of molecular and crystalline structure. Carbohydr. Polym. 2015, 122, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Balance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef] [PubMed]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Mhlanga, P.; Mianda, S.M.; Sivakumar, D. Impact of fermentation of pumpkin leaves and melon varieties with lactobacillus strains on physicochemical properties, antioxidant activity, and carotenoid compounds. Foods 2024, 13, 3562. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Roy, S.; Ezati, P.; Yang, P.; Rhim, J.W. Tannic acid: A green crosslinker for biopolymer-based food packaging films. Trends Food Sci. Technol. 2023, 136, 11–23. [Google Scholar] [CrossRef]
- Abourehab, M.A.S.; Rajendran, R.R.; Singh, A.; Pramanik, S.; Shrivastav, P.; Ansari, M.J.; Manne, R.; Amaral, L.S.; Deepak, A. Alginate as a promising biopolymer in drug delivery and wound healing: A review of the state-of-the-art. Int. J. Mol. Sci. 2022, 23, 9035. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Liu, H.; Huang, G.; Yuan, Z.; Fu, M.; Bu, Z.; Wen, J.; Xu, Y. The structural characterization, physicochemical properties, and stability of gardenia yellow pigment microcapsules. LWT—Food Sci. Technol. 2022, 162, 113507. [Google Scholar] [CrossRef]
- Essifi, K.; Lakrat, M.; Berraaouan, D.; Fauconnier, M.L.; Bachiri, A.E.; Tahani, A. Optimization of gallic acid encapsulation in calcium alginate microbeads using Box-Behnken experimental design. Polym. Bull. 2021, 78, 5789–5814. [Google Scholar] [CrossRef]
- Mohammadalinejhad, S.; Almonaityte, A.; Jensen, I.J.; Kurek, M.; Lerfall, J. Alginate microbeads incorporated with anthocyanins from purple corn (Zea mays L.) using electrostatic extrusion: Microencapsulation optimization, characterization, and stability studies. Int. J. Biol. Macromol. 2023, 246, 125684. [Google Scholar] [CrossRef] [PubMed]
- Ciarleglio, G.; Cinti, F.; Toto, E.; Santonicola, M.G. Synthesis and characterization of alginate gel beads with embedded zeolite structures as carries of hydrophobic curcumin. Gels 2023, 9, 714. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Grün, I.U.; Ellersieck, M.; Clarke, A.D. Measurement of Total Sodium Alginate in Restructured Fish Products Using Fourier Transform Infrared Spectroscopy. EC Nutr. 2017, 11, 33–45. [Google Scholar]
- Soiklom, S.; Siri-anusornsak, W.; Petchpoung, K.; Kansandee, W. Development of anthocyanin-rich gel beads from colored rice for encapsulation and in vitro gastrointestinal digestion. Molecules 2024, 29, 270. [Google Scholar] [CrossRef] [PubMed]
- Larosa, C.; Salerno, M.; de Lima, J.S.; Meri, R.M.; da Silva, M.F.; de Carvalho, L.B.; Converti, A. Characterisation of bare and tannase-loaded calcium alginate beads by microscopic, thermogravimetric, FTIR and XRD analyses. Int. J. Biol. Macromol. 2018, 115, 900–906. [Google Scholar] [CrossRef] [PubMed]
- Fleschhut, J.; Kratzer, F.; Rechkemmer, G.; Kulling, S.E. Stability and biotransformation of various dietary anthocyanins in vitro. Eur. J. Nutr. 2006, 45, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Ambrosi, M.R.; Caldera, F.; Caldera, F.; Trotta, F.; Berrueta, L.A.; Gallo, B. Encapsulation of apple polyphenols in β-CD nanosponges. J. Incl. Phenom. Macrocycl. Chem. 2014, 80, 85–92. [Google Scholar] [CrossRef]
- Ayvaz, H.; Cabaroglu, T.; Akyildiz, A.; Pala, C.U.; Temizkan, R.; Ağçam, E.; Ayvaz, Z.; Durazzo, A.; Lucarini, M.; Direito, R.; et al. Anthocyanins: Metabolic Digestion, Bioavailability, Therapeutic Effects, Current Pharmaceutical/Industrial Use, and Innovation Potential. Antioxidants 2022, 12, 48. [Google Scholar] [CrossRef] [PubMed]
- Eker, M.E.; Aaby, K.; Budic-Leto, I.; Brnčić, S.R.; El, S.N.; Karakaya, S.; Simsek, S.; Manach, C.; Wiczkowski, W.; Pascual-Teresa, S.D. A review of factors affecting anthocyanin bioavailability: Possible implications for the inter-individual variability. Foods 2020, 9, 2. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Sang, Y.; Gao, Y.; Zeng, Y.; Liao, J.; Tan, J. Research progress on absorption, metabolism, and biological activities of anthocyanins in berries: A review. Antioxidants 2022, 12, 3. [Google Scholar] [CrossRef] [PubMed]
- Norkaew, O.; Thitisut, P.; Mahatheeranont, S.; Pawin, B.; Sookwong, P.; Yodpitak, S.; Lungkaphin, A. Effect of wall materials on some physicochemical properties and release characteristics of encapsulated black rice anthocyanin microcapsules. Food Chem. 2019, 294, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, H.; Zhang, W.; Ding, Y.; Zhao, T.; Zhang, M.; Yang, L. Bioaccessibility and biotransformation of anthocyanin monomers following in vitro simulated gastric-intestinal digestion and in vivo metabolism in rats. Food Funct. 2019, 10, 6052–6061. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef] [PubMed]
- Hadidi, M.; Liñán-Atero, R.; Tarahi, M.; Christodoulou, M.C.; Aghababaei, F. The potential health benefits of gallic acid: Therapeutic and food applications. Antioxidants 2024, 13, 1001. [Google Scholar] [CrossRef] [PubMed]
- Ceravolo, I.; Mannino, F.; Irrera, N.; Squadrito, F.; Altavilla, D.; Ceravolo, G.; Pallio, G.; Minutoli, L. Health potential of aloe vera against oxidative stress induced corneal damage: An “in vitro” study. Antioxidants 2021, 10, 318. [Google Scholar] [CrossRef] [PubMed]
- Skroza, D.; Šimat, V.; Vrdoljak, L.; Jolić, N.; Skelin, A.; Čagalj, M.; Frleta, R.; Mekinić, I.G. Investigation of antioxidant synergisms and antagonisms among phenolic acids in the model matrices using FRAP and ORAC method. Antioxidants 2022, 11, 1784. [Google Scholar] [CrossRef] [PubMed]
- Pinto, D.; Ferreira, A.S.; Lozano-santos, E.P.; Lamuela-raventos, R.M.; Vallveedu-Queralt, A.; Delerue-Matos, C.; Rodrigues, F. Exploring the impact of in vitro gastrointestinal digestion in the bioaccessibility of phenolic-rich chestnut shells: A preliminary study. Separations 2023, 10, 471. [Google Scholar] [CrossRef]
- Shaygannia, S.; Eshaghi, M.R.; Fazel, M.; Hashemiravan, M. The effect of microencapsulation of phenolic compounds from lemon waste by persian and basil seed gums on the chemical and microbiological properties of mayonnaise. Prev. Nutr. Food Sci. 2021, 26, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Montes, E. Wall materials for encapsulating bioactive compounds via spray drying: A review. Polymers 2023, 15, 2659. [Google Scholar] [CrossRef] [PubMed]
Treatments | Samples | Code |
---|---|---|
Treatment 1 | 2% Alginate + 1.5% Pea protein + 1% Psyllium mucilage (Control) | (A-PP-P) |
Treatment 2 | 2% Alginate + 1.5% Pea protein + 1% Psyllium mucilage+ 1% Okra | (A-PP-P-O) |
Treatment 3 | 2% Alginate + 1.5% Pea protein + 1% Psyllium mucilage+ 2% Aloe ferox gel + 1% Gallic acid | (A-PP-P-AF-GA) |
Total Anthocyanin Concentration (mg C3G 100 g −1) dw | ||||
---|---|---|---|---|
Encapsulation Matrices to Produce Microbeads of Raspberry Juice Powder | Undigested | Gastric Phase | Recovery % | Intestinal Phase |
A-PP-P | 1251.73 c ± 0.97 | 630.25 c ± 0.32 | 50.35 bc ± 0.90 | 427.48 c ± 0.89 |
A-PP-P-O | 1352.46 b ± 0.61 | 742.00 b ± 0.02 | 54.86 b ± 0.52 | 609.19 b ± 0.62 |
A-PP-P-AF-GA | 1429.88 a ± 0.51 | 870.94 a ± 0.57 | 60.91 a ± 0.42 | 777.15 a ± 0.17 |
R-B-J-P | 1150.2 d ± 0.35 | 542.43 d ± 0.15 | 47.16 c ± 0.91 | 435.86 c ± 0.23 |
Biopolymers | Undigested Raspberry Microbeads | Gastric Phase | Recovery % | Intestinal Phase | Bio-Accessibility % |
---|---|---|---|---|---|
Cyanidin-3-O-sophoroside (mg 100 g−1) | |||||
A-PP-P | 930.94 a ± 9.04 | 679.28 b ± 4.79 | 72.96 | 417.49 c ± 7.43 | 44.85 b ± 1.02 |
A-PP-P-O | 962.46 a ± 5.28 | 709.04 b ± 7.93 | 73.67 | 433.11 c ± 3.06 | 45.00 b ± 0.52 |
A-PP-P-AF-GA | 994.02 a ± 8.23 | 806.79 b ± 3.44 | 81.16 | 542.88 c ± 8.16 | 54.61 a ± 0.83 |
R-B-J-P | 864.99 a ± 0.27 | 295.59 d ± 0.50 | 34.17 | 266.43 d ± 0.95 | 30.80 c ± 0.31 |
Cyanidin-3-O-glucoside (mg 100 g−1) | |||||
A-PP-P | 68.62 a ± 2.71 | 39.93 c ± 0.59 | 58.19 bc | 21.67 d ± 0.52 | 31.58 c ± 0.32 |
A-PP-P-O | 76.45 a ± 3.01 | 52.65 b ± 0.41 | 68.87 b | 37.18 c ± 0.21 | 48.63 b ± 0.27 |
A-PP-P-AF-GA | 115.23 a ± 2.13 | 91.39 a ± 0.89 | 79.3 a | 63.72 b ± 0.81 | 55.30 a ± 0.17 |
R-B-J-P | 97.16 a ± 0.10 | 32.16 c ± 0.27 | 33.10 d | 29.77 d ± 0.77 | 30.64 c ± 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mokale, M.J.; Kesavan Pillai, S.; Sivakumar, D. Effects of Encapsulation and In Vitro Digestion on Anthocyanin Composition and Antioxidant Activity of Raspberry Juice Powder. Foods 2025, 14, 2492. https://doi.org/10.3390/foods14142492
Mokale MJ, Kesavan Pillai S, Sivakumar D. Effects of Encapsulation and In Vitro Digestion on Anthocyanin Composition and Antioxidant Activity of Raspberry Juice Powder. Foods. 2025; 14(14):2492. https://doi.org/10.3390/foods14142492
Chicago/Turabian StyleMokale, Mokgaetji Johanna, Sreejarani Kesavan Pillai, and Dharini Sivakumar. 2025. "Effects of Encapsulation and In Vitro Digestion on Anthocyanin Composition and Antioxidant Activity of Raspberry Juice Powder" Foods 14, no. 14: 2492. https://doi.org/10.3390/foods14142492
APA StyleMokale, M. J., Kesavan Pillai, S., & Sivakumar, D. (2025). Effects of Encapsulation and In Vitro Digestion on Anthocyanin Composition and Antioxidant Activity of Raspberry Juice Powder. Foods, 14(14), 2492. https://doi.org/10.3390/foods14142492